
REAL MULTIPLICATION ABELIAN SURFACES OVER Q

NOAM ELKIES

Recall:
New eigen-cuspforms f of weight 2 on Γ0(N) with Q(f) totally real and [Q(f) : Q] = d
←→ dimension d factors of J0(N) ←→ abelian varieties A/Q of dimension d with real
multiplication (=RM) by an order in K = Q(f) up to isogeny.

d = 1: elliptic curves, which we understand quite well: moduli (the j-line, ∼= P1), explicit
formulas (Weierstrass etc.), isogenies, etc.

d > 1: we understand these much less well.
I’ll report on recent progress on the case d = 2. Already here we didn’t even know what the

general RM abelian variety looks like, even principally polarized with RM by the full ring of
integers OK , except for the simplest K (discriminant D = 5, 8, maybe 12?). That is, we know
the moduli of the general ppas (principally polarized abelian surface), or almost equivalently
of the Jacobian of the general curve of genus 2 — the moduli space A2 is 3-dimensional,
rational, and birationally parametrized by the Clebsch(-Igusa) invariants; but except in the
simplest cases we do not know equations in A2 for the moduli surfaces of ppas with RM.

We might expect that Cremona’s extensive table of modular forms f would give us some
idea what kind of RM surfaces we expect to find over Q. See the next page for a table
summarizing data on about 104 forms up to N = 5000 and a bit beyond. This collection of
data is not entirely satisfactory in various ways1, but it should still give a reasonable sense
of “what’s out there”. We see that the smallest D’s dominate the statistics as expected, but
many larger D occur as well.

We also include for each D = disc(K) the type R, K3, E, or G (rational, K3, “honestly
elliptic”, or general) of the moduli surface Y−(D) of ppas with RM by OK , as determined
c.1975 by Hirzebruch–van de Ven (for prime D) and Hirzebruch–Zagier (for composite D).
[We have no guarantee that a typical d = 2 factor of J0(N) has a principal polarization,
but probably the moduli spaces for RM surfaces without such a polarization tend to be
more complicated and thus to have sparser rational points; likewise for RM surfaces whose
endomorphism ring has index > 1 in OK .]

Date: September 28, 2007.
1It is extracted from a database created by William Stein and downloadable from

http://modular.fas.harvard.edu/tables/arith of factors, titled “Arithmetic data about every weight 2
newform on Γ0(N) for all N < 5135 (and many more up to 7248)”. While the sample of N is somewhat
peculiar, I doubt that it produces a systematic bias among the d = 2 forms. Only the first ten ap are
tabulated; in all but a handful of cases ap /∈ Z for at least one of these p, so we can find K, which is
sufficient for our table though sometimes it does not determine the RM ring in K. Also, one form may
represent more than one isomorphism class of ppas (due to isogenies), and thus more than one point on the
moduli surface; and several forms may represent ppas with the same moduli (due to twists) — for instance,
for each of the four D ≥ 113 for which forms with disc(K) = D are tabulated, there are two such forms but
they are each other’s twist.
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D Y− #
5 R 3552
8 R 2490

12 R 1410
13 R 779
17 R 1080
21 R 221
24 K3 329
28 K3 225
29 K3 40

D Y− #
33 K3 278
37 K3 34
40 K3 95
41 K3 110
44 E 21
53 E 0
56 G 6
57 E 48
60 G 13

D Y− #
61 E 12
65 E 9
69 G 3
73 G 37
76 G 11
77 G 0
85 G 3
88 G 5
89 G 1

D Y− #
92 G 0
93 G 0
97 G 7

101 G 0
104 G 0
105 G 0
109 G 6
113 G 2
120 G 0

D Y− #
124 G 0
129 G 0
133 G 0
· · ·
145 G 2
· · ·
184 G 2
· · ·
201 G 2

Both the R/K3/E/G classification and the observed modular forms suggest that it should
be possible to go a lot further parametrizing and finding RM surfaces than the few Y−(D)
parametrizations already in the literature. But how to do it?

