p-adic Analysis in Arithmetic Geometry Problem Sheet 7

WINTER SEMESTER 2015/16

MICHAEL STOLL November 24, 2015

- (1) Show that d and ρ as defined in Definition 5.8 are really metrics.
- (2) Let $a, b \in \mathbb{C}_p$ with $a \neq 0$. The automorphism given by $x \mapsto ax + b$ of $\mathbb{C}_p[x]$ induces an automorphism of $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p}$ (compare Problem (1) on Sheet 6). How do $d(\xi, \xi')$ and $\rho(\xi, \xi')$ change under this map?
- (3) Let \mathscr{D} be the set of all closed disks $D \subset \mathbb{C}_p$ such that $0 \notin D$. Show that

$$\mathbb{C}_p \setminus \{0\} \longrightarrow \mathbb{C}_p \setminus \{0\}, \qquad z \longmapsto z^{-1},$$

induces an involution of \mathscr{D} that can be extended to a continuous involution of $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p}\setminus\{0\}$ (where we identify a closed disk with a point of type 1, 2 or 3).

How does the big metric behave under this map?

Solutions

(1) Let ξ, ξ', ξ'' be points in $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p}$ (with ξ, ξ', ξ'' not of type 1 when considering ρ). The statement for the small metric is

$$d(\xi, \xi'') \le d(\xi, \xi') + d(\xi', \xi''),$$

which is equivalent to

$$\operatorname{diam}(\xi \lor \xi'') \le \operatorname{diam}(\xi \lor \xi') + \operatorname{diam}(\xi' \lor \xi'') - \operatorname{diam}(\xi').$$

It suffices to prove this when ξ, ξ', ξ'' are points of type 2 or 3; for points of types 1 and 4, it then follows by continuity. So assume that $\xi = \zeta_{a,r}, \xi' = \zeta_{a',r'}, \xi'' = \zeta_{a'',r''}$. Then

$$diam(\xi \lor \xi') = \max\{r, r'', |a - a''|\} \le \max\{r, r'', |a - a'|, |a' - a''|\}$$

and

diam
$$(\xi \lor \xi') = \max\{r, r', |a - a'|\}, \quad diam(\xi' \lor \xi'') = \max\{r', r'', |a' - a''|\}, \quad diam(\xi') = r'.$$

We have

 $\begin{array}{rrrr} r &=& r &+& r' &-r' \leq \operatorname{diam}(\xi \lor \xi') + \operatorname{diam}(\xi' \lor \xi'') - \operatorname{diam}(\xi') \\ r'' &=& r' &+& r'' &-r' \leq \operatorname{diam}(\xi \lor \xi') + \operatorname{diam}(\xi' \lor \xi'') - \operatorname{diam}(\xi') \\ |a - a'| &=& |a - a'| + &r' &-r' \leq \operatorname{diam}(\xi \lor \xi') + \operatorname{diam}(\xi' \lor \xi'') - \operatorname{diam}(\xi') \\ |a' - a''| &=& r' &+ |a' - a''| - r' \leq \operatorname{diam}(\xi \lor \xi') + \operatorname{diam}(\xi' \lor \xi'') - \operatorname{diam}(\xi') \end{array}$

and the claim follows.

For the big metric, the argument is the same, replacing diam by $-c \log \operatorname{diam}$.

(2) Let $a, b \in \mathbb{C}_p$ with $a \neq 0$. The automorphism given by $x \mapsto ax + b$ of $\mathbb{C}_p[x]$ induces an automorphism of $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p}$ (compare Problem (1) on Sheet 6).

How do $d(\xi, \xi')$ and $\rho(\xi, \xi')$ change under this map?

We have to determine how diam(ξ) changes. Consider $\xi = \zeta_{\alpha,r}$. Its image under $x \mapsto ax + b$ corresponds to the seminorm given by

$$||f|| = ||f(ax+b)||_{\xi} = |f(a(x+\alpha)+b)|_{r} = |f(ax+(a\alpha+b))|_{r} = |f(x+(a\alpha+b))|_{|a|r} = ||f||_{a\alpha+b,|a|r}.$$

(Note that if $f = f_0 + f_1 x + \ldots + f_n x^n$, then

$$|f(ax)|_{r} = \max_{j} r^{j} |f_{j}a^{j}| = \max_{j} (|a|r)^{j} |f_{j}| = |f|_{|a|r}.)$$

So the image of $\zeta_{\alpha,r}$ is $\zeta_{a\alpha+b,|a|r}$ and the diameter gets multiplied by |a|. This remains true for points of type 4 by continuity. Since the ordering of the points is defined in terms of the seminorms, it is preserved under automorphisms.

If $\varphi \colon x \mapsto ax + b$ denotes the automorphism, then we obtain

$$d(\varphi^*(\xi),\varphi^*(\xi')) = 2\operatorname{diam}(\varphi^*(\xi \lor \xi')) - \operatorname{diam}(\varphi^*(\xi)) - \operatorname{diam}(\varphi^*(\xi'))$$
$$= 2|a|\operatorname{diam}(\xi \lor \xi') - |a|\operatorname{diam}(\xi) - |a|\operatorname{diam}(\xi') = |a|d(\xi,\xi')$$

and

$$\rho(\varphi^*(\xi), \varphi^*(\xi')) = c \left(2 \log \operatorname{diam}(\varphi^*(\xi \lor \xi')) - \log \operatorname{diam}(\varphi^*(\xi)) - \log \operatorname{diam}(\varphi^*(\xi')) \right)$$
$$= c \left(2 \operatorname{diam}(\xi \lor \xi') + 2 \log |a| - \operatorname{diam}(\xi) - \log |a| - \operatorname{diam}(\xi') - \log |a| \right)$$
$$= \rho(\xi, \xi') \,.$$

