NONABELIAN DESCENT ON ENRIQUES SURFACES

DAVID HARARI (JOINT WORK WITH ALEXEI SKOROBOGATOV)

Let k be a number field. Fix an algebraic closure \overline{k}.

1. A family of Enriques surfaces (geometry)

Let D_1, D_2 be curves of genus 1, say

$$D_1: y_1^2 = d_1(x^2-a)(x^2-ab^2)$$
$$D_2: y_2^2 = d_2(t^2-a)(t^2-ac^2)$$

where $b, c, d_1, d_2 \in k^\times$ and $a \in k^\times - k^x$, and $b, c \neq \pm 1$.

Let E_i be the Jacobian of D_i for $i = 1, 2$. The elliptic curves E_1 and E_2 have $E_i(\overline{k})[2] \subset E_i(k)$. We have the involution -1 on D_1 and on D_2. Let Y be the Kummer surface obtained as the minimal desingularization of $(D_1 \times D_2)/(-1)$. This is a K3 surface.

Choose rational points $P \in E_1[2]$ and $Q \in E_2[2]$. We have a fixed-point-free involution $\sigma: Y \to Y$ induced by $(x, y) \mapsto (x + P, -y + Q)$ for $x \in D_1$ and $y \in D_2$. An Enriques surface is an étale quotient of a K3 surface by a fixed-point-free involution. So $X := Y/\sigma$ is an Enriques surface. The variety Y is the minimal smooth projective model of

$$y^2 = d(x^2-a)(x^2-ab^2)(t^2-a)(t^2-ac^2),$$

and $\sigma(x, y, t) = (-x, -y, -t)$.

We have $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$, but $\overline{X} := X \times_k \overline{k}$ is not rational, since it has a $\mathbb{Z}/2$ étale covering \overline{Y}. In fact, since a K3 surface is simply connected, we have $\pi_1(\overline{X}) = \mathbb{Z}/2$.

Proposition 1.1. Under very mild conditions on b, c, the elliptic curves \overline{E}_1 and \overline{E}_2 are not isogenous.

Proof. Check that $j(\overline{E}_1)$ is not integral over $\mathbb{Z}[j(\overline{E}_2)]$. □

Assume from now on that \overline{E}_1 and \overline{E}_2 are not isogenous. Then $\text{Pic}(\overline{D}_1 \times \overline{D}_2) \simeq \text{Pic} \overline{D}_1 \times \text{Pic} \overline{D}_2$.

We define 24 lines (by which we mean rational curves) on \overline{Y}. Number the points $(\pm \sqrt{a}, 0)$ and $(\pm b\sqrt{a}, 0)$ on D_1 as 0, 1, 2, 3. Number the points $(\pm \sqrt{a}, 0)$ and $(\pm c\sqrt{a}, 0)$ on D_2 as 0, 1, 2, 3. Let ℓ_{ij} be the exceptional curve on \overline{Y} corresponding to the blow-up of $(i, j) \in (\overline{D}_1 \times \overline{D}_2)/(-1)$: this gives 16 lines. Let ℓ_i be the proper transform of $(i \times \overline{D}_2)/(-1)$, and let s_j be the proper transform of $(\overline{D}_1 \times j)/(-1)$. Let $U' = (D_1 - \{y_1 = 0\}) \times (D_2 - \{y_2 = 0\})$ and $V' = U'/(-1)$. Then V' is the complement of the 24 lines on Y.

Proposition 1.2. We have $\text{Pic}\overline{V}' = 0$ (so $\text{Pic}\overline{Y}$ is generated by the 24 lines).

Proof. Use Proposition 1.1 and the Hochschild-Serre spectral sequence associated to $\overline{U} \to \overline{V}'$. □

Date: July 26, 2007.
Let \(L = k(\sqrt{a}) \).

Remark 1.3. The 24 lines are defined over \(L \), and the action of \(\text{Gal}(L/k) \) coincides with the action of \(\sigma \).

2. A COUNTEREXAMPLE TO WEAK APPROXIMATION

Let \(k = \mathbb{Q} \). Let \(b \) be a prime number \(p \) with \(\left(\frac{a}{p} \right) = -1 \). Let \(a \) be another prime number, with \(a \equiv 1 \pmod{4} \). Let \(c \in \mathbb{Z} \) such that \(p \nmid c(p^2 - 1) \). Let \(d_1 = d_2 = 1 \).

