EXPLICIT ON GENUS-3 CURVES, II

NILS BRUIN (WITH FLYNN, POONEN, STOLL)

Let C be
$$\sum x_i y^j z^{4-i-j} - y^2 z^2 - 2z^4 = 0$$
. This has points
 $p_0: (-1:1:1)$
 $p_1: (1:-1:1)$
 $p_2: (1:1:-1)$
 $p_3: (25:-17:31)$
 $p_4: \{x^2 + 2z^2, y + z = 0\}$
 $p_5: \{3x^2 + 2y^2 - 3yz - 2z^2 = 0$
 $3xy + 2y^2 + 3yz + z^2 = 0$
 $3xz - 5y^2 + 3yz - z^2 = 0$
 $5y^3 - y^2z + 4yz^2 + z^3 = 0\}$

Define

$$g_1 := [p_2 - p_0]$$

$$g_2 := [p_4 - 2p_0]$$

$$g_3 := [p_5 - 3p_0].$$

In terms of these, we have

$$[p_1 - p_0] := 3g_1 + 2g_2 - 2g_3$$
$$[p_2 - p_0] := g_1$$
$$[p_3 - p_0] := 2g_2.$$

Theorem 0.1. Subject to GRH, $\langle g_1, g_2, g_3 \rangle$ has finite odd index in $J_C(\mathbb{Q}) \simeq \mathbb{Z}^3$.

Strategy:

where $L_p := L \otimes \mathbb{Q}_p$.

Date: July 23, 2007.

Here the group $\frac{L^{\times}}{L^{\times 2}\mathbb{Q}^{\times}}$ is a substitute for $H^1(\mathbb{Q}, J[2])$. We may impose the conditions that cohomology classes are unramified outside a finite set S to replace $\frac{L^{\times}}{L^{\times 2}}$ by a finite subgroup L(2, S) essentially generated by S-units:

We compute the image of $J(\mathbb{Q}_p) \to \frac{L_p^{\times}}{L_p^{\times 2} \mathbb{Q}_p^{\times}}$ for each $p \in S$. In the example, $S = \{\infty, 2, 5, 402613\}.$

1. Description of L

The genus-3 curve is in \mathbb{P}^2 with coordinates x, y, z. In the dual projective space $\check{\mathbb{P}}^2$ with coordinates u, v, w, the set of bitangents corresponds to a reduced 0-dimensional subscheme of degree 28. Project this to a line, to get Spec L, where $L = \mathbb{Q}[t]/(g(t))$ where g(t) is a polynomial of degree 28.

The general bitangent is given by

$$\lambda_{\theta} \colon u_{\theta} x + v_{\theta} y + w_{\theta} z = 0.$$

The map

$$J(\mathbb{Q}) \to \frac{L^{\times}}{L^{\times 2} \mathbb{Q}^{\times}}$$
$$\sum n_P P \mapsto \prod_P (u_{\theta} x(P) + v_{\theta} y(P) + w_{\theta} z(P))^{n_P}.$$

2. Identification of the image of Galois

Identify $\operatorname{Gal}(g(t))$ as a subgroup of $\operatorname{Sp}_6(\mathbb{F}_2) \subset \mathfrak{S}_{28}$ up to conjugacy. GAP or Magma can list the conjugacy classes of subgroups of $\operatorname{Sp}_6(\mathbb{F}_2)$, and the orbit lengths of the elements.

For the example at hand, we find $\operatorname{Gal}(g(t)) = \operatorname{Sp}_6(\mathbb{F}_2)$; this is as hard as it gets.

3. Cassels kernel

The construction of $R_{28} = (\mathbb{Z}/2\mathbb{Z})^S$ is straightforward. There is a unique R_{27} in R_{28} , and a unique R_{21} in R_{28} . View J[2] as R_{27}/R_{21} . Magma shows that $J[2](\mathbb{Q}), R_{27}^{\vee}(\mathbb{Q}), R_{21}^{\vee}(\mathbb{Q})$ are all 0. Therefore

$$\frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \to \frac{L^{\times}}{L^{\times 2}\mathbb{Q}^{\times}}$$

is injective.

When we projected, we were working over \mathbb{Q} , but to get the ring of integers of L, we should use possibly more than one projection over \mathbb{Z} .

4. Computing L(2, S)

This requires $\operatorname{Cl}(\mathcal{O}_L)$, and GRH is required to verify this computation. In our example, $\operatorname{Cl}(\mathcal{O}_L)$ is trivial (assuming GRH).

5. LOCAL COMPUTATION

We have

$$\frac{\#J(\mathbb{Q}_p)}{2J(\mathbb{Q}_p)} = \frac{\#J[2](\mathbb{Q}_p)}{|2|_p^3}$$

For p = 2, we have

 $L \otimes \mathbb{Q}_2 = \mathbb{Q}_2 \oplus \mathbb{Q}_2 \oplus (\deg 2) \oplus (\deg 8) \oplus (\deg 16).$

One finds

$$\dim J[2](\mathbb{Q}_2) = 1$$
$$\dim R_{27}^{\vee}(\mathbb{Q}_2) = 4$$
$$\dim R_{21}^{\vee}(\mathbb{Q}_2) = 3.$$

Thus there is no Cassels kernel. Also, by the formula above,

$$\dim \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} = 1 - (-3) = 4$$

To find enough generators of $\frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)}$, we intersect C with random lines ℓ and hope that $C.\ell$ decomposes over \mathbb{Q}_2 .

For p = 5, we find

$$\dim J[2](\mathbb{Q}_5) = 1$$
$$\dim R_{27}^{\vee}(\mathbb{Q}_5) = 5$$
$$\dim R_{21}^{\vee}(\mathbb{Q}_5) = 4$$

We find

$$\dim \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \le 3.$$

This completes the proof that $J(\mathbb{Q})$ has rank 3.

Remark 5.1. We did not need the information from the prime 402613, which is lucky since

$$\dim J[2](\mathbb{Q}_{402613}) = 2$$
$$\dim R_{27}^{\vee}(\mathbb{Q}_{402613}) = 7$$
$$\dim R_{21}^{\vee}(\mathbb{Q}_{402613}) = 6,$$

leaving the possibility of a nontrivial Cassels kernel.