The table also suggests that the R/K3/E/G data don’t account for everything, e.g. D = 29
is underrepresented among the six K3 cases, and D = 53, alone among the honestly elliptic
ones, is not seen at all. I can’t explain this completely yet, but I do have various new explicit
parametrizations and examples, including the first cases of D = 53, such as the Jacobians of

Y 2 = 2332X6 + 902X5 + 5060X4 + 17111X3 + 5995X2 + 17545X + 27951

(the sextic has discriminant 21031211121341710) and

Y 2 = 140450X5 + 168540X4 + 55703X3 − 6572X2 + 8706X + 5584

(yes, a quintic; disc. = 2832458138536). More examples and explanations later.
To start with, a bit more detail on the A2 moduli: a ppas A is uniquely the Jacobian

J(C) of some genus-2 curve C (or it’s the product of two elliptic curves, but that’s of
positive codimension in A2, and won’t show up in the tables of modular forms). Moduli
for C: Clebsch(-Igusa) invariants (I2 : I4 : I6 : I10). So the surface Y−(D) will just be the
vanishing locus of some weighted-homogeneous polynomial in those invariants. . . But that’s
the wrong way to go; these polynomials are ugly even in the simplest cases and will quickly
get horrible even while the moduli space is still rational. Cautionary example from the
familiar world of modular curves: X0(2) is rational, with coordinate h = 2−6(η(τ)/η(2τ))24

parametrizing 2-isogenies

y2 = x3 + ax2 + bx ←→ Y 2 = X3 − 2aX2 + (a2 − 4b)X

(with a2/b = 4(h+1)/h) between elliptic curves of j-invariants j = j(h) = 64(t+4)2/t2 and
j′ = j(1/h) = 64(4t + 1)3/t; but if we insist on using (j, j′) to exhibit X0(2) as a curve in
X0(1)×X0(1) then it’s a singular (3, 3) curve with some huge coefficients:

j3 + j′3 − (jj′)2 + 1488jj′(j + j′)− 162000(j2 + j′2)
+ 40773375jj′ + 8748000000(j + j′)− 157464000000000 = 0
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and of course such formulas for X0(N) quickly get even worse. The same thing will happen
for our moduli surfaces Y−(D). Moral: first find the moduli space on its own terms, then
compute Clebsch(-Igusa) coordinates for the map Y−(D)→ A2.

For all but the smallest D, imposing the RM condition directly on C or A = J(C) gives
a horrible mess. We go via the Kummer surface, birationally isomorphic with A/{±1}:

C ←→ J(C) = A←→ A/{±1} ∼←→ Km(A)

It is known that Km(A) = Km(J(C)) is a K3 surface; moreover, For a generic genus-2
curve C, this K3 surface has Néron–Severi (NS) rank ρ = 17. But if A has RM, with endo-
morphisms by a real quadratic ring of discriminant D, then we get a further NS generator,
raising the rank to 18, with discriminant −16D.2 This brings us close to a region of the
mathematical universe that I’ve been exploring for the past year or two, motivated initially
by the problem of finding elliptic curves of large rank over Q(t) and Q; besides attaining
that goal, the exploration also opened up some other fruitful routes. . .

We would like to parametrize K3 surfaces S together with a primitive embedding into
NS(S) of an even lattice L of signature (1, 17) and reasonably small discriminant. The
Kummer surfaces Km(A) do not quite fit the bill, both because the embedding L ↪→ NS(S)
is not usually defined over the ground field (it requires a choice of 2-torsion structure on A)
and because of the large factor of 16 in |disc L|. Fortunately we can do better by using not
Km(A) but a related K3 surface SA, constructed by Dolgachev3:

C ←→ J(C) = A←→ A/{±1} ∼←→ Km(A)
2←→ SA.

