Rational Points on Curves

Michael Stoll
Universität Bayreuth

Journées Arithmétiques, Saint-Étienne
July 9, 2009
The Problem

Let C be a (geometrically integral) curve defined over \mathbb{Q}.

(We take \mathbb{Q} for simplicity; we could use an arbitrary number field instead.)

Problem.
Determine $C(\mathbb{Q})$, the set of rational points on C.

Since a curve and its smooth projective model only differ in a computable finite set of points, we will assume that C is smooth and projective.

The focus of this talk is on the practical aspects, in the case of genus ≥ 2.
The Structure of the Solution Set

The structure of the set \(C(\mathbb{Q}) \) is determined by the genus \(g \) of \(C \).
(“Geometry determines arithmetic”)

- \(g = 0 \):
 Either \(C(\mathbb{Q}) = \emptyset \), or if \(P_0 \in C(\mathbb{Q}) \), then \(C \cong \mathbb{P}^1 \).
 The isomorphism parametrizes \(C(\mathbb{Q}) \).

- \(g = 1 \):
 Either \(C(\mathbb{Q}) = \emptyset \), or if \(P_0 \in C(\mathbb{Q}) \), then \((C, P_0) \) is an elliptic curve.
 In particular, \(C(\mathbb{Q}) \) is a finitely generated abelian group.
 \(C(\mathbb{Q}) \) is described by generators of the group.

- \(g \geq 2 \):
 \(C(\mathbb{Q}) \) is finite.
 \(C(\mathbb{Q}) \) is given by listing the points.
A smooth projective curve of genus 0 is (computably) isomorphic to a smooth conic.

Conics \(C \) satisfy the Hasse Principle:
If \(C(\mathbb{Q}) = \emptyset \), then \(C(\mathbb{R}) = \emptyset \) or \(C(\mathbb{Q}_p) = \emptyset \) for some prime \(p \).

We can effectively check this condition:
we only need to check \(\mathbb{R} \) and \(\mathbb{Q}_p \) when \(p \) divides the discriminant.
For a given \(p \), we only need finite \(p \)-adic precision.
(Note: we need to factor the discriminant!)

At the same time, we can find a point in \(C(\mathbb{Q}) \), if it exists.
Given \(P_0 \in C(\mathbb{Q}) \), we can compute an isomorphism \(\mathbb{P}^1 \rightarrow C \).
Genus One

The Hasse Principle may fail.

If we can’t find a rational point, but \(C \) has points “everywhere locally”, we can try \((n-)\)coverings.

Coverings can be used to show that \(C(\mathbb{Q}) \) is empty, or they can help find a point \(P_0 \in C(\mathbb{Q}) \).

In practice, this is feasible only in a few cases:

- \(y^2 = \text{quartic in } x \\) and \(n = 2 \);
- intersections of two quadrics in \(\mathbb{P}^3 \) and \(n = 2 \);
- plane cubics and \(n = 3 \) (current PhD project).
Elliptic Curves

Now assume that we have found a rational point P_0 on C. Then (C, P_0) is an elliptic curve, which we will denote E.

We know that $E(\mathbb{Q})$ is a finitely generated abelian group; the task is now to find explicit generators.

The hard part is to determine the rank $r = \dim_{\mathbb{Q}} E(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Computation of the n-Selmer group of E gives an upper bound on r. This n-descent is feasible for $n = 2, 3, 4, 8$; $n = 9$ is current work.

A search for independent points gives a lower bound on r. However, generators may be very large. Descent can help find them. When $r = 1$, Heegner points can be used.
Higher Genus — Finding Points

Now consider a curve C of genus $g \geq 2$. The first task is to decide whether C has any rational points. If there is a rational point, we can find it by search. Unlike the genus 1 case, we expect points to be small:

Conjecture (A consequence of Vojta’s Conjecture: Su-Ion Ih). If $C \to B$ is a family of higher-genus curves, then there is κ such that

$$H_C(P) \ll H_B(b)^\kappa$$

for all $P \in C_b(\mathbb{Q})$ if the the fiber C_b is smooth.
Examples

Consider a curve

\[C : y^2 = f_6x^6 + \cdots + f_1x + f_0 \]

of genus 2, with \(f_j \in \mathbb{Z} \).

