UNIVERSITAT
BAYREUTH

V4

Why I am doing L-series in Lean

Michael Stoll
Universitat Bayreuth

Rutgers Lean Seminar
March 27, 2024

Where I Come From

Where I Come From

e Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

Where I Come From

e Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

e Took some courses in Mathematical Logic (e.g., on proof theory)

Where I Come From

e Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

e Took some courses in Mathematical Logic (e.g., on proof theory)

e Played a bit with Coq in 2016
Theorem pyth triples relprime even pos :
forall x yz : Z, Zeven x -> z >= 0 -> rel prime x y -> X72 + y°2 = 272

-> exists r s : Z, rel_prime r s /\ x = 2%r*s /\ y = r~2-s72 /\ z = r~2+s72.

Where I Come From

Some early interest in ATP
(wrote a resolution prover in Scheme as an undergrad)

Took some courses in Mathematical Logic (e.g., on proof theory)

Played a bit with Coq in 2016

Theorem pyth triples relprime even pos :
forall x yz : Z, Zeven x -> z >= 0 -> rel prime x y -> X72 + y°2 = 272

-> exists r s : Z, rel_prime r s /\ x = 2%r*s /\ y = r~2-s72 /\ z = r~2+s72.

Got interested in Lean through watching one of Kevin's talks (IIRC)
and got addicted (ca. Feb. 2022)

Motivation

Motivation

Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given
by an integral Weierstrass model C such that there are three nodes in the special
fiber of C. We say that C is split if the two components A and E of the special fiber
of CMIN e defined over t; otherwise C is nonsplit. Let v(A) = m + my + m3 as
above and set M = mim> + myms + moms.

(¢) If two of the nodes lie in a quadratic extension of € and are conjugate over ¢
and one is t-rational, then

(m m% N m% N m3 £ C is split
Mmax 5 mims, 5 m 5 if Cis split,

=4 M . : . :
F=1m if C is nonsplit and m is even,

2

0 otherwise,

where m3 corresponds to the rational node (and m, = m»).

Motivation

Proof. The proof of (a) follows easily from Proposition 9.4.

For the other cases, note that in the nonsplit case some power of Frobenius
acts as negation on the component group @ (£), so the only elements of ®(£) are
elements of order 2 in (D(%), which correspond to [By, 2 — Cpn, 2] 1f my and m, are
even (where u takes the value %(ml + mg)), and similarly with the obvious cyclic
permutations.

In the situation of (c¢), we must have m; =m. If P =[(P)) — (P>)] € J(k) and
PeC (!_c) maps to one of the conjugate nodes, then P>, must map to the other, so
all P € J(k) must map to a component of the form [B; — C;] or [D; — D;]. Now
the result in the split case follows from a case distinction depending on whether
m| < m3 or not. In the nonsplit case, the only element of order 2 that is defined
over €18 [By, 2 — Cp, 2] 1f 1t exists.

In the situation of (d), the group ®(£) 1s of order 3 (generated by [E — A]) in
the split case and trivial in the nonsplit case.]

Motivation

Proof. The proof of (a) follows easily from Proposition 9.4.

For the other cases, note that in the nonsplit case some power of Frobenius
acts as negation on the component group ®(£), so the only elements of @ (£) are
elements of order 2 in (D(%), which correspond to [By, 2 — Cpn, 2] 1f my and m, are
even (where u takes the value %(ml + mg)), and similarly with the obvious cyclic
permutations.

In the situation of (c¢), we must have m; =m. If P =[(P)) — (P>)] € J(k) and
PeC (!_c) maps to one of the conjugate nodes, then P>, must map to the other, so
all P € J(k) must map to a component of the form [B; — C;] or [D; — D;]. Now
the result in the split case follows from a case distinction depending on whether
m| < m3 or not. In the nonsplit case, the only element of order 2 that is defined
over €18 [By, 2 — Cp, 2] 1f 1t exists.

In the situation of (d), the group ®(£) 1s of order 3 (generated by [E — A]) in
the split case and trivial in the nonsplit case.]

Motivation

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!

Goal: Be able to formalize my papers!

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!
Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!
Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!
Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)

New Goal: Teach more number theory to Lean!

Motivation

There are actually two mistakes in the statement and proof
(but one is not visible here).