That is, the K3 surfaces Km(A), SA are related by degree-2 maps (“2-isogenies” — in fact
the maps can be realized as 2-isogenies between elliptic surfaces). Thus they have the same
Néron–Severi rank over an algebraic closure; but the Galois structures and discriminants of
Km(A) and SA may differ. Indeed here it turns out that in NS(S) we get a lattice of signature
(1, 17) consisting entirely of divisors defined over the ground field, and with discriminant −D
instead of −16D. The construction of SA does not assume that A has RM; for a generic
ppas A we get NS(SA) of signature (1, 16) and discriminant 2.

So, how to parametrize such a K3 surface? ρ = 17 or ρ = 18 makes a lot of conditions to
impose on (say) a space quartic. . .

We find S as an elliptic K3 surface, that is, S together with an elliptic (a.k.a. Jacobian)
fibration: a map t : S → P1 such that the preimage of a generic point is an elliptic curve.
[NB by definition an elliptic curve comes with an origin, i.e. our fibration must have a zero-
section.] Then the surface is y2 = x3 + α(t)x + β(t) with α, β polynomials of degree at most
8, 12 respectively.

Review of the basics of elliptic surfaces over P1, in particular elliptic K3 surfaces. In K3
case: the fiber and zero-section generate an even unimodular sublattice of signature (1,−1)
in NS(S), often called U, or H for “hyperbolic plane”; so NS(S) = U ⊕ LE〈−1〉, where LE,

2In general, the Torelli theorem for K3 surfaces (Piatetski-Shapiro and Šafarevič, 1971) gives, for each
hyperbolic [i.e. of signature (1, ρ−1)] even lattice L primitively contained in the K3 lattice II3,19 a nonempty
moduli space of K3 surfaces S with primitive embeddings of L into NS(S), such that each component of the
moduli space has dimension 20− rk(L). Here that’s 20− 17 = 3 for generic C, and 20− 18 = 2 in each RM
case, as it should be.

3Appendix to a paper by Galluzzi and Lombardo in the Michigan Math. J., Vol. 52 (2004).
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the “essential lattice” of the elliptic surface, is even, of rank ρ−2, and positive definite (note
the “〈−1〉”); for any such lattice the roots (vectors of norm 2) generate a sublattice R that is
a direct sum of An’s, Dn’s, and En’s, and here these factors correspond to the reducible fibers
of the fibration (Kodaira symbol, computable by Tate’s algorithm); and the Mordell–Weil
group is canonically identified with LE/R, with the induced quadratic form on (LE/R)⊗Q
coinciding with the canonical height.

For the ρ = 17 surfaces corresponding to Jacobians of generic genus-2 curves, we want
the even lattice LE to have rank 15 and discriminant 2. There are two choices: either
LE = R = E7 ⊕ E8, or R = A1 ⊕D14 and [LE : R] = 2. We choose the former, and put the
E7 and E8 fibers at t = 0 and t =∞ respectively. By Tate’s algorithm this means

α(t) = at4 + a′t3, β(t) = b′′t7 + bt6 + b′t5

for some scalars a, a′, b, b′, b′′ with a, b′ nonzero. (Even though #{a, a′, b, b′, b′′} = 5, the
moduli space has dimension 5− 2 = 3 as expected, because for any nonzero scalars λ, µ the
scaling (x, y, t)← (λ2x, λ3y, µt) yields an isomorphic surface.)

So, this surface is SJ(C) for some genus-2 curve C. What is C, and given C what are the
coefficients of SJ(C)?

Theorem (A.Kumar, Ph.D. thesis 2006): The Clebsch(-Igusa) invariants of C satisfy

(κ−2I2, κ
−4I4, κ

−6I6, κ
−10I10) =

(
−24

b′

a′
, −12a, 96a

b′

a′
− 36b, 4a′b′′

)
for some nonzero scalar κ. Equivalently, if the genus-2 curve C has invariants I2, I4, I6, I10

then SJ(C) can be taken to have coefficients

(a, a′, b, b′, b′′) =

(
−I4

I2

, −1,
I2I4 − 3I6

108
,

I2

24
,

I10

2

)
.

