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Classical (Linear) Chabauty

Setting:

• C: a (nice) curve of genus g ≥ 2 over Q, with Jacobian J

• P0 ∈ C(Q) (⇝ get embedding i : C ↪→ J over Q)
• Q1, . . . , Qr ∈ J(Q) generators of a finite-index subgroup of J(Q)

need: r < g (“Chabauty condition”)

Goal: Determine C(Q)!
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Potential Problems

We need r = rank J(Q) independent points Q1, . . . , Qr ∈ J(Q).
In particular, we need to know rank J(Q).

Usual approach:

1. Compute a Selmer group Selp J.
Global Part: Class groups and units of number fields
• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ;

worst case is ℓ = p.
• Can get painful even for p = 2 and moderate g.

2. Find Q1, . . . , Qr ∈ J(Q) such that ⟨Q1, . . . , Qr⟩+ J(Q)tors −→→ Selp J.
Problems: rank bound not tight, large generators,

high-dimensional search space.
• The most serious stumbling block in many cases.



Example

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),
then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)



Why the Usual Approach Does Not Work Here

So we would like to show that C17(Q) = {∞, (1,±1)}.

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,
so we cannot proceed with Chabauty’s method.



The Idea

Use the p-Selmer group as a proxy for the Mordell-Weil group J(Q)!

Let X ⊂ C(Qp) be a p-adic disk.

➊ If C(Q) ∩ X = ∅, we want to prove that.

➋ If P0 ∈ C(Q) ∩ X, we want to show that C(Q) ∩ X = {P0}.
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➊ πpi(X) ∩ im(σ) = ∅ implies that C(Q) ∩ X = ∅.
Weaker condition πpi(X) ∩ σ(SelpC) = ∅; SelpC is the p-Selmer set of C.

➋ is more involved ⇝ next slide.



One Point in the Disk

We now assume that P0 ∈ C(Q) ∩ X.

For simplicity, assume that J(Q)[p] = {0}. We also need:
• σ is injective ⇝ r = σδ is injective ⇝ J(Q) ∩ pJ(Qp) = pJ(Q)

Consider P ∈ C(Q) ∩ X. We want to show that P = P0.
• If i(P) ∈ J(Q) is infinitely p-divisible, then i(P) ∈ J(Q)tors ⇝ P = P0.

So we can assume that i(P) = pnQ with n ≥ 0 and Q ∈ J(Q) \ pJ(Q).
(Note that n and Q are uniquely determined since J(Q)[p] = {0}.)

Definition. For Z ⊂ J(Qp), set

q(Z) =
{
πp(R)

∣∣ R ∈ J(Qp), ∃n ≥ 0 : pnR ∈ Z
}
⊂
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Then πp(Q) ∈ q(i(X)) \ {0} and πp(Q) = σδπ(Q) ∈ im(σ).
So q(i(X)) ∩ im(σ) ⊂ {0} implies that C(Q) ∩ X = {P0}.



Remarks

➊ The function P 7→ q({i(P)}) is (explicitly) locally constant
⇝ we can compute q(i(X)).

➋ There is a more general statement in terms of a subgroup Γ ⊂ J(Q)

that shows C(Q) ∩ X ⊂ i−1(Γ̄) (Γ̄ is the saturation of Γ)
under potententially weaker assumptions.

➌ Pro: No need to find many independent points in J(Q)

or to determine rank J(Q).

➍ Pro: Necessary conditions are likely satisfied when g is not very small.

➎ Con: Does not always work, even when Selmer rank < g.
(E.g., when two rational points are p-adically sufficiently close.)



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm
when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly (in principle).

• If C is given as y2 = f(x) and L = Q[x]/⟨f⟩, then have compatible maps

µ : J(Q) → J(Q)

2J(Q)
↪→ L□, µ2 : J(Q2) → J(Q2)

2J(Q2)
↪→ L□2 , ρ : L□ → L□2 ,

where L2 = L⊗Q Q2 and R□ = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L□.

• So work with L□ and L□2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L□.

2. If ker(ρ) ∩ Sel2 J ̸⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L□2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ ρ(Sel2C) ̸= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ ρ(Sel2 J) ̸⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



Applications

(1) 5y2 = 4xp + 1:
Obtain a three-element set Z ⊂ Q2(

p
√
2)□ that ρ(Sel2 Jp) has to avoid;

also check that ρ|Sel2 Jp is injective. This gives

Theorem (via work of Dahmen and Siksek).
x5 + y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) For C : y2 = x15 + (x7 + (x3 + (x+ 1)2)2)2 we can show that

C(Q) = {∞, (0, 1), (0,−1)}.

(4) Elliptic curve Chabauty variant proves that the only rational points on
y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x+ 69

are the two points at infinity.
(Note: g = rank J(Q) = 4.)

(5) Elliptic curve Selmer Chabauty was also used to determine
the primitive integral solutions of the GFE x2 + y3 = z11 .
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