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Where I Come From

Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

Took some courses in Mathematical Logic (e.g., on proof theory)

Played a bit with Coq in 2016

Theorem pyth triples relprime even pos :
forall x yz : Z, Zeven x -> z >= 0 -> rel prime x y -> X72 + y°2 = 272

-> exists r s : Z, rel_prime r s /\ x = 2%r*s /\ y = r~2-s72 /\ z = r~2+s72.

Got interested in Lean through watching one of Kevin's talks (IIRC)
and got addicted (ca. Feb. 2022)
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Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given
by an integral Weierstrass model C such that there are three nodes in the special
fiber of C. We say that C is split if the two components A and E of the special fiber
of CMIN e defined over t; otherwise C is nonsplit. Let v(A) = m + my + m3 as
above and set M = mim> + myms + moms.

(¢) If two of the nodes lie in a quadratic extension of € and are conjugate over ¢
and one is t-rational, then

(m m% N m% N m3 £ C is split
Mmax 5 mims, 5 m 5 if Cis split,

=4 M . : . :
F=1m if C is nonsplit and m is even,

2

0 otherwise,

where m3 corresponds to the rational node (and m, = m»).
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Proof. The proof of (a) follows easily from Proposition 9.4.

For the other cases, note that in the nonsplit case some power of Frobenius
acts as negation on the component group @ (£), so the only elements of ®(£) are
elements of order 2 in (D(%), which correspond to [ By, 2 — Cpn, 2] 1f my and m, are
even (where u takes the value %(ml + mg)), and similarly with the obvious cyclic
permutations.

In the situation of (c¢), we must have m; =m. If P =[(P)) — (P>)] € J(k) and
PeC (!_c) maps to one of the conjugate nodes, then P>, must map to the other, so
all P € J(k) must map to a component of the form [B; — C;] or [D; — D;]. Now
the result in the split case follows from a case distinction depending on whether
m| < m3 or not. In the nonsplit case, the only element of order 2 that is defined
over €18 [ By, 2 — Cp, 2] 1f 1t exists.

In the situation of (d), the group ®(£) 1s of order 3 (generated by [E — A]) in
the split case and trivial in the nonsplit case. ]
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Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!
Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)
New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!
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Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms v
@® The product formula for the quadratic Hilbert symbol

(3] Dirichlet’'s Theorem on primes in arithmetic progression
® and ©® are needed to go fromn=3ton=4 (n<2is easy).

I did some work on @ as my first larger Lean(3) project.
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Dirichlet

So let us focus on Dirichlet's Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

1

© &0

Euler product for L-series of multiplicative functions 74

Holomorphic continuation of Dirichlet L-series
Non-vanishing of L(x,1)

Some limits and asymptotics to glue things

(D. Loeffler)
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This plan has now been subsumed
as part of the PrimeNumber T heorem-+ project,

which aims at proving the Prime Number Theorem and various extensions

(Dirichlet, Chebotaréyv, ...), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT

to some version of the Wiener-Ikehara T heorem:

open Filter Topology Nat in
/-- A version of the *Wiener-Ikehara Tauberian Theorem®*:. If "f° 1s a nonnegative arithmetic
function whose L-series has a simple pole at s = 1° with residue "A° and otherwise extends

continuously to the closed half-plane 're s 2 1", then " n < N, f n° 1is asymptotic to "A*N .

def WienerIkeharaTheorem : Prop :=
V{f: N>R}y {A:R}y{F:C>C}, (VYNn, 0<fn)>
Set.EqOn F (fun s » L af s - A/ (s - 1)) {s | 1 < s.re} »
ContinuousOn F {s | 1 < s.re} >
Tendsto (fun N : N » ((Finset.range N).sum f) / N) atTop (.4 A)
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/-- For positive "x  and nonzero 'y  we have that
$|L(\chinr0, x)”3 \cdot L(\chi, x+iy)~4 \cdot L(\chir2, x+2iy)| \ge 1%. -/
lemma norm_dirichlet_product_ge one {N : N} (x : DirichletCharacter € N) {x : R} (hx : 0 < x)
(y : R) :
IL 2(1 : DirichletCharacter € N) (1 + x) "3 * L ay (1 + x + I *y) A 4 *
La(y 2 1) (1 +x+2*T*y)||=21:= by
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/-- For positive "x  and nonzero 'y  we have that
$|L(\chinr0, x)”3 \cdot L(\chi, x+iy)~4 \cdot L(\chir2, x+2iy)| \ge 1%. -/
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lemma norm_zeta_product_ge_one {x : R} (hx : 0 < x) (y : R)
I (1 +x) A3*Z (1T +x+T*y)rAa* g (1+x+2*T*y)=21:=bhy
have (h,, h,, h,) := one_lt_re_of_pos y hx
simpa only [one_pow, norm_mul, norm_pow, DirichletCharacter.LSeries_modOne_eq,
LSeries_one_eq_riemannZeta, hy,, h,, h,] using norm_dirichlet_product_ge_one X, hx y