Now J(C) has RM by the quadratic order of discriminant D if and only if our elliptic
surface y2 = x3 + α(t)x + β(t) has a section4 of canonical height D/2. Simplest example: if
D = 5, a section of canonical height D/2 is a solution (x(t), y(t)) of y2 = x3 + α(t)x + β(t)
with x, y polynomials of degree 4, 6 respectively such that t2|x and t3|y. [Geometrically this
means a section of the elliptic fibration t : SJ(C) → P1 that does not intersect the zero-section
and passes through the non-identity simple component of the E7 fiber at t = 0. Then the

4In general, we may start with an admissible hyperbolic lattice U ⊕LE of rank ρ, choose a component of
the moduli space of elliptic K3 surfaces with essential lattice containing LE , and consider the codimension-1
subspaces on which the Néron–Severi rank is at least ρ + 1. These correspond to admissible lattices U ⊕L′

E

with L′
E a positive-definite even lattice that contains LE with LE = (LE ⊗ Q) ∩ L′

E . Let R′ be the root
lattice of L′

E . Necessarily R′ ⊇ R with R = (R ⊗ Q) ∩ R′. Usually R′ = R, and then our hypersurface is
obtained by requiring that our elliptic surface have an extra section. But it is also possible for R′ to strictly
contain R. Geometrically this can happen in various ways: most simply, two I1 fibers may merge to form
an I2 (in which case L′

E = LE ⊕A1 — we shall need this possibility later); but also a reducible fiber might
become more singular by merging with an I1, and it is even possible for two or more reducible fibers to
merge. But when LE = R = E7 ⊕E8, the only possibilities for R′ other than R itself are A1 ⊕E7 ⊕E8 and
E8 ⊕ E8. These yield D = 4 and D = 1 respectively. Then A is either (2, 2)-isogenous or isomorphic to a
product of elliptic curves. These possibilities, and ones for which D = D2

0 with D0 ≥ 3, are also interesting
to parametrize (for instance, for D0 > 1 we get Jacobians of curves of genus 2 with maps of degree D0 to
two elliptic curves), but are not usually regarded as examples of real multiplication.
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section has näıve height 4 and canonical height 4− (3/2) = 5/2.] This is easy: choose x with
square leading coefficient (three parameters); this determines y and a; then we choose a′

(fourth parameter) and recover b, b′, b′′. So we’re done, with a rational moduli space of the
expected dimension of 2 — as before we subtract 2 from the number of parameters to account
for scaling. Sanity check: do the resulting I2, I4, I6, I10 from Kumar’s formulas agree with
the known parametrizations of genus-2 curves with this RM? Happily, yes.

Now try D = 33 or D = 53. . . Now we need to parametrize x(t), y(t), α(t), β(t) with α, β
as above but x = t2ξ(t)/δ(t)2 with ξ, δ polynomials of degrees 16, 7 respectively (for D = 33)
or 26, 12 (for D = 53). What a mess!!

But this brings us back to our earlier warning: as with X0(2), we should first parametrize
these K3 surfaces on their own terms, and only then find coordinates x, y, t that put them
in the form y2 = x3 + α(t)x + β(t) that exhibits a copy of U ⊕E7 ⊕E8 in the Néron–Severi
lattice. To that end, we’ll use elliptic fibrations in which LE is generated by vectors of small
norm.5 For example, when D = 33 a convenient choice is LE = R = A10 ⊕ E6. We put the
E6 fiber at t = 0 and the A10 at t = ∞. That is, y2 = x3 + α(t)x + β(t) where this time
the E6 fiber means t3|α and t4‖β, and the A10 fibers means that ∆ := 4α3 + 27β2, normally
a polynomial of degree 24, should have an zero of order 11 at t = ∞ when considered as a
section of O(24) on P2, so deg ∆ = 24− 11 = 13. The parametrization of such α, β, though
still not quite trivial, is entirely feasible.

