Explicit Kummer Varieties for Hyperelliptic Curves of Genus 3

Michael Stoll
Universität Bayreuth

Théorie des nombres et applications
CIRM, Luminy

January 17, 2012
Application / Motivation

We would like to determine the set of integral points on a curve like

\[C : Y^2 - Y = X^7 - X. \]

Bugeaud, Mignotte, Siksek, St., Tengely (2008):

Can be done if we know generators of the Mordell-Weil Group \(J(\mathbb{Q}) \) (where \(J \) is the Jacobian of \(C \)).

Existing technology gives \(J(\mathbb{Q}) \cong \mathbb{Z}^4 \)

and generators of a finite-index subgroup \(G \).

Theorem (St., yesterday).

\(J(\mathbb{Q}) \) is generated by the classes of the divisors

\[(0,0) - \infty, \quad (1,0) - \infty, \quad (-1,0) - \infty \quad \text{and} \quad (\omega,0) + (\omega^2,0) - 2 \cdot \infty \]

where \(\omega^2 + \omega + 1 = 0. \)
Requirements

What do we need to be able to saturate G?

We need to be able to

- Compute canonical heights on $J(\mathbb{Q})$.
- Bound the difference between naïve and canonical height.

Reason:

- We can enumerate points with bounded naïve height.
- We want to enumerate points with bounded canonical height.
Let C' be a hyperelliptic curve of genus 3 over \mathbb{Q}:

$$C' : Y^2 = F(X, Z) = f_8 X^8 + f_7 X^7 Z + \ldots + f_1 XZ^7 + f_0 Z^8$$

with $F \in \mathbb{Z}[X, Z]$ such that $\text{disc}(F) \neq 0$; C' is a smooth curve in $\mathbb{P}^2_{1,4,1}$.

Let J be the Jacobian variety of C'.

The quotient of J by the action of $\{\pm 1\}$ is the Kummer Variety K.

There is an embedding $J \xrightarrow{\kappa} K \hookrightarrow \mathbb{P}^7$ that gives rise to a naïve height h on K and J and consequently to the canonical height $\hat{h}(P) = \lim_{n \to \infty} 4^{-n} h(2^n P)$.
The Objects

We want:

- The embedding $K \hookrightarrow \mathbb{P}^7$.
- Equations for its image.
- The duplication map $\delta : K \to K$, $\kappa(P) \mapsto \kappa(2P)$.
- The sum and difference map $\quad \quad B : \text{Sym}^2 K \to \text{Sym}^2 K, \quad \{\kappa(P), \kappa(Q)\} \mapsto \{\kappa(P + Q), \kappa(P - Q)\}$.

The embedding defines the naïve height h.
The duplication map can be used to compute the canonical height \hat{h} and to bound the height difference.
Previous Work

For the case $f_8 = 0$:

- **A. Stubbs** (2000): Embedding and many (but not all) equations.
- **J.S. Müller** (2010): All equations.
- **Duquesne and Müller**: Conjectural δ, preliminary results on B.

Computation of \tilde{h}:

- **Müller and D. Holmes**: General algorithms.
Overview of Results

For the general case \((f_8 \neq 0 \text{ not excluded})\) I get:

- The embedding (in the most natural coordinates \(\xi_1, \ldots, \xi_8\);
 \(\kappa(O) = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1)\)).
- The equations describing \(K \subset \mathbb{P}^7\):
 \(\xi_1\xi_8 - \xi_2\xi_7 + \xi_3\xi_6 - \xi_4\xi_5 = 0\) plus 34 quartic relations.
- The action of \(J[2]\) (taken from Duquesne).
- The duplication map \(\delta\)
 (quartic polynomials \(\delta_1, \ldots, \delta_8 \in \mathbb{Z}[f_0, \ldots, f_8][\xi_1, \ldots, \xi_8]\)
 such that \(\delta(0, 0, 0, 0, 0, 0, 0, 1) = (0, 0, 0, 0, 0, 0, 0, 1)\).
- The sum and difference map \(B\)
 (bilinear forms in \(\xi_i\xi_j\) and \(\Xi\) where \(4\Xi^2 = \delta_1\)).
- Results on heights.
The Action of Two-Torsion

Assume that $f_8 \neq 0$ and let $f = F(x, 1) \in \mathbb{Z}[x]$. Let Ω denote the set of roots of f.

A point $T \in J[2]$ corresponds to a partition $\{\Omega_1, \Omega_2\}$ of Ω with $\#\Omega_1$ and $\#\Omega_2$ even. Define $\sigma(T) = (-1)^{\#\Omega_1/2}$ (OK since $\#\Omega_1 \equiv \#\Omega_2 \mod 4$). Then $e_2(T, T') = \sigma(T)\sigma(T')\sigma(T + T')$.

There is an extension

$$0 \longrightarrow \mu_2 \longrightarrow \Gamma \overset{\pi}{\longrightarrow} J[2] \longrightarrow 0$$

with $\Gamma \subset SL(8)$ such that $\gamma^2 = \sigma(\pi(\gamma))I_8$ and such that γ acts on $K \subset \mathbb{P}^7$ as translation by $\pi(\gamma)$.
The First Representation

Let V_n denote the space of homogeneous polynomials of degree n in ξ_1, \ldots, ξ_8.

Then Γ acts on V_n: $\rho_n : \Gamma \to \text{Aut}(V_n)$.
Let χ_n be the character of ρ_n.

$$\chi_1(\gamma) = \text{Tr}(\gamma) = \begin{cases} \pm 8 & \text{if } \pi(\gamma) = O, \\ 0 & \text{else.} \end{cases}$$

It follows that ρ_1 is irreducible.

