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Where I Come From

• Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

• Took some courses in Mathematical Logic (e.g., on proof theory)

• Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :

forall x y z : Z, Zeven x -> z >= 0 -> rel prime x y -> x^2 + y^2 = z^2
-> exists r s : Z, rel_prime r s /\ x = 2*r*s /\ y = r^2-s^2 /\ z = r^2+s^2.

• Got interested in Lean through watching one of Kevin’s talks (IIRC)
and got addicted (ca. Feb. 2022)
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Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!
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Hasse-Minkowski

Theorem.
Let Q(x1, . . . , xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of Q, then also in Q.

What we need:

➊ Legendre’s Theorem on ternary quadratic forms ✔

➋ The product formula for the quadratic Hilbert symbol

➌ Dirichlet’s Theorem on primes in arithmetic progression

➋ and ➌ are needed to go from n = 3 to n = 4 (n ≤ 2 is easy).

I did some work on ➋ as my first larger Lean(3) project.
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Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



Dirichlet

So let us focus on Dirichlet’s Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

➊ Euler product for L-series of multiplicative functions ✔

➋ Holomorphic continuation of Dirichlet L-series (D. Loeffler)

➌ Non-vanishing of L(χ, 1)

➍ Some limits and asymptotics to glue things



PNT+

This plan has now been subsumed
as part of the PrimeNumberTheorem+ project,
which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotarëv, . . . ), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara Theorem:
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L-Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=∑ ′ n : N, f n / n ^ s

where ArithmeticFunction R is a wrapper around N →0 R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form an/n

s for n ≥ 1.

But that does not mean it is the best way to implement it in Lean!
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L-Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

• LSeries ζ ✔ • LSeries µ ✔

• LSeries log ✖ • LSeries Λ ✖

• LSeries χ for a Dirichlet character χ ✖

Problem: There are coercions
• ArithmeticFunction N → ArithmeticFunction R (for [Semiring R])
• ArithmeticFunction Z → ArithmeticFunction R (for [Ring R])

but not, e.g.,
• ArithmeticFunction R → ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.
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L-Series: Take Two

What about

def LSeries (f : N+ → C) (s : C) : C := ... ?

Problems:

• Going between N+ and N is somewhat painful

• Some API for N+ is missing

• Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)
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L-Series: Take Three

After some discussions and experiments, we settled on

def LSeries (f : N → C) (s : C) : C := ...

where the value f 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "↗" f:max => n : N 7→ (f n : C)

We can then write (abbreviating LSeries to L)

L ↗ζ, L ↗µ, L ↗Λ, L ↗χ, and it works!
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L-Series Terms

To get a clean separation of the implementation details
and the L-series “logic”, we define

def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)
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def LSeries.term (f : N → C) (s : C) (n : N) : C :=
if n = 0 then 0 else f n / n ^ s

@[simp] lemma term zero (f : N → C) (s : C) : term f s 0 = 0 := rfl

@[simp] lemma term of ne zero {n : N} (hn : n ̸= 0) (f : N → C) (s : C) :
term f s n = f n / n ^ s := if neg hn

and then

def LSeries (f : N → C) (s : C) : C :=
∑ ′ n : N, term f s n

def LSeriesHasSum (f : N → C) (s a : C) : Prop := HasSum (term f s) a

def LSeriesSummable (f : N → C) (s : C) : Prop := Summable (term f s)



Example: Convolution

lemma term convolution (f g : N → C) (s : C) (n : N) :
term (f ⊛ g) s n =∑

p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N → C) (s : C) :
term (f ⊛ g) s =

fun n 7→ ∑ ′ (b : (fun p : N×N 7→ p.1 * p.2) −1 ′ {n}),
term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N → C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b) :
LSeriesHasSum (f ⊛ g) s (a * b) := by

simp only [LSeriesHasSum, term convolution’]
have hsum :=

summable mul of summable norm hf.summable.norm hg.summable.norm
exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p 7→ p.1 * p.2)
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Thank You!