Having done it, we want to recover the U ⊕ E7 ⊕ E8 form of the resulting K3 surfaces S.
That is, we must find a copy of U ⊕ E7 ⊕ E8 in NS(S) = U ⊕ A10 ⊕ E6, and construct a
new elliptic fibration of S from the sections of an isotropic generator of the factor U of that
U⊕E7⊕E8. This can be done, but the linear algebra (over a function field in two variables!)
is unpleasant. It is better to proceed in stages. For example, the A10⊕E6 form gives us the
following diagram of (−2) curves generating NS(S):

r r r r r r rt
r
r

�
�
�

S
S
S

r r r r r

r r r r r
Two circles are joined if and only if the corresponding (−2) curves meet; the large circle rep-
resents the zero-section of the fibration, the cycle of 11 circles to its right are the components
of the A10 fiber, and the 7 circles to the left are the components of the E6 fiber. The box
encloses an extended Dynkin diagram for the E7 root system. Thus we can form a positive
linear combination D of the eight (−2) curves represented by the vertices of the diagram
such that D2 = 0 and D is an E7 fiber of a new elliptic fibration6 on S. The sections of D

5It might be an even better heuristic to use a lattice basis (v1, v2, . . . , v16) that is small in the LLL “norm”
sup16

i=1 disc(〈v1, . . . , vi〉)/ disc(〈v1, . . . , vi−1〉).
6In general such a construction might yield a genus-1 fibration without a section; but here there is at least

one divisor D′ such that D · D′ = 1, so we can use D′ as the section. Specifically, either of the rightmost
vertices in the box represents a component of D of multiplicity 1, so we may use for D′ the (−2) curve
represented by its neighbor outside the box.
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form a two-dimensional space, and the quotient of any two generators yields a map S → P1

that realizes the new elliptic fibration.
This fibration has an E7 fiber as desired, but not an E8 as well. To get at its other reducible

fiber, note that any of our (−2) curves not in or adjacent to the E7 box is orthogonal to D,
and thus a component of some reducible fiber. This gives copies of A2 and E6 in the root
lattice, and it turns out that our new fibration has R = A2⊕E6⊕E7, with Mordell–Weil group
isomorphic to Z and generated by a section of height disc(LE)/disc(R) = 33/(3 ·3 ·2) = 11/6.
Ignoring that section for now, we obtain the following diagram of (−2) curves:

r r r r r r r r r r r r rt
r
r

rr




J
JJ
r r

The box encloses an extended E8 root system, and proceeding as before we finally obtain
our desired U ⊕ E7 ⊕ E8 form of S.

. . . except that we’re not quite done. We can detect the remaining obstacle by using Ku-
mar’s formulas to recover I2, I4, I6, I10, then calculating (by Mestre’s formulas, implemented
in Magma) a genus-2 curve C with these invariants. We then compute, for various primes p
of good reduction, the characteristic polynomial of the Frobenius map ϕ on C mod p. If
J(C) has real multiplication by Z[(1+

√
33)/2], then ϕ+ pϕ−1 satisfies a quadratic equation

whose discriminant is 33 times a square. This happens, but only half the time; for the other
p’s, we find that (ϕ + pϕ−1)2 ∈ Z. The reason is that J(C) indeed has an endomorphism e
with e2 + e = 8, but e is defined not over Q but over a quadratic extension F , so e and 1− e
are indistinguishable, and remain so mod p if p is inert in F . The same difficulty occurs for
any D, not just D = 33. On the level of moduli spaces, the problem is that the map from
Y−(D) to A2 is not birational to its image but a 2 : 1 cover. The image is birational with
Y−(D)/{1, ι}, where ι is the following involution: a generic point on Y−(D) gives an ordered

pair (A, e) where A is a ppas and e is an endomorphism (D +
√

D)/2 of A;7 the involution

ι takes (A, e) to (A, e′) where e′ is the endomorphism (D −
√

D)/2. Thus a generic point

on Y−(D)/{1, ι} gives a ppas with not a distinguished endomorphism (D +
√

D)/2 but a
conjugate pair of such endomorphisms.

