Selmer Group Chabauty

Michael Stoll
Universität Bayreuth

Winter Workshop Chabauty-Kim

Heidelberg
February 14, 2024

Classical (Linear) Chabauty

Setting:

- C: a (nice) curve of genus $g \geq 2$ over \mathbb{Q}, with Jacobian J
- $P_{0} \in C(\mathbb{Q})(\rightsquigarrow$ get embedding $i: C \hookrightarrow J$ over $\mathbb{Q})$
- $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{r} \in \mathrm{~J}(\mathbb{Q})$ generators of a finite-index subgroup of $\mathrm{J}(\mathbb{Q})$ need: $\mathrm{r}<\mathrm{g}$ ("Chabauty condition")

Goal: Determine $C(\mathbb{Q})$!

- For $P \in C\left(\mathbb{Q}_{p}\right), e v_{\omega} \log i(P)=\int_{P_{0}}^{P} i^{*} \omega$.

Potential Problems

We need $r=\operatorname{rank} J(\mathbb{Q})$ independent points $Q_{1}, \ldots, Q_{r} \in J(\mathbb{Q})$.
In particular, we need to know $\operatorname{rank} J(\mathbb{Q})$.

Usual approach:

1. Compute a Selmer group Selp J.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate $g(G R H)$.

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{r}} \in \mathrm{J}(\mathbb{Q})$ such that $\left\langle\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{r}}\right\rangle+\mathrm{J}(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} \mathrm{~J}$.

Problems: rank bound not tight, large generators, high-dimensional search space.

- The most serious stumbling block in many cases.

Example

Say, we would like to solve the Generalized Fermat Equation

$$
x^{5}+y^{5}=z^{17}
$$

Proposition (Dahmen \& Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

$$
C_{p}: 5 y^{2}=4 x^{p}+1
$$

are the obvious ones (namely, ∞ and $(1, \pm 1)$),
then the only primitive integral solutions of $x^{5}+y^{5}=z^{p}$ are the trivial ones.
(Dahmen and Siksek show this for $p=7$ and $p=19$
and deal with $p=11$ and $p=13$ in another way, assuming GRH.)

Why the Usual Approach Does Not Work Here

So we would like to show that $\quad C_{17}(\mathbb{Q})=\{\infty,(1, \pm 1)\}$.

The first step is to compute the 2 -Selmer group $\quad \operatorname{Sel}_{2} \mathrm{~J}_{17} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since $J_{17}(\mathbb{Q})[2]=0$, this gives rank $J_{17}(\mathbb{Q}) \leq 2$.
We know the point $[(1,1)-\infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} \mathrm{J}_{17}(\mathbb{Q})=2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

The Idea

Use the p-Selmer group as a proxy for the Mordell-Weil group J(Q)!
Let $X \subset C\left(\mathbb{Q}_{p}\right)$ be a p-adic disk.
(1) If $C(\mathbb{Q}) \cap X=\emptyset$, we want to prove that.
(2) If $P_{0} \in C(\mathbb{Q}) \cap X$, we want to show that $C(\mathbb{Q}) \cap X=\left\{P_{0}\right\}$.

(1) $\pi_{\mathfrak{p}} i(X) \cap \operatorname{im}(\sigma)=\emptyset$ implies that $C(\mathbb{Q}) \cap X=\emptyset$.

Weaker condition $\pi_{p} i(X) \cap \sigma\left(\right.$ Sel $\left._{p} C\right)=\emptyset$; Sel $_{p} C$ is the p-Selmer set of C.
(2) is more involved \rightsquigarrow next slide.

One Point in the Disk

We now assume that $P_{0} \in C(\mathbb{Q}) \cap X$.
For simplicity, assume that $J(\mathbb{Q})[p]=\{0\}$. We also need:

- σ is injective $\rightsquigarrow r=\sigma \delta$ is injective $\rightsquigarrow J(\mathbb{Q}) \cap p J\left(\mathbb{Q}_{p}\right)=p J(\mathbb{Q})$

Consider $P \in C(\mathbb{Q}) \cap X$. We want to show that $P=P_{0}$.

- If $\mathfrak{i}(P) \in J(\mathbb{Q})$ is infinitely p-divisible, then $i(P) \in J(\mathbb{Q})_{\text {tors }} \rightsquigarrow P=P_{0}$.

So we can assume that $i(P)=p^{n} Q$ with $n \geq 0$ and $Q \in J(\mathbb{Q}) \backslash p J(\mathbb{Q})$.
(Note that n and Q are uniquely determined since $J(\mathbb{Q})[p]=\{0\}$.)
Definition. For $Z \subset J\left(\mathbb{Q}_{p}\right)$, set

$$
q(Z)=\left\{\pi_{p}(R) \mid R \in J\left(\mathbb{Q}_{p}\right), \exists \mathfrak{n} \geq 0: p^{n} R \in Z\right\} \subset \frac{J\left(\mathbb{Q}_{p}\right)}{p J\left(\mathbb{Q}_{p}\right)}
$$

Then $\pi_{\mathfrak{p}}(\mathrm{Q}) \in \mathrm{q}(\mathfrak{i}(\mathrm{X})) \backslash\{0\}$ and $\pi_{\mathrm{p}}(\mathrm{Q})=\sigma \delta \pi(\mathrm{Q}) \in \operatorname{im}(\sigma)$.
So $q(i(X)) \cap \operatorname{im}(\sigma) \subset\{0\}$ implies that $C(\mathbb{Q}) \cap X=\left\{P_{0}\right\}$.