/-- The Riemann Zeta Function does not vanish on the closed half-plane ‘re z 2 1°. -/
lemma riemannZeta_ne_zero_of_one_le_re {{z : C} (hz : z # 1) (hz" : 1 < z.re) : ¢ z # 0 := by
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Deduction from WI

/-- The function obtained by "multiplying away" the pole of "¢'. Its (negative) logarithmic
derivative 1is the function used in the Wiener-Ikehara Theorem to prove the Prime Number

Theorem. -/
noncomputable def ¢, : C » € := Function.update (fun z » C z * (z - 1)) 11

open Filter Nat ArithmeticFunction in
/-- The *Wiener-Ikehara Theorem* implies the #*Prime Number Theorem* in the form that
P x ~ x, where P x=3%n<x, An and 'A° is the von Mangoldt function. -/
theorem PNT_vonMangoldt (WIT : WienerIkeharaTheorem)

Tendsto (fun N : N » ((Finset.range N).sum A) / N) atTop (nhds 1) := by

have hnv := riemannZeta_ne_zero_of _one_le re
refine WIT (F := fun z » -deriv (, z / {, z) (fun _ » vonMangoldt_nonneg) (fun s hs » ?2_) ?7_
- have hs, : s # 1 := by

rintro rfl
simp at hs

simp only [ne_eq, hs,, not_false_eq_true, LSeries_vonMangoldt_eq_deriv_riemannZeta_div hs,
ofReal one]

exact neg_logDeriv_C(,_eq hs, <| hnv hs, (Set.mem_setOf.mp hs).le

- refine continuousOn_neg_logDeriv_d(,.mono fun s _ & ?7_

specialize @hnv s

simp at *

tauto
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When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=
Z’n:N,fn/n“s

where ArithmeticFunction R iS a wrapper around N — R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form a,/n® for n > 1.

But that does not mean it is the best way to implement it in Lean!
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def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

e LSeries ( 4 e LSeries U 4
e LSeries lOg ® e LSeries A 4
e LSeries ¥ for a Dirichlet character x ®
Problem: There are coercions

e ArithmeticFunction N — ArithmeticFunction R (for [Semiring R])
e ArithmeticFunction Z — ArithmeticFunction R (for [Ring R])

but not, e.g.,

e ArithmeticFunction R — ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.
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L -Series: Take Two

What about
def LSeries (f : N+ —-C) (s : C) : C := ... ?

Problems:
e Going between N+ and N is somewhat painful
e Some API for N+ is missing

e Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)
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| -Series: Take Three

After some discussions and experiments, we settled on
def LSeries (f : N—C) (s : C©) : C := ...

where the value £ 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "" f:max => funn : N — (f n : C)

We can then write (abbreviating LSeries to L)

L ~(C, L W, L A, L X, and it works!
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| -Series Terms

To get a clean separation of the implementation details
and the L-series “logic’, we define

def LSeries.term (f : N—=C) (s : C) (n : N) : C :=
if n = 0 then O else f n/ n~ s

@[simp] lemma term zero (f : N—C) (s : C) : term f s 0 = 0 := rfl
@[simp] lemma term of ne zero {n : N} (hn : n #0) (f : N—>C) (s : C)

term f sn=fn/n~ s := if neg hn

and then

def LSeries (f : N—C) (s : C) : C :=>'n : N, term f s n

def LSeriesHasSum (f : N—C) (s a : C) : Prop := HasSum (term f s) a
def LSeriesSummable (f : N—C) (s : C) : Prop := Summable (term f s)
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Example: Convolution

lemma term convolution (f g : N—C) (s : C) (n : N)
term (f ® g) s n =

> p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N—C) (s : C)
term (f ® g) s =
funn — Y (b : (fun p : NxN = p.1 * p.2) 17 )},

term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N—C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b)
LSeriesHasSum (f ® g) s (a * b) := by
simp only [LSeriesHasSum, term convolution’]
have hsum :=
summable mul of summable norm hf.summable.norm hg.summable.norm

exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p — p.1l * p.2)
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