
Why I am doing L-series in Lean

Michael Stoll
Universität Bayreuth

Rutgers Lean Seminar
March 27, 2024



Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)



Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)



Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)



Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)



Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)



Motivation



Motivation

...



Motivation



Motivation



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



PNT+

This plan has now been subsumed
as part of the PrimeNumberTheorem+ project,
which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotarëv, . . . ), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara Theorem:



PNT+

This plan has now been subsumed
as part of the PrimeNumberTheorem+ project,
which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotarëv, . . . ), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara Theorem:



PNT+

This plan has now been subsumed
as part of the PrimeNumberTheorem+ project,
which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotarëv, . . . ), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara Theorem:



PNT+

This plan has now been subsumed
as part of the PrimeNumberTheorem+ project,
which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotarëv, . . . ), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara Theorem:



Non-vanishing



Non-vanishing



Non-vanishing



Non-vanishing



Deduction from WIT



Deduction from WIT



Deduction from WIT



L-Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=∑ ′ n : N, f n / n ^ s

where ArithmeticFunction R is a wrapper around N →0 R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form an/n

s for n ≥ 1.

But that does not mean it is the best way to implement it in Lean!



L-Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=∑ ′ n : N, f n / n ^ s

where ArithmeticFunction R is a wrapper around N →0 R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form an/n

s for n ≥ 1.

But that does not mean it is the best way to implement it in Lean!



L-Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=∑ ′ n : N, f n / n ^ s

where ArithmeticFunction R is a wrapper around N →0 R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form an/n

s for n ≥ 1.

But that does not mean it is the best way to implement it in Lean!



L-Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=∑ ′ n : N, f n / n ^ s

where ArithmeticFunction R is a wrapper around N →0 R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form an/n

s for n ≥ 1.

But that does not mean it is the best way to implement it in Lean!



L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.



L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.



L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.



L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.



L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)



L-Series: Take Three

After some discussions and experiments, we settled on

def LSeries (f : N → C) (s : C) : C := ...

where the value f 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "↗" f:max => n : N 7→ (f n : C)

We can then write (abbreviating LSeries to L)

L ↗ζ, L ↗µ, L ↗Λ, L ↗χ, and it works!



L-Series: Take Three

After some discussions and experiments, we settled on

def LSeries (f : N → C) (s : C) : C := ...

where the value f 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "↗" f:max => n : N 7→ (f n : C)

We can then write (abbreviating LSeries to L)

L ↗ζ, L ↗µ, L ↗Λ, L ↗χ, and it works!



L-Series: Take Three

After some discussions and experiments, we settled on

def LSeries (f : N → C) (s : C) : C := ...

where the value f 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "↗" f:max => fun n : N 7→ (f n : C)

We can then write (abbreviating LSeries to L)

L ↗ζ, L ↗µ, L ↗Λ, L ↗χ, and it works!



L-Series: Take Three

After some discussions and experiments, we settled on

def LSeries (f : N → C) (s : C) : C := ...

where the value f 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "↗" f:max => fun n : N 7→ (f n : C)

We can then write (abbreviating LSeries to L)

L ↗ζ, L ↗µ, L ↗Λ, L ↗χ, and it works!



L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)



Thank You!


