Example 1. (Stoll 2002) The rank 1 elliptic curve

\[y^2 = x^3 + 7823 \]

has a 4-covering

\[C_4 = \left\{ \begin{array}{l}
2x_1x_2 + x_1x_3 + x_1x_4 + x_2x_4 + x_2^2 - 2x_4^2 = 0 \\
x_1^2 + x_1x_3 - x_1x_4 + 2x_2^2 - 2x_3x_4 + x_3^2 - x_3x_4 + x_4^2 = 0
\end{array} \right\} \subset \mathbb{P}^3. \]

Searching for rational points we find

\[(116 : 207 : 474 : -332) \in C_4(\mathbb{Q}).\]

This point maps to a generator \((r/t^2, s/t^3)\) for \(E(\mathbb{Q})\), where

\[
\begin{align*}
t &= 11981673410095561 \\
r &= 2263582143321421502100209233517777 \\
s &= 186398152584623305624837551485596770028144776655756.
\end{align*}
\]

This is a point of canonical height 77.617 . . .

<table>
<thead>
<tr>
<th>Equations for (C_n)</th>
<th>(n = 2)</th>
<th>(n = 4)</th>
<th>(n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimisation</td>
<td>Birch, Cassels</td>
<td>Siksek</td>
<td>Stamminger</td>
</tr>
<tr>
<td>Reduction</td>
<td>Birch, Swinnerton-Dyer</td>
<td>Stoll</td>
<td>(This talk)</td>
</tr>
<tr>
<td>Point search</td>
<td>Elkies, Stahlke, Stoll</td>
<td>(p)-adic Elkies, Watkins</td>
<td>(p)-adic Elkies, Watkins</td>
</tr>
</tbody>
</table>

Suppose that \(C_n \subset \mathbb{P}^{n-1}\) is a genus 1 normal curve. Let \(E = \text{Jac } C_n\). Then \(C_n\) is a torsor under \(E\). The action of \(E[n]\) on \(C_n\) extends to an action of \(E[n]\) on \(\mathbb{P}^{n-1}\). Over \(\mathbb{C}\), we can choose coordinates such that generators of \(E[n]\) act on \(\mathbb{P}^{n-1}\) by the matrices

\[
\begin{pmatrix}
1 \\
\zeta \\
\vdots \\
\zeta^{n-1}
\end{pmatrix}, \quad
\begin{pmatrix}
1 \\
\cdots \\
1
\end{pmatrix}
\]

where \(\zeta = e^{2\pi i/n}\).

Idea of reduction: Make a choice of coordinates such the action of \(n\)-torsion is given by matrices close to those above.

The Heisenberg group \(H_n\) is defined by

\[
\begin{array}{c}
0 \longrightarrow \mu_n \longrightarrow H_n \longrightarrow E[n] \longrightarrow 0 \\
\| \quad \downarrow \rho \\
0 \longrightarrow \mu_n \longrightarrow \text{SL}_n \longrightarrow \text{PGL}_n \longrightarrow 0.
\end{array}
\]

Date: July 22, 2007.
Then \(\rho : H_n \to \text{GL}_n \) is an irreducible \(n \)-dimensional representation of \(H_n \). By the Weyl unitary trick there is a unique \(H_n \)-invariant inner product \(\langle \cdot , \cdot \rangle \) on \(\mathbb{C}^n \). This is the inner product we use for reduction.

Problem: Compute \(\langle \cdot , \cdot \rangle \).

Suppose we have locally soluble coverings \(C_4 \to C_2 \to E \), where \(C_4 \) is \(Q_1 = Q_2 = 0 \) in \(\mathbb{P}^3 \), and \(C_2 \) is \(y^2 = g(x) \) mapping to \(\mathbb{P}^1 \). Each \(Q_i \) corresponds to a symmetric \(4 \times 4 \) matrix \(A_i \), and \(g(x) = \det(xA_1 + A_2) \).

The map \(C_4 \to \mathbb{P}^3 \) is given by quadrics \(T_1, T_2 \). Let \(F = \mathbb{Q}[x]/(g(x)) = \mathbb{Q}(\theta) \). (Assume for this talk that \(F \) is a field. The general case is similar.)

\[
T_1 - \theta T_2 = \xi z^2 \pmod{I(C_4)}
\]

where \(\xi \in F^\times \) and \(z \in F[x_1, \ldots, x_4] \) is a linear form. The form \(z \) has conjugates \(z_1, \ldots, z_4 \in \mathbb{C}[x_1, \ldots, x_4] \), and \(\theta \) has conjugates \(\theta_1, \ldots, \theta_4 \), and \(\xi \) has conjugates \(\xi_1, \ldots, \xi_4 \). Then \(\langle \cdot , \cdot \rangle \) is determined by

\[
|\xi_i| \langle z_i, z_j \rangle = \delta_{ij} |g'(\theta_i)|^{1/2}.
\]

Eight-descent (Stamminger): Let \(Q_\theta = \theta Q_1 + Q_2 \). This is the equation of a (cone over a) conic. By an explicit form of the Hasse principle we can find an \(F \)-rational point on this conic. Let \(L \in F[x_1, \ldots, x_4] \) be a linear form defining the tangent to the cone at this point.

\[
C_4(\mathbb{Q}) \to F^\times / F^\times 2 \mathbb{Q}^\times
\]

\[
P \mapsto L(P)
\]

Then \(\text{im} \ C_4(\mathbb{Q}) \subset S \subset F^\times / F^\times 2 \mathbb{Q}^\times \), where \(S \) is a finite set computed by Stamminger.