For n even, ρ_n will factor through $J[2]$ and therefore split into one-dimensional representations.
The Second Representation

We can compute χ_2 and deduce that

$$\rho_2 \cong \bigoplus_{\sigma(T)=1} \rho_T$$

where ρ_T is given by $\gamma \mapsto e_2(T, \pi(\gamma))$.

Since $\sigma(O) = 1$, there is a copy of the trivial representation; it is generated by $\xi_1\xi_8 - \xi_2\xi_7 + \xi_3\xi_6 - \xi_4\xi_5$.

For $T \neq O$, $\sigma(T) = 1$, let y_T denote the generator of the T-eigenspace with coefficient 1 at ξ^2_8. Then the coefficients of y_T are integral over $\mathbb{Z}[f_0, \ldots, f_8]$.

Lemma. $8\xi^2_j$ is an integral linear combination of the $y_T/R(T)$, where $R(T)$ is the resultant of the two factors of F corresponding to T.
The Third Representation

We now consider ρ_4. In the same way as before, we find that

$$\rho_4 \cong \rho_O^{\oplus 15} \oplus \bigoplus_{T \neq O} \rho_T^{\oplus 5}.$$

Lemma.
The invariant subspace of V_4 intersects $I(K)$ in a seven-dimensional space. The quotient is spanned by the images of $\delta_1, \ldots, \delta_8$.

For $T \neq O$ with $\sigma(T) = 1$,

$$y_T^2 \equiv \delta_8 - \tau_2 \delta_7 + \tau_3 \delta_6 - \tau_4 \delta_5 - \tau_5 \delta_4 + \tau_6 \delta_3 - \tau_7 \delta_2 + \tau_8 \delta_1 \mod I(K)$$

where $\kappa(T) = (1 : \tau_2 : \ldots : \tau_8)$ and the τ_j are integral.

Corollary. For $\mathbb{P}(\xi) \in K(\mathbb{Q}_v)$ and v a non-arch. valuation,

$$0 \leq v(\delta(\xi)) - 4v(\xi) \leq v(2^6 \text{disc}(F)).$$
The Height

Recall:

- \(h(\mathbb{P}(\xi)) = \sum_v \log \max\{|\xi_j|_v : 1 \leq j \leq 8\}. \)
- \(\hat{h}(P) = \lim_{n \to \infty} 4^{-n}h(2^n P) = h(P) + \sum_{n=0}^{\infty} 4^{-n-1}(h(2^{n+1} P) - 4h(2^n P)). \)

Define, for \(P \in J(\mathbb{Q}_v) \) with \(\kappa(P) = \mathbb{P}(\xi) \),

\[\varepsilon_v(P) = \log \max_j\{|\delta_j(\xi)|_v\} - 4 \log \max_j\{|\xi_j|_v\}. \]

and \(\gamma_v = -\min_{P \in J(\mathbb{Q}_v)} \varepsilon_v(P). \)

Then for \(v = p \) non-archimedean,

\[-v(2^6 \text{disc}(F)) \log p \leq -\gamma_p \leq \varepsilon_p(P) \leq 0. \]

For \(v = \infty \), lower and upper bounds \(-\gamma_\infty \) and \(\gamma'_\infty \) for \(\varepsilon_\infty(P) \) can also be computed (using the Lemmas above).
Bounding the Height Difference

Since
\[h(P) - \hat{h}(P) = - \sum_{v} \sum_{n=0}^{\infty} 4^{-n-1} \varepsilon_v(P), \]
we obtain
\[-\frac{1}{3} \gamma' \leq h(P) - \hat{h}(P) \leq \frac{1}{3} \left(\gamma_{\infty} + \sum_{p|2\text{disc}(F')} \gamma_p \right) \leq \frac{1}{3} (\gamma_{\infty} + \log |2^6\text{disc}(F')|). \]

Improvements are possible, for example for non-arch. odd \(v = p \):
\[v(\text{disc}(F')) = 1 \implies \gamma_p = 0. \]

The bounds on \(\varepsilon_v \) allow us
- to compute canonical heights, and
- to saturate subgroups.
The Example

We come back to our original example

\[C : Y^2 - Y = X^7 - X. \]

This is isomorphic to \(Y^2 = 4X^7Z - 4XZ^7 + Z^8; \) the discriminant of the right hand side is \(2^{16} \cdot 19 \cdot 223 \cdot 44909. \)

We therefore obtain

\[h(P) - \hat{h}(P) \leq \frac{22}{3} \log 2 + \frac{1}{3} \gamma_\infty < 6.2345. \]

Looking at the lattice corresponding to the known subgroup, we can conclude that \(J(\mathbb{Q}) \) is generated by the known points together with points \(P \) such that

\[H(P) = \exp h(P) \leq 847. \]

No new generators exist in this range.
Concluding Remarks

• The action of Γ can be used to find the sum and difference map.

• A more detailed study of the ε_p leads to an efficient algorithm that computes

$$\mu_p(P) = \sum_{n=0}^{\infty} 4^{-n-1} \varepsilon_p(2^n P) \in \mathbb{Q} \log p$$

exactly.

• The construction of the embedding $K \subset \mathbb{P}^7$ is based on the Mumford representation of effective divisors of degree 4 in general position. It leads to an explicit description of the form $K \setminus \kappa(\Theta) \cong V/G$ with an affine variety V on which a group G acts.