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(1) Let f be an analytic function on D(0, 1)− over Cp with N < ∞ zeros in D(0, 1)−,

counted with multiplicity. (This means that f(t) = q(t)(1 +h(t)) where q is a polyno-

mial of degree N all of whose roots are in D(0, 1)− and h is a power series with zero

constant term and coefficients of absolute value ≤ 1).

(a) Let 0 < ρ < 1. Show that there is a bound B = B(p,N, ρ) only depending on

p, N and ρ such that t 7→ c +
∫ t
0
f(u) du has at most B zeros in D(0, ρ) (again

counted with multiplicity), for any c ∈ Cp.

Hint. Consider Newton polygons.

(b) Find an example of f as above such that t 7→
∫ t
0
f(u) du has infinitely many zeros

in D(0, 1)−. (This shows that in part (a) it is necessary to restrict to D(0, ρ).)

Hint. Think of the logarithm.

(2) Let f be an analytic function on the open annulus A(r, R)− over Cp such that f(t) dt

is exact. Assume that f(t) = tµq(t)(1 + h(t)) with µ ∈ Z, q a polynomial of degree N

all of whose roots have absolute value strictly between r and R, and h a Laurent series

whose value h(α) on any element α ∈ Cp with r < |α|p < R satisfies |h(α)|p < 1.

(a) Let 0 < ρ < 1. Show that there is a bound B′ = B′(p,max{−2 − µ, µ + N}, ρ)

depending only on the given quantities such that t 7→ c+
∫ t
a
f(t) dt has at most B′

zeros (with multiplicity) on A(r/ρ,Rρ), for any c ∈ Cp and any a ∈ A(r/ρ,Rρ).

Hint. One can treat the ‘positive’ and ‘negative’ parts of the series separately.

(b) Show that the statement of part (a) can be wrong when we do not assume that

f(t) dt is exact.

Hint. Think of the logarithm.

(3) Consider the elliptic curve E : y2 = x3 + ax+ b over Cp with |a|p, |b|p ≤ 1.

(a) Show that t = x/y is a uniformizer at the point at infinity and that the invariant

differential ω = dx
2y

has an expansion ω = f(t) dt such that the power series f has

coefficients of absolute value ≤ 1 and converges on D(0, 1)−.

(b) Let U ⊂ E(Cp) be the subset corresponding to |t|p < 1. Show that U is a

subgroup of E(Cp) and that logE : U → Cp, u 7→
∫ u
0
ω, defines a group homo-

morphism.



Solutions

(1) (a) We set

B(N, ρ) = min{n ≥ 0 : ∀n′ > n : n′ρn
′
< ρN+1} .

Since ρ < 1, the set under the min is non-empty, so B(N, ρ) is defined. Clearly,

B(N, ρ) ≥ N + 1.

Let g(t) = b0 + b1t + . . . be any power series converging on D(0, 1)−. Then

the theory of Newton polygons implies that the number of zeros (counted with

multiplicity) of g(t) in D(0, ρ) is the largest index n = ν+(g(t), ρ) such that

ρn|bn|p = |g(t)|ρ = min{ρm|bm|p : m ≥ 0} .

Similarly, the number of zeros of g(t) in D(0, 1)− is the smallest index n =

ν−(g(t), 1) such that |bn|p = min{|bm|p : m ≥ 0} if the minimum exists; otherwise

there are infinitely many zeros.

Write f(t) = a0 + a1t + a2t
2 + . . .. Our assumption on f implies that |aN |p =

min{|an|p : n ≥ 0} and N is the smallest such index. Without loss of generality

we can scale f(t) so that aN = 1. Then |aN |p = 1 and |an|p ≤ 1 for n ≥ N .

Recall that

c+

∫ t

0

f(u) du = c+ a0t+
a1
2
t2 +

a2
3
t3 + . . .+

an−1
n

tn + . . . =: g(t) .

I claim that whenever ρn|an−1/n|p = |g(t)|ρ, then n ≤ B := B(N, ρ), which by

the above implies that g(t) has at most B zeros in D(0, ρ).