It would be nice to be able to avoid such mistakes!
Goal: Be able to formalize my papers!

Problem: Lean+Mathlib is very far away from this.

(But: See https://github.com/MichaelStollBayreuth/Weights)
New Goal: Teach more number theory to Lean!

For example: Get the Hasse-Minkowski Theorem into Mathlib!

Hasse-MinkowskKi

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need.
(1 Legendre’'s T heorem on ternary quadratic forms v

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms v

@® The product formula for the quadratic Hilbert symbol

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms v
@® The product formula for the quadratic Hilbert symbol

(3] Dirichlet’'s Theorem on primes in arithmetic progression

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms v
@® The product formula for the quadratic Hilbert symbol

(3] Dirichlet’'s Theorem on primes in arithmetic progression

® and ©® are needed to go fromn=3ton=4 (n<2is easy).

Hasse-MinkowskKi

Theorem.
Let Q(x1,...,xn) be a non-degenerate quadratic form over Q.
If Q has nontrivial zeros in all completions of QQ, then also in Q.

What we need:

(1 Legendre’'s T heorem on ternary quadratic forms v
@® The product formula for the quadratic Hilbert symbol

(3] Dirichlet’'s Theorem on primes in arithmetic progression
® and ©® are needed to go fromn=3ton=4 (n<2is easy).

I did some work on @ as my first larger Lean(3) project.

Dirichlet

Dirichlet

So let us focus on Dirichlet's Theorem!

Dirichlet

So let us focus on Dirichlet's Theorem!

Goal: Formalize the proof via Dirichlet L-series.

Dirichlet

So let us focus on Dirichlet's Theorem!
Goal: Formalize the proof via Dirichlet L-series.

What we need:

Dirichlet

So let us focus on Dirichlet's Theorem!
Goal: Formalize the proof via Dirichlet L-series.

What we need.
(1 Euler product for L-series of multiplicative functions 74

Dirichlet

So let us focus on Dirichlet's Theorem!
Goal: Formalize the proof via Dirichlet L-series.

What we need.
(1 Euler product for L-series of multiplicative functions 74

A Holomorphic continuation of Dirichlet L-series (D. Loeffler)

Dirichlet

So let us focus on Dirichlet's Theorem!
Goal: Formalize the proof via Dirichlet L-series.

What we need.
(1 Euler product for L-series of multiplicative functions 74

A Holomorphic continuation of Dirichlet L-series (D. Loeffler)

® Non-vanishing of L(x, 1)

Dirichlet

So let us focus on Dirichlet's Theorem!

Goal: Formalize the proof via Dirichlet L-series.

What we need:

1

© &0

Euler product for L-series of multiplicative functions 74

Holomorphic continuation of Dirichlet L-series
Non-vanishing of L(x,1)

Some limits and asymptotics to glue things

(D. Loeffler)

PN

PNT+

This plan has now been subsumed
as part of the PrimeNumber T heorem-+ project,

which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotaréyv, ...), even with good error terms!

PNT+

T his plan has now been subsumed

as part of the PrimeNumber T heorem-+ project,

which aims at proving the Prime Number Theorem and various extensions
(Dirichlet, Chebotaréy, ...), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT
to some version of the Wiener-Ikehara T heorem:

PNT+

This plan has now been subsumed
as part of the PrimeNumber T heorem-+ project,

which aims at proving the Prime Number Theorem and various extensions

(Dirichlet, Chebotaréyv, ...), even with good error terms!

In this context, I have formalized what is necessary to reduce PNT

to some version of the Wiener-Ikehara T heorem:

open Filter Topology Nat in
/-- A version of the *Wiener-Ikehara Tauberian Theorem®*:. If "f° 1s a nonnegative arithmetic
function whose L-series has a simple pole at s = 1° with residue "A° and otherwise extends

continuously to the closed half-plane 're s 2 1", then " n < N, f n° 1is asymptotic to "A*N .

def WienerIkeharaTheorem : Prop :=
V{f: N>R}y {A:R}y{F:C>C}, (VYNn, 0<fn)>
Set.EqOn F (fun s » L af s - A/ (s - 1)) {s | 1 < s.re} »
ContinuousOn F {s | 1 < s.re} >
Tendsto (fun N : N » ((Finset.range N).sum f) / N) atTop (.4 A)