Then the conjecture says that there are \(\gamma \) and \(\kappa \) such that the \(x \)-coordinate \(p/q \) of any point \(P \in C(\mathbb{Q}) \) satisfies

\[|p|, |q| \leq \gamma \max\{|f_0|, |f_1|, \ldots, |f_6|\}^\kappa. \]

Example (Bruin-St).
Consider curves of genus 2 as above such that \(f_j \in \{-3, -2, \ldots, 3\} \).

If \(C \) has rational points, then there is one whose \(x \)-coordinate is \(p/q \) with \(|p|, |q| \leq 1519 \).

We will call these curves small genus 2 curves.
Local Points

If we do not find a rational point on C, we can check for local points (over \mathbb{R} and \mathbb{Q}_p). We have to consider primes p that are small or sufficiently bad.

Example (Poonen-St).
About 84–85% of all curves of genus 2 have points everywhere locally.

Conjecture.
0% of all curves of genus 2 have rational points.

So in many cases, checking for local points will not suffice to prove that $C(\mathbb{Q}) = \emptyset$.

Example (Bruin-St).
Among the 196,171 isomorphism classes of small genus 2 curves, there are 29,278 that are counterexamples to the Hasse Principle.
To resolve these cases, we can use coverings.

Example.
Consider \(C : y^2 = g(x)h(x) \) with \(\deg g, \deg h \) not both odd.

Then \(D : u^2 = g(x), v^2 = h(x) \)
is an unramified \(\mathbb{Z}/2\mathbb{Z} \)-covering of \(C \).

Its twists are \(D_d : du^2 = g(x), dv^2 = h(x), \quad d \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^2 \).

Every rational point on \(C \) lifts to one of the twists,
and there are only finitely many twists
such that \(D_d \) has points everywhere locally.
Example

Consider the genus 2 curve

\[C : y^2 = -(x^2 + x - 1)(x^4 + x^3 + x^2 + x + 2) = f(x). \]

\(C \) has points everywhere locally
\((f(0) = 2, f(1) = -6, f(-2) = -3 \cdot 2^2, f(18) \in (\mathbb{Q}_2^\times)^2, f(4) \in (\mathbb{Q}_3^\times)^2). \)

The relevant twists of the obvious \(\mathbb{Z}/2\mathbb{Z} \)-covering are among
\[du^2 = -x^2 - x + 1, \quad dv^2 = x^4 + x^3 + x^2 + x + 2 \]
where \(d \) is one of 1, -1, 19, -19. (The resultant is 19.)
If \(d < 0 \), the second equation has no solution in \(\mathbb{R} \);
if \(d = 1 \) or 19, the pair of equations has no solution over \(\mathbb{F}_3 \).

So there are no relevant twists, and \(C(\mathbb{Q}) = \emptyset \).
Descent

More generally, we have the following result.

Descent Theorem (Fermat, Chevalley-Weil, . . .).

Let $D \xrightarrow{\pi} C$ be an unramified and geometrically Galois covering. Its twists $D_\xi \xrightarrow{\pi\xi} C$ are parametrized by $\xi \in H^1(\mathbb{Q}, G)$ (a Galois cohomology set), where G is the Galois group of the covering.

We then have the following:

- $C(\mathbb{Q}) = \bigcup_{\xi \in H^1(\mathbb{Q}, G)} \pi_\xi(D_\xi(\mathbb{Q}))$.
- $\text{Sel}^\pi(C) := \{\xi \in H^1(\mathbb{Q}, G) : D_\xi \text{ has points everywhere locally}\}$ is finite (and computable). This is the **Selmer set** of C w.r.t. π.