To prove the claim, consider n > B. We have

ρn
∣∣∣an−1
n

∣∣∣
p

=
ρn

|n|p
|an−1|p ≤ nρn < ρN+1 ≤ ρN+1

∣∣∣ aN
N + 1

∣∣∣
p
,

so the minimum of ρm|am−1/m|p cannot be attained for m = n. (We have used

|aN |p = 1, |an−1|p ≤ 1 for n ≥ N + 1, |n|p ≥ 1/n, and of course the definition of

B = B(N, ρ).)

Remarks.

(i) The result can be stated in the form

ν+
(
g(t), ρ) ≤ B

(
ν−(f(t), 1), ρ

)
.

(ii) Our bound does not depend on p. One can obtain better bounds depending

on p by defining

B(p,N, ρ) = min
{
n ≥ 0 : ∀n′ > n :

ρn
′

|n′|p
<

ρN+1

|N + 1|p

}
.

(b) We take f(t) = 1/(1 − t) = 1 + t + t2 + t3 + . . .; this is an analytic function

on D(0, 1)− with no roots in D(0, 1)− (we can take q(t) = 1 and h(t) = t/(1− t)).
By definition, we have

∫ t
0
f(u) du = log(1 − t). We know that log ζ = 0 for all

roots of unity ζ. By Problem (2) on Problem Sheet 4, we know that |1− ζ|p < 1

when ζ is a root of unity of order a power of p. Since there are infinitely many

such ζ, we get infinitely many zeros t = 1− ζ of log(1− t) with |t|p < 1.



(2) (a) Let 0 6= g(t) =
∑∞

n=−∞ bnt
n be a Laurent series converging on A(r, R)−. In a

similar way as for power series we define

|g(t)|ρ = sup{ρn|bn|p : n ∈ Z}

(this will be finite for r < ρ < R) and then

ν−(g(t), ρ) =

{
−∞ if maxn ρ

n|bn|p does not exist,

inf{n ∈ Z : ρn|bn|p = |g(t)|ρ} otherwise

and

ν+(g(t), ρ) =

{
+∞ if maxn ρ

n|bn|p does not exist,

sup{n ∈ Z : ρn|bn|p = |g(t)|ρ} otherwise.

Then (again in a similar way as before), g(t) has exactly ν+(g(t), R′)−ν−(g(t), r′)

zeros in the closed annulus A(r′, R′) and exactly ν−(g(t), R′)− ν+(g(t), r′) zeros

in the open annulus A(r′, R′)−.

By assumption, ν−(g(t), R)−ν+(g(t), r) = N ; more precisely, ν−(g(t), R) = N+µ

and ν+(g(t), r) = µ. Since f(t) dt is exact, so without dt/t-term, we can write

f(t) dt = f−(t−1)
dt

t2
+ f+(t) dt = −f−(t−1) dt−1 + f+(t) dt

with power series f−, f+ converging on D(0, r−1)− and D(0, R)−, respectively.

Let

g−(t) =

∫ t

0

f−(u) du and g+(t) =

∫ t

0

f+(u) du ;

then

g(t) := c+

∫ t

a

f(t) dt = −g−(t−1) + c′ + g+(t) .

From Problem (1a) we get (after scaling by R or r−1)

ν+(g(t), Rρ) ≤ ν+(g+(t), Rρ) ≤ B
(
ν−(f+(t), R), ρ

)
= B(max{0, µ+N}, ρ)

and

ν−(g(t), r/ρ) ≥ −ν+(g−(t), r−1ρ) ≥ −B
(
ν−(f−(t), r−1), ρ

)
= −B(max{0,−2− µ}, ρ)

(note the shift by 2 in the exponent), which finally gives the bound

ν+(g(t), Rρ)− ν−(g(t), r/ρ) ≤ B(max{0, µ+N}, ρ) +B(max{0,−2− µ}, ρ)

≤ 2B(max{−2− µ, µ+N}, ρ)

for the number of zeros of g(t) in A(r/ρ,Rρ).