For example, take \(a = 5 \), \(b = 13 \), \(c = 2 \). In this case, \(Y \) is given by

\[
y^2 = (x^2 - a)(x^2 - ap^2)(t^2 - a)(t^2 - ac^2).
\]

There is an obvious rational point \(M \in Y(k) \), given by \(x = t = 0 \) and \(y = a^2p^2c \).

Proposition 2.1. Define \(Q_v = f(M_v) \). Then \((Q_v) \) is not in the closure of \(X(k) \) in \(\prod_v X(k_v) \).

Idea: We can find a 1-dimensional \(k \)-torus \(T \) and an \(Y \)-torsor \(Z \) under \(T \) such that \(Z \) is also an \(X \)-torsor under a \(k \)-group \(G \) fitting into an exact sequence

\[
1 \to T \to G \to \mathbb{Z}/2 \to 1.
\]

In other words, we have

\[
\begin{array}{ccc}
Z & \xrightarrow{T} & Y \\
\downarrow & & \downarrow \sigma \\
X & \xrightarrow{G} & \mathbb{Z}/2
\end{array}
\]

The étale cohomology set \(H^1(X, G) \) classifies \(X \)-torsors under \(G \). We have \([Z] \in H^1(X, G)\).

Fact: \([Z](Q_v) \in \prod_v H^1(k_v, G)\) does not belong to the diagonal image of \(H^1(k, G) \). This shows that \((Q_v) \notin \overline{X}(k)\), because of the Borel-Serre finiteness theorem.

3. COMPUTATIONS OF BRAUER GROUPS

Goal: Show that \((Q_v)\) is in the Brauer-Manin set of \(X \): i.e., that for all \(\alpha \in \text{Br} X \),

\[
\sum_v j_v(\alpha(Q_v)) = 0.
\]

Let \(f \) be the map \(Y \to X \). Recall that \(\text{Br}_1 X \) is the kernel of \(\text{Br} X \to \text{Br} \overline{X} \).

Proposition 3.1. The group \(f^*(\text{Br}_1 X) \) is contained in the image of \(\text{Br} k \to \text{Br} Y \).

Proof. If \(k \) is a number field, then \(\text{Br}_1 X/\text{Br} k = H^1(k, \text{Pic} \overline{X}) \). Similarly, \(\text{Br}_1 Y/\text{Br} k = H^1(k, \text{Pic} \overline{Y}) \). Since \(\text{Pic} \overline{Y} \) is torsion-free, it is sufficient to show that \(H^1(k, (\text{Pic} \overline{X})/\text{tors}) = 0 \).

The spectral sequence for \(\overline{Y} \to \overline{X} \) gives

\[
0 \to \mathbb{Z}/2 \to \text{Pic} \overline{X} \to (\text{Pic} \overline{Y})^\sigma \to H^2(\mathbb{Z}/2, \overline{k}^\times)
\]

and \((\text{Pic} \overline{X})/\text{tors} = \mathbb{Z}^r \) with trivial Galois action. \(\square \)
Theorem 3.2. If \(-d\) and \(-ad\) are not squares, then \(\text{Br}_1 X = \text{Br} X\). (Note that \(\text{Br} \overline{X} = \mathbb{Z}/2\).)

Proof of (1). Take \(\alpha \in \text{Br} X = \text{Br}_1 X\). Then

\[
\sum_v j_v(\alpha(Q_v)) = \sum_v j_v(f^*(\alpha)(M_v)),
\]

which is constant by Proposition 3.1, so it is 0. \(\Box\)

Conclusion: “The Brauer-Manin obstruction to weak approximation is not the only one for Enriques surfaces.”

Remark 3.3. The important facts we used were:

- \(G\) is not commutative
- \(G\) is not connected.

If one of these failed, the obstruction would be explained by the Brauer-Manin obstruction.

Question 3.4. The map \(\text{Br} \overline{X} \rightarrow \text{Br} \overline{Y}\) is injective for this family. Is it true in general for every Enriques surface?

Conjecture 3.5. The Brauer-Manin obstruction to the Hasse principle is not the only one for Enriques surfaces.