Problem: Given \(\xi \in F^\times \), representing an element of \(S \), compute equations for a 2-covering of \(C_4 \).

Solution 1: Write \(L = \xi z^2 \) as

\[
L(x_1, \ldots, x_4) = (\xi_0 + \xi_1 \theta + \xi_2 \theta^2 + \xi_3 \theta^3)(z_0 + z_1 \theta + z_2 \theta^2 + z_3 \theta^3)^2,
\]

expand to get four equations, each of which equates a linear form in the \(x_i \) with a quadratic form in \(z_0, z_1, z_2, z_3 \). Linear algebra expresses each \(x_i \) as a quadratic form in \(z_0, z_1, z_2, z_3 \). Substitute into \(Q_1 \) and \(Q_2 \) to get two quadrics in \(z_0, z_1, z_2, z_3 \). These define the union of two 8-coverings in \(\mathbb{P}^3 \), say \(C_8^+ \cup C_8^- \subset \mathbb{P}^3 \). But we would like equations defining these 8-coverings individually. Here the norm conditions come in. Let \(L_1, \ldots, L_4 \) be the conjugates of \(L \). Then \(\prod_{i=1}^4 L_i = cQ_3^2 \pmod{I(C_4)} \) for some \(c \in \mathbb{Q}^\times \) and \(Q_3 \in \mathbb{Q}[x_1, \ldots, x_4] \) quadratic. From \(L = \xi z^2 \), we have \(N(\xi)N(z)^2 = \prod_{i=1}^4 L_i = cQ_3^2 \). Since \(\xi \in S \), without loss of generality \(N(\xi) = c \). We get \(N(z) = \pm Q_3 \). This gives a third quartic.

But a genus one normal curve \(C_8 \subset \mathbb{P}^7 \) of degree 8 is defined by 20 quadrics in 8 variables.

Solution 2: Parametrise the conic! \(Q_\theta = \text{const}(LL' - M^2) \) where \(L, L', M \) are linear forms. Write \(L = \xi z^2 \) and \(L' = (\xi')^2 \) and \(M = \xi z z' \). Get 12 equations equating a linear form in \(x_1, \ldots, x_4 \) with a quadratic form in \(z_1, \ldots, z_4 \); this leads to 8 quadrics in \(z_0, \ldots, z_3, z'_0, \ldots, z'_3 \). It turns out that using the norm condition we can get a further 12 quadrics.

We have found a formula analogous to (1) defining the reduction inner product on the 8-covering, relative to the basis \(z_0, \ldots, z_3, z'_0, \ldots, z'_3 \).
Using these methods, we found a 2-covering of the curve C_4 in Example 1. On this 8-covering of E we found the rational point

$$(0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).$$

Example 2. (from the Stein-Watkins database) Let E be the rank 2 elliptic curve

$$y^2 + xy + y = x^3 - 3961560x - 3035251137$$

of prime conductor $N_E = 3801444643$. We find $E(\mathbb{Q}) = \langle P_1, P_2 \rangle$ where

$$P_1 = (-10343/9, 15502/27)$$

has canonical height 2.946 To find the second generator we first compute the everywhere locally soluble 4-coverings of E. One of these is

$$C_4 = \left\{ \frac{x_1 x_2 + x_1 x_4 + x_2^2 + 3x_2 x_3 - 7x_2 x_4 + x_3^2 - 2x_3 x_4 + x_4^2}{6x_1^2 - x_1 x_2 + 2x_1 x_3 + 4x_1 x_4 - 6x_2 x_3 + 4x_3^2 + 15x_3 x_4 + 9x_4^2} = 0 \right\} \subseteq \mathbb{P}^3.$$

We then computed a 2-covering $C_8 \rightarrow C_4$, given by equations q_1, \ldots, q_{20} where e.g.

$$q_1 = -x_1^2 - x_1 x_4 + 2x_1 x_5 - x_1 x_6 + x_1 x_7 - x_1 x_8 - x_2 x_4 - x_2 x_7 + x_2 x_8 + x_3 x_7 - x_4 x_5 + x_4 x_6 + x_4 x_7 - 2x_4 x_8 - x_5^2 + x_5 x_6 - x_5 x_7 - x_5 x_8 - x_6 x_7 - x_7 x_8 - x_8^2.$$

Magma’s PointSearch function finds a point on C_8:

which then maps down to a point on C_4:

This in turn maps down to a point $(r/t^2, s/t^3)$ on E where

$$t = 57204436729631275386786939121147787660092078210368817\backslash
6713689179795703$$

$$r = 10919607812201754697433435297074399487856433325041687\backslash
77513308874330935296419878516832700736490562061911804\backslash
1367649330569338686846234988591589617$$

$$s = -2737797182928405968303947456146746283903090578548158\backslash
61014680910657479930315094343194702609558488223853230\backslash
08062298231051955202624360966377771000745512359951954\backslash
68495932769359879847797587445889344314286351998997810.$$

This is a point of canonical height 325.048, and is independent of P_1. (We earlier found this second generator using 12-descent, but using 8-descent is much quicker.)