(b) Let R > 1 and r = 1/R and consider f(t) = 1/t. Then g(t) =
∫ t
0
du/u = logλ t.

This has infinitely many zeros ζ with |ζ|p = 1 (namely, all roots of unity), so the

statement in part (a) is false for ρ = 1/R.



(3) (a) Since x has a pole of order 2 and y has a pole of order 3 at the point O at infinity

on E, t = x/y has a simple zero there and is therefore a uniformizer.

We now express x and y as Laurent series in t with finite principal part. Using

the relation x = yt in the equation of E gives

y2 = t3y3 + aty + b .

Since y has a triple pole, we write y = t−3ỹ, where ỹ is regular and nonzero at O.

This gives

ỹ2 = ỹ3 + at4ỹ + bt6 ;

hence ỹ(0) = 1. Writing ỹ = 1 + z then results in the fixed point equation

z = −at4 − bt6 − at4z − 2z2 − z3 ,

whose right hand side is contracting on the set of formal power series with zero

constant term (the absolute value is given by e−order of vanishing at 0). So the equa-

tion has a unique solution in formal power series, which can be obtained by

iteration; it is then clear that the resulting power series has coefficients of p-adic

absolute value ≤ 1 (since this is true for the coefficients of the right hand side).

We then have y(t) = t−3(1 + z(t)) and x(x) = yt = t−2(1 + z(t)). This results in

ω =
dx(t)

2y(t)
=
−2t−3(1 + z(t)) + t−2z′(t)

2t−3(1 + z(t))
dt =

(
−1 + t

z′(t)

2(1 + z(t))

)
dt .

Since (1+z(t))−1 = 1−z(t)+z(t)2−z(t)3± also has p-adically integral coefficients

(note that this expansion makes even sense as a formal power series, since z(t) =

−at4 − bt6 ± . . . has no constant term) and z(t) is even, so z′(t) has coefficients

divisible by 2, the series

f(t) = −1 + t
z′(t)

2

(
1 + z(t)

)−1
= −1 + 2at4 − 3bt6 − 6a2t8 ± . . .

that satisfies ω = f(t) dt has coefficients of absolute value ≤ 1 and therefore

converges on D(0, 1)−.

(b) Considering E as a curve in P2, the group law on E is characterized by the fact

that O is the zero element and three points sum to zero if they are the three

intersection points (with multiplicity) of E with a line. So we have to show that

a line cannot have exactly two intersection points with E in U . We work with

the affine patch given by y = 1, so the coordinates are x/y = t and 1/y. Let

ut + v/y = w be the equation of a line in these coordinates. If v = 0, then t is

constant along the line, and the statement is clear. Otherwise, we can assume

that v = 1. u and w are determined by the system

uτ1 − w = 1/y(τ1) , uτ2 − w = 1/y(τ2)

with |τj|p < 1. Since |1/y(τ)|p = |τ |3p for such τ , we find that

u =
τ 32 + . . .− τ 31 − . . .

τ2 − τ1
= τ 21 + τ1τ2 + τ 22 + higher order terms

and

w =
τ1τ

3
2 + . . .− τ 31 τ2 − . . .

τ2 − τ1
= τ1τ2(τ1 + τ2) + higher order terms ,

so |u|p, |w|p < 1. Substituting for 1/y in the equation of E then results in a cubic

equation At3 + Bt2 + Ct + D = 0 with |A|p = 1 and |B|p, |C|p, |D|p < 1, so all

roots have |t|p < 1. This shows that U is a subgroup of E(Cp).



Finally, using that ω is invariant under translations by elements of E(Cp), we

find for u1, u2 ∈ U that

logE(u1 + u2) =

∫ u1+u2

0

ω =

∫ u1

0

ω +

∫ u1+u2

u1

ω =

∫ u1

0

ω +

∫ u2

0

ω = logE u1 + logE u2 .