(3) We first have to show that when $D \in \mathscr{D}$, then $\{z^{-1} : z \in D\}$ is again a disk in \mathscr{D} . So let D = D(a, r); since $0 \notin D$, we have |a| > r. For $z \in D$ we therefore have $|z| = \max\{|a|, |z-a|\} = |a|$ and so

$$\left|\frac{1}{z} - \frac{1}{a}\right| = \left|\frac{a-z}{za}\right| = \frac{|a-z|}{|a|^2} \le \frac{r}{|a|^2}.$$

So $\{z^{-1}: z \in D\} \subset D(a^{-1}, r/|a|^2)$. Since $z \mapsto z^{-1}$ is an involution (and $(a^{-1})^{-1} = a$, $(r/|a|^2)/|a^{-1}|^2 = r$), the reverse inclusion follows, and we get the involution

$$\mathscr{D} \longrightarrow \mathscr{D}, \qquad D(a,r) \longmapsto D(a^{-1},r|a|^{-2}).$$

This immediately gives rise to an involution ϕ on the set of points of type 1, 2 or 3 corresponding to disks not containing 0. We extend it to all points $\neq 0$ by setting $\phi(\zeta_{0,r}) = \zeta_{0,r^{-1}}$ and $\phi(\xi) = \lim_{n\to\infty} \phi(\xi_n)$ when ξ is a type 4 point that is the limit of the decreasing sequence (ξ_n) (note that any type 4 point is a limit of a decreasing sequence of type 2 or 3 points $\zeta_{a,r}$ with $0 \notin D(a,r)$; otherwise 0 would be in the intersection of the corresponding nested disks). It remains to show that ϕ is continuous.

Since the topology is generated by open and complements of closed Berkovich disks, it suffices to show that the preimage (= image) under ϕ of a closed (resp., open) Berkovich disk is closed (resp., open). So let $\mathcal{D}(a, r)$ be a closed Berkovich disk. There are two cases.

- (a) $0 \notin \mathcal{D}(a,r)$, equivalently, |a| > r. Then for any $\zeta_{a',r'} \in \mathcal{D}(a,r)$ we have $D(a',r') \in \mathscr{D}$ and $|a'-a| \leq r, r' \leq r$. This implies (in a similar way as above) that $|a'^{-1} a^{-1}| \leq r/|a|^2$ and $r'/|a'|^2 = r'/|a|^2 \leq r/|a|^2$, so $\phi(\zeta_{a',r'}) \in \mathcal{D}(a^{-1},r/|a|^2)$. This extends to type 4 points, and we get $\phi(\mathcal{D}(a,r)) \subset \mathcal{D}(a^{-1},r/|a|^2)$, and then equality by symmetry. The same argument, but using strict inequalities, shows that $\phi(\mathcal{D}(a,r)^-) = \mathcal{D}(a^{-1},r/|a|^2)^-$.
- (b) $0 \in \mathcal{D}(a, r)$, then w.l.o.g. a = 0. We claim that $\phi(\mathcal{D}(0, r))$ is the complement of $\mathcal{D}(0, 1/r)^-$ (which by symmetry implies that $\phi(\mathcal{D}(0, r)^-)$ is the complement of $\mathcal{D}(0, 1/r)$). So let $\zeta_{a',r'} \in \mathcal{D}(0, r)$. This means that $|a'| \leq r$ and $r' \leq r$. There are two cases again.
 - (i) $0 \notin D(a', r')$. Then $r' < |a'| \le r$, so $|a'^{-1}| \ge 1/r$ and $\phi(\zeta_{a',r'}) \notin \mathcal{D}(0, 1/r)$.
 - (ii) $0 \in D(a', r')$. Then w.l.o.g. a' = 0, and we have $r' \leq r$. This implies $1/r' \geq 1/r$, hence $\phi(\zeta_{0,r'}) = \zeta_{0,1/r'} \notin \mathcal{D}(0, 1/r)$.

Now consider $\zeta_{a',r'} \notin \mathcal{D}(0,r)$. Then |a'| > r or r' > r. We again distinguish two cases.

- (i) $0 \notin D(a', r')$. Then r' < |a'|. If r' > r, then also |a'| > r, so we can assume the latter. We then have $|a'^{-1}| < 1/r$ and $r'/|a'|^2 < 1/|a'| < 1/r$, so $\phi(\zeta_{a',r'}) \in \mathcal{D}(0, 1/r)^{-}$.
- (ii) $0 \in D(a', r')$. Then w.l.o.g. a' = 0, and we have r' > r. This implies 1/r' < 1/r, hence $\phi(\zeta_{0,r'}) = \zeta_{0,1/r'} \in \mathcal{D}(0, 1/r)^-$.

Taking everything together shows $\phi(\mathcal{D}(0,r)) = \mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p} \setminus \mathcal{D}(0,1/r)^-$.

Note that for points in \mathscr{D} the order relation is preserved by ϕ . Since it is easy to see that $\rho(\phi(\zeta_{a,r}), \phi(\zeta_{a,r'})) = \rho(\zeta_{a,r}, \zeta_{a,r'})$, it follows that ρ is invariant under ϕ on \mathscr{D} and therefore on all of $\mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}_p}$ by continuity.