If we find $\text{Sel}^\pi(C) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
Abelian Coverings

A covering $D \rightarrow C$ is abelian if its Galois group is abelian.

Let J be the Jacobian variety of C. Assume for simplicity that there is an embedding $\iota : C \rightarrow J$.

Then all abelian coverings of C are obtained from n-coverings of J:

We call such a covering an n-covering of C; the set of all n-coverings with points everywhere locally is denoted $\text{Sel}^{(n)}(C')$.
It is feasible to compute $\text{Sel}^{(2)}(C)$ for hyperelliptic curves C (Bruin-St).

This is a generalization of the $y^2 = g(x)h(x)$ example, where all possible factorizations are considered simultaneously.

Example (Bruin-St).
Among the small genus 2 curves, there are only 1492 curves C without rational points and such that $\text{Sel}^{(2)}(C) \neq \emptyset$.
Conjecture 1.
If \(C(\mathbb{Q}) = \emptyset \), then \(\text{Sel}^{(n)}(C) = \emptyset \) for some \(n \geq 1 \).

Remarks.

- In principle, \(\text{Sel}^{(n)}(C) \) is computable for every \(n \).
 The conjecture therefore implies that “\(C(\mathbb{Q}) = \emptyset ? \)” is decidable.
 (Search for points by day, compute \(\text{Sel}^{(n)}(C) \) by night.)
- The conjecture implies that the Brauer-Manin obstruction is the only obstruction against rational points on curves.
 (In fact, it is equivalent to this statement.)
Assume we know generators of the Mordell-Weil group $J(\mathbb{Q})$ (a finitely generated abelian group again). Then we can restrict to n-coverings of J that have rational points.

They are of the form $J
i P \mapsto nP + Q \in J$, with $Q \in J(\mathbb{Q})$; the shift Q is only determined modulo $nJ(\mathbb{Q})$.

The set we are interested in is therefore

$$\left\{ Q + nJ(\mathbb{Q}) : (Q + nJ(\mathbb{Q})) \cap \iota(C) \neq \emptyset \right\} \subset J(\mathbb{Q})/nJ(\mathbb{Q}).$$

We approximate the condition by testing it modulo p for a set of primes p.
The Mordell-Weil Sieve

Let S be a finite set of primes of good reduction for C. Consider the following diagram.

$$
\begin{array}{ccc}
C(\mathbb{Q}) & \xrightarrow{\iota} & J(\mathbb{Q}) \\
\downarrow & & \downarrow \\
\prod_{p \in S} C(F_p) & \xrightarrow{\iota} & \prod_{p \in S} J(F_p) \\
\alpha & & \beta \\
\prod_{p \in S} J(F_p) & \xrightarrow{\iota} & \prod_{p \in S} J(F_p) / nJ(F_p) \\
\end{array}
$$

We can compute the maps α and β. If their images do not intersect, then $C(\mathbb{Q}) = \emptyset$. (Scharaschkin, Flynn, Bruin-St)

Poonen Heuristic/Conjecture:
If $C(\mathbb{Q}) = \emptyset$, then this will be the case when n and S are sufficiently large.
A carefully optimized version of the Mordell-Weil sieve works well when $r = \text{rank } J(\mathbb{Q})$ is not too large.

Example (Bruin-St).
For all the 1,492 remaining small genus 2 curves C, a Mordell-Weil sieve computation proves that $C(\mathbb{Q}) = \emptyset$. (For 42 curves, we need to assume the Birch and Swinnerton-Dyer Conjecture for J.)

Note: It suffices to have generators of a subgroup of $J(\mathbb{Q})$ of finite index prime to n.
This is easier to obtain than a full generating set, which is currently possible only for genus 2.
A Refinement

Taking n as a multiple of N, the Mordell-Weil sieve gives us a way of proving that a given coset of $NJ(\mathbb{Q})$ does not meet $\iota(C)$.

