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Classical (Linear) Chabauty

Setting:

e (C: a (nice) curve of genus g > 2 over Q, with Jacobian |

o PyeC(Q) (~ get embedding i: C— ] over Q)

e Q1,...,Qr €J(Q) generators of a finite-index subgroup of J(Q)
need: r < g (““Chabauty condition’)

Goal: Determine C(Q)!

C(Q)——T(Q) 0

C(Qp)——J(Qp) —=H (], Q1) =50y

P

o For Pec C(Qp), evw logi(P) :J fw.
Po



Potential Problems

We need r =rankJ(Q) independent points Qq,...,Qr € J(Q).
In particular, we need to know rank J(Q).

Usual approach:

1. Compute a Selmer group Selp J.
Global Part: Class groups and units of number fields
e Usually OK for p =2, C hyperelliptic, moderate g (GRH).
Local Part: Computation of J(Qy)/pJ(Q,) for bad primes ¢;
worst case is { = p.
e Can get painful even for p =2 and moderate g.

2. Find Qq,...,Qr € J(Q) such that (Qq,...,Qy) +J(Q)tors —» Sely J.
Problems: rank bound not tight, large generators,

high-dimensional search space.
e T he most serious stumbling block in many cases.



Example

Say, we would like to solve the Generalized Fermat Equation
X +y5 =z,

Proposition (Dahmen & Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

Cp: 5y% = 4xP + 1

are the obvious ones (namely, co and (1,+1)),
then the only primitive integral solutions of x° + y° = zP
are the trivial ones.

(Dahmen and Siksek show this for p=7 and p =19
and deal with p =11 and p =13 in another way, assuming GRH.)



Why the Usual Approach Does Not Work Here
So we would like to show that  Cy7(Q) = {oo, (1,£1)}.

The first step is to compute the 2-Selmer group  Sel; J17 = (Z/27)?.
Since J17(Q)[2] =0, this gives  rank J;7(Q) < 2.

We know the point [(1,1) — oo] Of infinite order, so  rank J;7(Q) > 1,
and (assuming finiteness of Sha) therefore rank J;7(Q) = 2.

But we are unable to find another independent point,
SO we cannot proceed with Chabauty’'s method.



he Idea

Use the p-Selmer group as a proxy for the Mordell-Weil group J(Q)!

Let X C C(Qp) be a p-adic disk.

QO If CCQ NX=0, we want to prove that.
@O If Py c C(Q)NX, we want to show that C(Q) N X = {Py}.

7t ](@) c d >S€|p]

C(Q) N X—— C(Q)—1—](Q) I
j l [ J(%z ) /
C \ :L ﬂp A\ p
X (@) Q)"

O ,i(X)Nnim(o) =0 implies that C(Q) N X = 0.
Weaker condition m,i(X) N o(Sel, C) =0; Sel, C is the p-Selmer set of C.

® is more involved ~ next slide.



One Point in the Disk

We now assume that Py e C(Q) N X.
For simplicity, assume that J(Q)[p] ={0}. We also need:
e o isinjective ~ 1= 0% is injective ~ J(Q)NpJ(Qp) = pJ(Q)

Consider P € C(Q) N X. We want to show that P = P,.
o Ifi(P) € ]J(Q) is infinitely p-divisible, then i(P) € J(Q)tors ~» P = Py.

So we can assume that i(P) =p™"Q with n>0 and Q € J(Q) \ pJ(Q).
(Note that n and Q are uniquely determined since J(Q)[p] ={0}.)

Definition. For Z C J(Qp), set

q(Z2) = {mp(R) | Re J(Qp), In>0: p"R e Z} C

Then m,(Q) € q(i(X)) \ {0} and m,(Q) = od7(Q) € im(o).
So q(i(X))Nnim(o) C {0} implies that C(Q) N X = {Py}.



@ ©

Remarks

The function P — q({i(P)}) is (explicitly) locally constant
~» We can compute q(i(X)).

There is a more general statement in terms of a subgroup I' C J(Q)
that shows C(Q)NnX c i /(T (T is the saturation of I)
under potententially weaker assumptions.

Pro: No need to find many independent points in J(Q)
or to determine rank]J(Q).

Pro: Necessary conditions are likely satisfied when g is not very small.

Con: Does not always work, even when Selmer rank < g.
(E.g., when two rational points are p-adically sufficiently close.)



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm
when p =2 and C is a hyperelliptic curve of odd degree.

e ¢ is locally constant in an explicit way.

e TO compute q, need to halve points in J(Q,).
This can be done explicitly (in principle).

e If C is given as yz = f(x) and L = QI[x]/{f), then have compatible maps

IL: ](Q)%@%LD, Hzﬂ(@z)ﬁwgl—?' p:LD%Lg,

2J(Q) 2](Q;)
where [, =1L ®Q Q, and RH = RX/(RX)Z.
e Can compute Sel, C and Sel,] as a subset and subgroup of L".

e So work with L- and L5 instead of J(Q)/2](Q) and J(Q,)/2](Q,).



he Algorithm

. Compute Sel, C c Sel, ] c LY.

. If ker(p)nSely ] ¢ u(J(Q)[2%°]), then return FAIL.

. Search for rational points on C; this gives C(Q)known-
Let X be a partition of C(Q,) into (half) residue disks X.
. Set R=1,(J(Q)12*)) ¢ L5.

For each X € X, do:

if (X)) Np(Sel, C) # 0 then return FAIL, else continue with next X.

b. Pick Py € XN C(Q)known @and compute Y = p,(q(ip,(X) + J(Q)[2°°]))
c. If YNnp(Sel,]) Z R then return FAIL.

_Ch()‘l_-bool\)l—l

7. Return C(Q)known-

Remark. Can leave out 2-adic condition for Sel,]J.



Applications

(1) 5y% =4xP 4 1:
Obtain a three-element set Z C QZ(W)D that p(Sel; Jp) has to avoid;
also check that p|Se|zIp is injective. This gives

Theorem (via work of Dahmen and Siksek).
x> +y> = zP has only trivial solutions for p < 53 (under GRH for p > 23).

(2) Similar application to FLT (via y? = 4xP + 1).
(3) For C:y? =x"+ (x" + (x> + (x + 1)%)?)? we can show that
C(Q) — {OO> (O> ”) (O> —1 )}

(4) Elliptic curve Chabauty variant proves that the only rational points on
y? = 81x'10 +420x7 + 1380x3 + 1860x” + 3060x° — 66x° + 3240x* — 1740x3 4 1320x? — 480x + 69
are the two points at infinity.

(Note: g=rank J(Q) =4.)

(5) Elliptic curve Selmer Chabauty was also used to determine
the primitive integral solutions of the GFE x? +y3 =21 .
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