To get at Y−(D) itself, we thus need a double cover of the moduli surface of K3 surfaces
that we have constructed. The branch locus is where e is equivalent to 1−e [in general: where

the endomorphism (D +
√

D)/2 of J(C) is equivalent to (D−
√

D)/2] under conjugation in
End(J(C)). This makes End(A) an order in a quaternion ring, adding a 19th generator to
the Néron–Severi groups of Km(J(C)) and S = SJ(C). In our D = 33 setting, this means
that NS(S) has discriminant 66, not −33, coming from an extra reducible fiber of type A1

in the A10 ⊕ E6 fibration. Equivalently, ∆ = 4α3 + 27β2 has a double root other than t = 0
(and t = ∞). So the desired branch locus is obtained by setting the discriminant of the
cubic ∆/t8 equal to zero. Along the way we’ve also parametrized a previously inaccessible

7Actually it might not be right to say that “a generic point on Y−(D) (or on Y−(D)/{1, ι}) gives a ppas”
at all: in general there is an obstruction in Br(K)[2] to finding a ppas over K corresponding to a given
K-rational point on A2. But this difficulty is separate from the problem of recovering Y−(D) from its image
in A2.
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Shimura curve in Y−(33). [For general D, the surface S must have disc(NS(S)) = 2D, unless
8|D when both 2D or D/2 are possible. The systematic use of K3 surfaces of rank 19 to
parametrize and study Shimura curves is a separate topic, and will be treated at length
elsewhere.]

Once we have the branch locus, we know Y−(D) over C, at least if Y−(D)/{1, ι} is simply
connected (which it certainly is in all cases computed so far, including D = 33 and D = 53,
because then Y−(D)/{1, ι} is actually rational); at any rate we have it up to finitely many
choices. Over Q, we also have to find the correct quadratic twist. But there are finitely many
choices there too, because Y−(D) must have good reduction at all primes not contained in D.
We pinpoint the correct twist by starting from any point on Y−(D)/{1, ι} not in the branch
locus and reducing mod p for a few small primes p of good reduction. This finally gives us
the desired equations for Y−(D) as well as ι and the map Y−(D)→ A2.

In the D = 33 example, we birationally identify Y−(33)/{1, ι} with P2, and Y−(33) with the
double cover obtained by extracting the square root of the sextic given (in affine coordinates)
by

9s6−(26r2−80r+104)s4+(25r4−152r3+400r2−408r+432)s2−(2r−2)3(r3−6r2+14r+2)

This not only confirms that Y−(33) is a K3 surface but also lets us obtain more precise in-
formation about it; for instance, we find enough divisors to prove that Y−(33) is a “singular
K3 surface”, that is, a K3 surface whose Néron–Severi rank over Q attains its maximum
of 20 in characteristic zero, and also to identify the lattice NS(Y−(33)) — in particular,
disc NSQ(Y−(33)) = −99. The formula also shows that Y−(33) has another involution, com-

muting with ι, that lifts the involution of P2 given in affine coordinates by (r, s)←→ (r,−s).
This involution takes a ppas A with real multiplication by Z[(1 +

√
33)/2] to an isogenous

abelian surface A′ = A/G where G is the kernel of multiplication by an ideal of norm 3 in
Z[(1 +

√
33)/2]; the fact that the square of this ideal is principal yields a principal polariza-

tion on A′. In our diagram of (−2) curves for R = A2 ⊕ E6 ⊕ E7, we reach A′ instead of A
by changing the boxed E8 diagram to this one:

r r r r r r r r r r r r rt
r
r

rr




J
JJ
r r

Here’s an explicit example of a pair of genus-2 curves related by this isogeny: if (r, s) =
(1,±3) then our sextic equals 722, so we have rational points on Y−(33); the corresponding
curves are

Y 2 = −(X3 − 3X − 1)(4X3 − 3X + 5), Y 2 = −(X3 − 3X + 1)(8X3 − 9X2 − 6X − 1).