Non-vanishing

Non-vanishing

/-- For positive "x and nonzero 'y we have that
$|L(\chinr0, x)”3 \cdot L(\chi, x+iy)~4 \cdot L(\chir2, x+2iy)| \ge 1%. -/
lemma norm_dirichlet_product_ge one {N : N} (x : DirichletCharacter € N) {x : R} (hx : 0 < x)
(y : R) :
IL 2(1 : DirichletCharacter € N) (1 + x) "3 * L ay (1 + x + I *y) A 4 *
La(y 2 1) (1 +x+2*T*y)||=21:= by

Non-vanishing

/-- For positive "x and nonzero 'y we have that
$|L(\chinr0, x)”3 \cdot L(\chi, x+iy)~4 \cdot L(\chir2, x+2iy)| \ge 1%. -/
lemma norm_dirichlet_product_ge one {N : N} (x : DirichletCharacter € N) {x : R} (hx : 0 < x)
(y : R) :
IL 2(1 : DirichletCharacter € N) (1 + x) "3 * L ay (1 + x + I *y) A 4 *
La(y 2 1) (1 +x+2*T*y)||=21:= by

/-- For positive 'x° and nonzero 'y we have that
$|\zeta(x)”3 \cdot \zeta(x+iy)"4 \cdot \zeta(x+2iy)| \ge 1%. -/
lemma norm_zeta_product_ge_one {x : R} (hx : 0 < x) (y : R)
I (1 +x) A3*Z (1T +x+T*y)rAa* g (1+x+2*T*y)=21:=bhy
have (h,, h,, h,) := one_lt_re_of_pos y hx
simpa only [one_pow, norm_mul, norm_pow, DirichletCharacter.LSeries_modOne_eq,
LSeries_one_eq_riemannZeta, hy,, h,, h,] using norm_dirichlet_product_ge_one X, hx y

Non-vanishing

/-- For positive "x and nonzero 'y we have that
$|L(\chinr0, x)”3 \cdot L(\chi, x+iy)~4 \cdot L(\chir2, x+2iy)| \ge 1%. -/
lemma norm_dirichlet_product_ge one {N : N} (x : DirichletCharacter € N) {x : R} (hx : 0 < x)
(y : R) :
IL 2(1 : DirichletCharacter € N) (1 + x) "3 * L ay (1 + x + I *y) A 4 *
La(y 2 1) (1 +x+2*T*y)||=21:= by

/-- For positive 'x° and nonzero 'y we have that
$|\zeta(x)”3 \cdot \zeta(x+iy)"4 \cdot \zeta(x+2iy)| \ge 1%. -/
lemma norm_zeta_product_ge_one {x : R} (hx : 0 < x) (y : R)
I (1 +x) A3*Z (1T +x+T*y)rAa* g (1+x+2*T*y)=21:=bhy
have (h,, h,, h,) := one_lt_re_of_pos y hx
simpa only [one_pow, norm_mul, norm_pow, DirichletCharacter.LSeries_modOne_eq,
LSeries_one_eq_riemannZeta, hy,, h,, h,] using norm_dirichlet_product_ge_one X, hx y

/-- The Riemann Zeta Function does not vanish on the closed half-plane ‘re z 2 1°. -/
lemma riemannZeta_ne_zero_of_one_le_re {{z : C} (hz : z # 1) (hz" : 1 < z.re) : ¢ z # 0 := by

Deduction from WI

Deduction from WI

/-- The function obtained by "multiplying away" the pole of "¢'. Its (negative) logarithmic
derivative 1is the function used in the Wiener-Ikehara Theorem to prove the Prime Number

Theorem. -/
noncomputable def ¢, : C » € := Function.update (fun z » C z * (z - 1)) 11

Deduction from WI

/-- The function obtained by "multiplying away" the pole of "¢'. Its (negative) logarithmic
derivative 1is the function used in the Wiener-Ikehara Theorem to prove the Prime Number

Theorem. -/
noncomputable def ¢, : C » € := Function.update (fun z » C z * (z - 1)) 11

open Filter Nat ArithmeticFunction in
/-- The *Wiener-Ikehara Theorem* implies the #*Prime Number Theorem* in the form that
P x ~ x, where P x=3%n<x, An and 'A° is the von Mangoldt function. -/
theorem PNT_vonMangoldt (WIT : WienerIkeharaTheorem)

