

Selmer Group Chabauty

Michael Stoll Universität Bayreuth

Winter Workshop Chabauty-Kim Heidelberg

February 14, 2024

Classical (Linear) Chabauty

Setting:

- C: a (nice) curve of genus $g \ge 2$ over \mathbb{Q} , with Jacobian J
- $P_0 \in C(\mathbb{Q})$ (\rightsquigarrow get embedding $i: C \hookrightarrow J$ over \mathbb{Q})
- $Q_1, \ldots, Q_r \in J(\mathbb{Q})$ generators of a finite-index subgroup of $J(\mathbb{Q})$ need: r < g ("Chabauty condition")

Goal: Determine $C(\mathbb{Q})!$

Potential Problems

We need $\mathbf{r} = \operatorname{rank} J(\mathbb{Q})$ independent points $Q_1, \ldots, Q_r \in J(\mathbb{Q})$. In particular, we need to know $\operatorname{rank} J(\mathbb{Q})$.

Usual approach:

- - Can get painful even for p = 2 and moderate g.
- 2. Find $Q_1, \ldots, Q_r \in J(\mathbb{Q})$ such that $\langle Q_1, \ldots, Q_r \rangle + J(\mathbb{Q})_{tors} \longrightarrow Sel_p J$. **Problems:** rank bound not tight, large generators, high-dimensional search space.
 - The most serious stumbling block in many cases.

Example

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

 $C_p: 5y^2 = 4x^p + 1$

are the obvious ones (namely, ∞ and $(1,\pm 1)$), then the only primitive integral solutions of $x^5 + y^5 = z^p$ are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19and deal with p = 11 and p = 13 in another way, assuming GRH.)

Why the Usual Approach Does Not Work Here

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

The first step is to compute the 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

The Idea

Use the p-Selmer group as a proxy for the Mordell-Weil group $J(\mathbb{Q})!$

- Let $X \subset C(\mathbb{Q}_p)$ be a p-adic disk.
- If $C(\mathbb{Q}) \cap X = \emptyset$, we want to prove that.
- 2 If $P_0 \in C(\mathbb{Q}) \cap X$, we want to show that $C(\mathbb{Q}) \cap X = \{P_0\}$.

- $\pi_{pi}(X) \cap im(\sigma) = \emptyset$ implies that $C(\mathbb{Q}) \cap X = \emptyset$. Weaker condition $\pi_{pi}(X) \cap \sigma(\operatorname{Sel}_{p} C) = \emptyset$; $\operatorname{Sel}_{p} C$ is the p-Selmer set of C.
- **2** is more involved \rightsquigarrow next slide.

One Point in the Disk

We now assume that $P_0 \in C(\mathbb{Q}) \cap X$.

For simplicity, assume that $J(\mathbb{Q})[p] = \{0\}$. We also need:

• σ is injective $\rightsquigarrow r = \sigma \delta$ is injective $\rightsquigarrow J(\mathbb{Q}) \cap pJ(\mathbb{Q}_p) = pJ(\mathbb{Q})$

Consider $P \in C(\mathbb{Q}) \cap X$. We want to show that $P = P_0$.

• If $i(P) \in J(\mathbb{Q})$ is infinitely p-divisible, then $i(P) \in J(\mathbb{Q})_{tors} \rightsquigarrow P = P_0$.

So we can assume that $i(P) = p^n Q$ with $n \ge 0$ and $Q \in J(\mathbb{Q}) \setminus pJ(\mathbb{Q})$. (Note that n and Q are uniquely determined since $J(\mathbb{Q})[p] = \{0\}$.)

Definition. For $Z \subset J(\mathbb{Q}_p)$, set

$$\mathbf{q}(\mathbf{Z}) = \left\{ \pi_{\mathbf{p}}(\mathbf{R}) \mid \mathbf{R} \in J(\mathbb{Q}_{\mathbf{p}}), \exists \mathbf{n} \ge 0 \colon \mathbf{p}^{\mathbf{n}}\mathbf{R} \in \mathbf{Z} \right\} \subset \frac{J(\mathbb{Q}_{\mathbf{p}})}{\mathbf{p}J(\mathbb{Q}_{\mathbf{p}})}$$

Then $\pi_p(Q) \in q(\mathfrak{i}(X)) \setminus \{0\}$ and $\pi_p(Q) = \sigma \delta \pi(Q) \in \operatorname{im}(\sigma)$. So $q(\mathfrak{i}(X)) \cap \operatorname{im}(\sigma) \subset \{0\}$ implies that $C(\mathbb{Q}) \cap X = \{P_0\}$.

Remarks

- The function $P \mapsto q(\{i(P)\})$ is (explicitly) locally constant \rightsquigarrow we can compute q(i(X)).
- **2** There is a more general statement in terms of a subgroup $\Gamma \subset J(\mathbb{Q})$ that shows $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$ ($\overline{\Gamma}$ is the saturation of Γ) under potentially weaker assumptions.
- **3 Pro:** No need to find many independent points in $J(\mathbb{Q})$ or to determine rank $J(\mathbb{Q})$.
- **Pro:** Necessary conditions are likely satisfied when g is not very small.
- Con: Does not always work, even when Selmer rank < g.
 (E.g., when two rational points are p-adically sufficiently close.)

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when p = 2 and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly (in principle).
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu \colon J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}$, $\mu_2 \colon J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}$, $\rho \colon L^{\Box} \to L_2^{\Box}$, where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $\mathbb{R}^{\Box} = \mathbb{R}^{\times}/(\mathbb{R}^{\times})^2$.
- Can compute $\operatorname{Sel}_2 C$ and $\operatorname{Sel}_2 J$ as a subset and subgroup of L^{\Box} .
- So work with L^{\square} and L_2^{\square} instead of $J(\mathbb{Q})/2J(\mathbb{Q})$ and $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

The Algorithm

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(\rho) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap \rho(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap \rho(\text{Sel}_2 J) \not\subset R$ then return FAIL.
- 7. Return $C(\mathbb{Q})_{known}$.

Remark. Can leave out 2-adic condition for Sel₂ J.

Applications

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\Box}$ that $\rho(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $\rho|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem (via work of Dahmen and Siksek).

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) For C: $y^2 = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2$ we can show that $C(\mathbb{Q}) = \{\infty, (0, 1), (0, -1)\}.$
- (4) Elliptic curve Chabauty variant proves that the only rational points on $y^2 = 81x^{10} + 420x^9 + 1380x^8 + 1860x^7 + 3060x^6 - 66x^5 + 3240x^4 - 1740x^3 + 1320x^2 - 480x + 69$ are the two points at infinity. (Note: g = rank J(Q) = 4.)
- (5) Elliptic curve Selmer Chabauty was also used to determine the primitive integral solutions of the GFE $x^2 + y^3 = z^{11}$.

Reference

Michael Stoll, Chabauty without the Mordell-Weil group
In G. Böckle, W. Decker, G. Malle (Eds.):
Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory,
Springer Verlag (2018).
DOI: 10.1007/978-3-319-70566-8_28.
arXiv:1506.04286 [math.NT] Thank You!