Einführung in die Computeralgebra Übungsblatt 6

Sommersemester 2018

MICHAEL STOLL 18. Mai 2018

Abgabe:

Donnerstag, 24. Mai, bis 11:00 Uhr im Briefkasten (NW II, 2. Stockwerk rechts).

Übungsaufgaben bitte **handschriftlich** bearbeiten (außer Programmieraufgaben); nur ein Name pro Blatt! —

Schnellhefter und Deckblatt nicht vergessen!

- (1) Sei R ein (kommutativer) Ring und sei $\omega \in R$ eine primitive n-te Einheitswurzel. Zeigen Sie:
 - (a) Sei $\ell \in \mathbb{Z}$. ω^{ℓ} ist genau dann eine primitive *n*-te Einheitswurzel in R, wenn ℓ und n teilerfremd sind.
 - (b) Sei m ein Teiler von n. Dann ist $\omega^{n/m}$ eine primitive m-te Einheitswurzel in R. (15+10)
- (2) Sei R ein (kommutativer) Ring.
 - (a) Sei $n \ge 2$ in R invertierbar. Zeigen Sie, dass die Restklasse von y im Faktorring $R' = R[y]/\langle y^n 1 \rangle$ keine primitive nte Einheitswurzel in R' ist.
 - (b) Sei 2 in R invertierbar und sei $k \geq 1$. Zeigen Sie, dass die Restklasse von y in $R' = R[y]/\langle y^{2^{k-1}} + 1 \rangle$ eine primitive 2^k -te Einheitswurzel in R' ist. (15+10)
- (3) Betrachten Sie folgende Darstellung von Polynomen in einer Variablen über \mathbb{F}_2 : Das Polynom $f = \sum_j a_j X^j \in \mathbb{F}_2[X]$ wird dargestellt durch die aufsteigende Folge der Exponenten j mit $a_j = 1$ (d.h., $a_j \neq 0$). Sei $\ell(f)$ die Länge von f in dieser Darstellung, also die Anzahl der von null verschiedenen Terme in f. Zeigen Sie, dass die Komplexität der Multiplikation zweier Polynome $f, g \in \mathbb{F}_2[X]$ mindestens von der Ordnung $\ell(f)\ell(g)$ ist.

(4) Programmieraufgabe:

Bestimmen Sie die Zeit, die Magma für die Multiplikation zweier Zahlen der Länge 2^n braucht, für $n \leq 20$. Tragen Sie den Logarithmus der Zeit gegen n in einem Graphen auf und interpretieren Sie das Resultat.

HINWEISE: Um sinnvolle Ergebnisse zu bekommen, sollten Sie die Multiplikation mehrmals durchführen und die Gesamtdauer bestimmen. Wenn Sie den Cputime()-Befehl von Magma benutzen, dann sollten Sie dem Ergebnis mittels ChangePrecision mehr Stellen Genauigkeit geben, bevor Sie dividieren. Eine zufällige Zahl der Länge n erhält man mit Random(2^(n*64-1), 2^(n*64)-1). (25)

(5) Bonus Problem.

Formulate a "3-adic" analogue of the FFT algorithm that computes DFT_{ω} , where ω is a primitive 3^k th root of unity in R, and show that it complexity is $\ll k3^k$. Deduce that the analogue of Theorem 6.9 holds in rings R that contain primitive 3^k th roots of unity for all k.