Tendsto (fun N : N » ((Finset.range N).sum A) / N) atTop (nhds 1) := by

have hnv := riemannZeta_ne_zero_of _one_le re
refine WIT (F := fun z » -deriv (, z / {, z) (fun _ » vonMangoldt_nonneg) (fun s hs » ?2_) ?7_
- have hs, : s # 1 := by

rintro rfl
simp at hs

simp only [ne_eq, hs,, not_false_eq_true, LSeries_vonMangoldt_eq_deriv_riemannZeta_div hs,
ofReal one]

exact neg_logDeriv_C(,_eq hs, <| hnv hs, (Set.mem_setOf.mp hs).le

- refine continuousOn_neg_logDeriv_d(,.mono fun s _ & ?7_

specialize @hnv s

simp at *

tauto

L -Series

L -Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=
Z’n:N,fn/n“s

where ArithmeticFunction R iS a wrapper around N — R.

L -Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=
Z’n:N,fn/n“s

where ArithmeticFunction R iS a wrapper around N — R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form a,/n® for n > 1.

L -Series

When I started looking at this,
there was a rudimentary L-series package in Mathlib doing roughly this:

def LSeries (f : ArithmeticFunction C) (s : C) : C :=
Z’n:N,fn/n“s

where ArithmeticFunction R iS a wrapper around N — R.

This makes mathematical sense, as the terms of a Dirichlet series
have the form a,/n® for n > 1.

But that does not mean it is the best way to implement it in Lean!

def LSeries (f

L -Series

+ ArithmeticFunction C) (s

. O©)

. C

L -Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

e LSeries (4 e LSeries U 4
e LSeries lOg ® e LSeries A 4
e LSeries ¥ for a Dirichlet character x ®

L -Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

e LSeries (4 e LSeries U 4
e LSeries lOg ® e LSeries A 4
e LSeries ¥ for a Dirichlet character x ®
Problem: There are coercions

e ArithmeticFunction N — ArithmeticFunction R (for [Semiring R])
e ArithmeticFunction Z — ArithmeticFunction R (for [Ring R])

L -Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

e LSeries (4 e LSeries U 4
e LSeries lOg ® e LSeries A 4
e LSeries ¥ for a Dirichlet character x ®
Problem: There are coercions

e ArithmeticFunction N — ArithmeticFunction R (for [Semiring R])
e ArithmeticFunction Z — ArithmeticFunction R (for [Ring R])

but not, e.g.,

e ArithmeticFunction R — ArithmeticFunction C

L -Series

def LSeries (f : ArithmeticFunction C) (s : C) : C := ...

We would like to write (using notation from ArithmeticFunction)

e LSeries (4 e LSeries U 4
e LSeries lOg ® e LSeries A 4
e LSeries ¥ for a Dirichlet character x ®
Problem: There are coercions

e ArithmeticFunction N — ArithmeticFunction R (for [Semiring R])
e ArithmeticFunction Z — ArithmeticFunction R (for [Ring R])

but not, e.g.,

e ArithmeticFunction R — ArithmeticFunction C

There does not seem to be a good way
to set this up in the desirable generality.

L-Series:

ake

WO

What about
def LSeries (f

L-Series:

: N+ - C) (s

. O©)

. C .

ake

WO

What about
def LSeries (f

Problems:

L-Series:

: N+ =2 C) (s

. O©)

. C .

ake

WO

L -Series: Take Two

What about
def LSeries (f : N+ —-C) (s : C) : C := ... ?

Problems:

e Going between N+ and N is somewhat painful

L -Series: Take Two

What about
def LSeries (f : N+ —-C) (s : C) : C := ... ?

Problems:

Going between N+ and N is somewhat painful

Some API for N+ is missing

L -Series: Take Two

What about
def LSeries (f : N+ —-C) (s : C) : C := ... ?