The fact that each right-hand side factors as a product of cubics reflects the splitting of
the prime 2 in Z[(1 +

√
33)/2]. The traces of both curves modulo small primes match the

coefficients of a tabulated modular form of weight 2 of level 1296 = 2434.
Some other examples:
For D = 24, we start from a surface with LE = R = A3 ⊕ E6 ⊕ E7, from which we reach

the desired U ⊕ E7 ⊕ E8 form in a single step:
7



r r r r r r r r r r r r rt
r
r

rr��
@

@
r r�

�
@

@
r

We may then exhibit Y−(24) for instance as the elliptic K3 surface over the r-line with
equation

y2 = −x4 + (9r2 + 2)x3 − (24r4 − 25r2)x2

+ (16r6 − 36r4 + 22r2 − 2)x + (r2 − 1)2

(there’s a section (x, y) = (0, r2 − 1)). The involution ι takes y to −y, and again there is an
involution (x, r, y) ←→ (x,−r, y) that commutes with ι and corresponds to an element of
order 2 in the ideal class group of the RM ring, here Z[

√
6 ]. This K3 surface, too, is “singu-

lar”, this time with disc NSQ(Y−(24)) = −96. The rational points (x, r, y) = (1,±3/2,±9/4)
yield the genus-2 curves

Y 2 = 9X6 + 9X4 − 60X3 − 45X2 + 132X − 53,

Y 2 = 9X6 − 54X5 + 333X4 + 912X3 + 351X2 − 354X − 197

with isogenous Jacobians and traces that match a tabulated form of level 2592 = 2592. (Here
the sextics are irreducible but their Galois group is S4, embedded in S6 as a transitive odd
subgroup. The second curve is singular mod 5; this is an example where C has bad reduction
and J(C) is smooth but factors as a product of elliptic curves.)

For D = 40, we get to U ⊕ E7 ⊕ E8 in two steps from an elliptic surface with LE =
R = A4 ⊕D5 ⊕ E7, with the intermediate surface having R = E7 ⊕D8 and a Mordell–Weil
generator of canonical height 5. Here we get Y−(40) as a double cover of P2 by extracting
the square root of the sextic

−8s6 + (25r2 − 12r)s4 + (−26r4 + 24r3 + 2r2 − 22r + 6)s2 + (r2 − 1)(3r + 1)2(r2 − 2r + 2).

so again K3 as predicted, with the extra involution s ←→ −s. Here we find only 19 inde-
pendent Néron–Severi generators, and with Ronald van Luijk show that in fact NSQ(Y−(40))
has rank “only” 19, with discriminant 168. The rational points (r, s) = (11/8,±5/8) yield a
pair of curves

Y 2 = 40X6 − 48X5 + 77X4 + 142X3 + 461X2 + 120X + 208,

Y 2 = 756X6 − 540X5 + 297X4 − 986X3 + 389X2 − 16X + 320

(with irreducible sextics of discriminant −2295310 and −223312510 respectively, both with
Galois group S4 and a spurious bad prime for one curve as in the D = 24 example above).
Here we could not find the associated modular forms with coefficients in Z[

√
10 ] by searching

the online tables.
Finally we report on D = 53. Here there is of course no way to start from a surface with