Conjecture 2.
If $(\mathbb{Q} + NJ(\mathbb{Q})) \cap \iota(C) = \emptyset$, then there are $n \in NZ$ and S such that the Mordell-Weil sieve with these parameters proves this fact.

So if we can find an N that separates the rational points on C, i.e., such that the composition $C(\mathbb{Q}) \xrightarrow{l} J(\mathbb{Q}) \rightarrow J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective, then we can effectively determine $C(\mathbb{Q})$ if Conjecture 2 holds for C':

For each coset of $NJ(\mathbb{Q})$, we either find a point on C mapping into it, or we prove that there is no such point.
Chabauty’s Method

Chabauty’s method allows us to compute a separating N when the rank r of $J(\mathbb{Q})$ is less than the genus g of C.

Let p be a prime of good reduction for C. There is a pairing

$$\Omega^1_J(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p, \quad (\omega, R) \longmapsto \int_0^R \omega = \langle \omega, \log R \rangle.$$

Since rank $J(\mathbb{Q}) = r < g = \dim_{\mathbb{Q}_p} \Omega^1_J(\mathbb{Q}_p)$, there is a differential $0 \neq \omega_p \in \Omega_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p)$ that kills $J(\mathbb{Q}) \subset J(\mathbb{Q}_p)$.

Theorem.

If the reduction $\bar{\omega}_p$ does not vanish on $C(\mathbb{F}_p)$ and $p > 2$, then each residue class mod p contains at most one rational point.

This implies that $N = \#J(\mathbb{F}_p)$ is separating.
When $g = 2$ and $r = 1$, we can easily compute $\bar{\omega}_p$.

Heuristically (at least if J is simple), we expect to find many p satisfying the condition.

In practice, such p are easily found; the Mordell-Weil sieve computation then determines $C(\mathbb{Q})$ very quickly.

Example (Bruin-St).
For the 46 436 small genus 2 curves with rational points and $r = 1$, we determined $C(\mathbb{Q})$. The computation takes about 8–9 hours.
When \(r \geq g \), we can still use the Mordell-Weil Sieve to show that we know all rational points up to very large height.

For smaller height bounds, we can also use lattice point enumeration.

Example (Bruin-St).
Unless there are points of height \(> 10^{100} \), the largest point on a small genus 2 curve has height 209 040.

Note.
For these applications, we need to know generators of the full Mordell-Weil group. Therefore, this is currently restricted to genus 2.
Integral Points

If \(C \) is hyperelliptic, we can compute bounds for integral points using Baker's method.

These bounds are of a flavor like \(|x| < 10^{10^{600}} \).

If we know generators of \(J(\mathbb{Q}) \), we can use the Mordell-Weil Sieve to prove that there are no unknown rational points below that bound. This allows us to determine the set of integral points on \(C \).

Example (Bugeaud-Mignotte-Siksek-St-Tengely).
The integral solutions to
\[
\binom{y}{2} = \binom{x}{5}
\]
have \(x \in \{0, 1, 2, 3, 4, 5, 6, 7, 15, 19\} \).
Genus Larger Than 2

The main practical obstacle is the determination of \(J(\mathbb{Q}) \):

- **Descent** is only possible in special cases.
- There is no explicit theory of heights.

Example (Poonen-Schaefer-St).
In the course of solving \(x^2 + y^3 = z^7 \), one has to determine the set of rational points on certain **twists of the Klein Quartic**. Descent on \(J \) is possible here; Chabauty+MWS is successful.

Example (St).
The curve \(X^\text{dyn}_0(6) \) classifying 6-cycles under \(x \mapsto x^2 + c \) has genus 4. Assuming BSD for its Jacobian, we can show that \(r = 3 \); Chabauty's method then allows to **determine** \(X^\text{dyn}_0(6)(\mathbb{Q}) \).