Problems:
e Going between N+ and N is somewhat painful
e Some API for N+ is missing

e Have to redo divisorsAntidiagonal for N+ (for Dirichlet convolution)

L-Series:

ake

hree

| -Series: Take Three

After some discussions and experiments, we settled on
def LSeries (f : N—C) (s : C©) : C := ...

where the value £ 0 is simply ignored.

| -Series: Take Three

After some discussions and experiments, we settled on
def LSeries (f : N—C) (s : C©) : C := ...

where the value £ 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "" f:max => funn : N — (f n : C)

| -Series: Take Three

After some discussions and experiments, we settled on
def LSeries (f : N—C) (s : C©) : C := ...

where the value £ 0 is simply ignored.

We can solve the coercion problem as follows.

scoped[LSeries.notation] notation:max "" f:max => funn : N — (f n : C)

We can then write (abbreviating LSeries to L)

L ~(C, L W, L A, L X, and it works!

| -Series Terms

| -Series Terms

To get a clean separation of the implementation details
and the L-series "“logic”, we define

def LSeries.term (f : N—=C) (s : C) (n : N) : C :=
if n = O then O else f n/ n~ s

| -Series Terms

To get a clean separation of the implementation details
and the L-series “logic’, we define

def LSeries.term (f : N—=C) (s : C) (n : N) : C :=
if n = O then O else f n/ n~ s

@[simp] lemma term zero (f : N—C) (s : C) : term f s 0 = 0 := rfl
@[simp] lemma term of ne zero {n : N} (hn : n #0) (f : N—>C) (s : C)

term f sn=fn/n~ s := if neg hn

| -Series Terms

To get a clean separation of the implementation details
and the L-series “logic’, we define

def LSeries.term (f : N—=C) (s : C) (n : N) : C :=
if n = O then O else f n/ n~ s

@[simp] lemma term zero (f : N—C) (s : C) : term f s 0 = 0 := rfl
@[simp] lemma term of ne zero {n : N} (hn : n #0) (f : N—>C) (s : C)

term f sn=fn/n~ s := if neg hn

and then

def LSeries (f : N—C) (s : C) : C :=5'"n : N, term f s n

| -Series Terms

To get a clean separation of the implementation details
and the L-series “logic’, we define

def LSeries.term (f : N—=C) (s : C) (n : N) : C :=
if n = 0 then O else f n/ n~ s

@[simp] lemma term zero (f : N—C) (s : C) : term f s 0 = 0 := rfl
@[simp] lemma term of ne zero {n : N} (hn : n #0) (f : N—>C) (s : C)

term f sn=fn/n~ s := if neg hn

and then

def LSeries (f : N—C) (s : C) : C :=>'n : N, term f s n

def LSeriesHasSum (f : N—C) (s a : C) : Prop := HasSum (term f s) a
def LSeriesSummable (f : N—C) (s : C) : Prop := Summable (term f s)

Example: Convolution

Example: Convolution

lemma term convolution (f g : N—C) (s : C) (»n : N) :
term (f ® g) s n =

> p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

Example: Convolution

lemma term convolution (f g : N—C) (s : C) (n : N)
term (f ® g) s n =

> p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N—C) (s : C)
term (f ® g) s =
funn — Y (b : (fun p : NxN = p.1 * p.2) 17)},

term f s b.val.1 * term g s b.val.2 := ...

Example: Convolution

lemma term convolution (f g : N—C) (s : C) (n : N)
term (f ® g) s n =

> p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N—C) (s : C)
term (f ® g) s =
funn — Y (b : (fun p : NxN = p.1 * p.2) 17)},

term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N—C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b)
LSeriesHasSum (f ® g) s (a * b) := by

Example: Convolution

lemma term convolution (f g : N—C) (s : C) (n : N)
term (f ® g) s n =

> p in n.divisorsAntidiagonal, term f s p.1 * term g s p.2 := ...

lemma term convolution’ (f g : N—C) (s : C)
term (f ® g) s =
funn — Y (b : (fun p : NxN = p.1 * p.2) 17)},

term f s b.val.1 * term g s b.val.2 := ...

lemma LSeriesHasSum.convolution {f g : N—C} {s a b : C}
(hf : LSeriesHasSum f s a) (hg : LSeriesHasSum g s b)
LSeriesHasSum (f ® g) s (a * b) := by
simp only [LSeriesHasSum, term convolution’]
have hsum :=
summable mul of summable norm hf.summable.norm hg.summable.norm

exact (HasSum.mul hf hg hsum).tsum fiberwise (fun p — p.1l * p.2)

Thank Youl