LE = R, or even with R of finite index in LE, because no root lattice of rank 16 can have
discriminant divisible by 53. (This is not the first time this happens: already for D = 13 there
is no surface with [LE : R] <∞.) But we can still find a suitable LE generated by vectors of
small norm. We chose R = A1 ⊕A6 ⊕A8 (rank 1 + 6 + 8 = 15, discriminant 2 · 7 · 9 = 126),
with Mordell–Weil group infinite cyclic and generated by a point of canonical height 53/126.
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The zero-section, Mordell–Weil generator, and An components then form the configuration
of (−2) curves on the left side of the picture below, with the large circles representing the
zero-section and generator in either order. The double bond links the two components of the
A1 fiber, which intersect twice. The box encloses an extended E7 diagram. Deleting it and
its neighborhood leaves an A8 diagram, so we have an elliptic fibration whose root lattice
contains A8 ⊕ E7, which turns out to be all of R. The resulting diagram of (−2) curves
(without a Mordell–Weil generator, which has height 53/18) is shown on the right hand of
the picture. The box encloses an extended E8 diagram whose neighborhood’s complement is
an E7 diagram; using the corresponding elliptic fibration we arrive at the desired U⊕E7⊕E8

form of our surface. t
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At the end of the day we identify Y−(53) birationally with a double cover

y2 = P (r, s) =
4∑

i=0

pi(s)r
4−i

of the (r, s) plane, where the coefficients pi are p0 = −27/16, p1 = (−9s2 + 63s− 13)/2,

p2 = −16s6 + 120s5 − 353s4 + 560s3 − 599s2 + 216s− 11,

p3 = 8s(18s6 − 143s5 + 458s4 − 781s3 + 779s2 − 380s + 63),

p4 = 16(s2 − s)(−27s6 + 207s5 − 634s4 + 1002s3 − 855s2 + 323s− 44),

and ι : (r, s, y) ←→ (r, s,−y). This is a genus-1 curve over Q(s), with sections over Q
(take r = ∞) but apparently not over Q. Still there is a Zariski-dense set of rational
points, because P (4, s) = −(s − 1)2(s − 2)3(3s − 2)3, so we have a rational “quadratic
section” over Q: a rational curve on Y−(53) on which s is a function of degree 2, with the
preimage of a generic s nontorsion on its genus-1 curve. There are also rational points other
than those obtained from this section, such as (r, s, y) = (141/32, 19/16,±7293/215) and
(r, s, y) = (115/32, 29/16,±53213/215), which give the two examples of this RM exhibited in
the introduction.

For each of our curves C with a RM Jacobian, we could even recover an endomorphism
generating the endomorphism ring of J(C) as an explicit correspondence on C by keeping
track of the full Néron–Severi group of the various K3 surfaces arising in our construction
through the chain of transformations and maps relating them. But such a computation
would still be unpleasant enough that we would need a really good reason to carry it out. . .

Warning: we still cannot claim the existence of infinitely many ppas with real multipli-
cation by Z[1 +

√
53]/2 over Q that are pairwise non-isomorphic over Q. Ditto for the
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other cases where we birationally identify Y−(D) with a surface whose Q-rational points are
Zariski-dense. This is because a K-rational point on A2 does not represent a ppas defined
over K unless an obstruction in Br(K)[2] vanishes. (This phenomenon does not arise for
the j-line A1, though it is already seen for some modular curves such as X0(N)/wN that
parametrize elliptic K-curves.) This obstruction may vanish identically on Y−(D) (this is
known to happen for D = 5), but it does not have to, and indeed for some values of D one
readily finds nontrivial obstructions over Q. It seems reasonable to guess that some values
of D, such as 29 and 53, are under-represented in the tables of modular forms because of this
obstruction — or perhaps one should say that the other D’s are over-represented because
the obstruction vanishes identically on those Y−(D)’s.

As hinted in the beginning, this is work in progress; D = 53 is just the latest case
completed. It should certainly be feasible to do all the cases where Y−(D) is not of general
type and the first few cases of general type, and probably also to check in each case whether
the Brauer obstruction vanishes identically, and if it does to exhibit a universal genus-2 curve
over (an open set in) Y−(D). Still, the modular form tables contain values of D as large
as 201, and it will likely be a long time before I exhibit that moduli space explicitly. . .
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of NSQ(Y−(40)). I also thank Matthias Schütt for comments and corrections on an earlier
draft of this paper.

This work is based on research supported in part by the National Science Foundation
through grant DMS-501029.

[Sorry, no References for now]

10