Remarks

(1) The function $\mathrm{P} \mapsto \mathrm{q}(\{\mathfrak{i}(\mathrm{P})\})$ is (explicitly) locally constant
\rightsquigarrow we can compute $q(i(X))$.
(2) There is a more general statement in terms of a subgroup $\Gamma \subset J(\mathbb{Q})$ that shows $C(\mathbb{Q}) \cap X \subset i^{-1}(\bar{\Gamma})(\bar{\Gamma}$ is the saturation of Γ) under potententially weaker assumptions.
(3) Pro: No need to find many independent points in $J(\mathbb{Q})$ or to determine rank $J(\mathbb{Q})$.

4 Pro: Necessary conditions are likely satisfied when g is not very small.
5 Con: Does not always work, even when Selmer rank $<g$.
(E.g., when two rational points are p-adically sufficiently close.)

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J\left(\mathbb{Q}_{2}\right)$.

This can be done explicitly (in principle).

- If C is given as $y^{2}=f(x)$ and $L=\mathbb{Q}[x] /\langle f\rangle$, then have compatible maps
$\mu: J(\mathbb{Q}) \rightarrow \frac{J(\mathbb{Q})}{2 J(\mathbb{Q})} \hookrightarrow L^{\square}, \quad \mu_{2}: J\left(\mathbb{Q}_{2}\right) \rightarrow \frac{J\left(\mathbb{Q}_{2}\right)}{2 J\left(\mathbb{Q}_{2}\right)} \hookrightarrow L_{2}^{\square}, \quad \rho: L^{\square} \rightarrow L_{2}^{\square}$, where $L_{2}=L \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$ and $R^{\square}=R^{\times} /\left(R^{\times}\right)^{2}$.
- Can compute $\mathrm{Sel}_{2} \mathrm{C}$ and $\mathrm{Sel}_{2} \mathrm{~J}$ as a subset and subgroup of L^{\square}.
- So work with L^{\square} and L_{2}^{\square} instead of $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ and $J\left(\mathbb{Q}_{2}\right) / 2 J\left(\mathbb{Q}_{2}\right)$.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\rho) \cap \operatorname{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(\mathrm{X}) \cap \rho\left(\mathrm{Sel}_{2} \mathrm{C}\right) \neq \emptyset$ then return FAIL, else continue with next X.
b. Pick $P_{0} \in X \cap C(\mathbb{Q})_{\text {known }}$ and compute $Y=\mu_{2}\left(q\left(i_{P_{0}}(X)+J(\mathbb{Q})\left[2^{\infty}\right]\right)\right)$
c. If $\mathrm{Y} \cap \rho\left(\mathrm{Sel}_{2} \mathrm{~J}\right) \not \subset \mathrm{R}$ then return FAIL.
7. Return $\mathrm{C}(\mathbb{Q})_{\text {known }}$.

Remark. Can leave out 2-adic condition for $\mathrm{Sel}_{2} \mathrm{~J}$.

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $\rho\left(\operatorname{Sel}_{2} J_{p}\right)$ has to avoid; also check that $\left.\rho\right|_{\text {Sel }_{2} J_{p}}$ is injective. This gives
Theorem (via work of Dahmen and Siksek).
$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).
(2) Similar application to FLT (via $y^{2}=4 x^{p}+1$).
(3) For $C: y^{2}=x^{15}+\left(x^{7}+\left(x^{3}+(x+1)^{2}\right)^{2}\right)^{2}$ we can show that

$$
C(\mathbb{Q})=\{\infty,(0,1),(0,-1)\} .
$$

(4) Elliptic curve Chabauty variant proves that the only rational points on $y^{2}=81 x^{10}+420 x^{9}+1380 x^{8}+1860 x^{7}+3060 x^{6}-66 x^{5}+3240 x^{4}-1740 x^{3}+1320 x^{2}-480 x+69$ are the two points at infinity.
(Note: $\mathrm{g}=\operatorname{rank} \mathrm{J}(\mathbb{Q})=4$.)
(5) Elliptic curve Selmer Chabauty was also used to determine the primitive integral solutions of the GFE $x^{2}+y^{3}=z^{11}$.

Reference

Michael Stoll, Chabauty without the Mordell-Weil group In G. Böckle, W. Decker, G. Malle (Eds.):
Algorithmic and Experimental Methods in Algebra,
Geometry, and Number Theory, Springer Verlag (2018).
DOI: 10.1007/978-3-319-70566-8_28.
arXiv:1506.04286 [math.NT]

Thank You!

