
Most odd degree hyperelliptic curves
have only one rational point

Michael Stoll
Universität Bayreuth

Arithmetic of abelian varieties in families
EPFL

November 12, 2012



Odd Degree Hyperelliptic Curves

We consider hyperelliptic curves of genus g of the form

C : y2 = f(x) = x2g+1 + c2x
2g−1 + c3x

2g−2 + . . .+ c2gx+ c2g+1

with c = (c2, c3, . . . , c2g+1) ∈ Fg = Z2g, ordered by height

H(c) = max
{
|c2|

1/2, |c3|
1/3, . . . , |c2g+1|

1/(2g+1)} .
Let Fg,X = {c ∈ Fg : H(c) < X}.

For a subset S ⊂ Fg, we define its lower and upper density by

λg(S) = lim inf
X→∞ #(S ∩ Fg,X)

#Fg,X
, υg(S) = lim sup

X→∞
#(S ∩ Fg,X)

#Fg,X
.

If λg(S) = υg(S), then the common value is the density δg(S) of S.



The Meaning of the Title

Each curve C has a rational point at infinity, denoted ∞.

Now the precise version of the statement in the title is as follows.

Theorem.

Let Cg be the subset of Fg consisting of curves C with C(Q) = {∞}. Then

lim
g→∞ λg(Cg) = 1 .

More precisely, λg(Cg) = 1−O
(
gd2−g

)
for some d.

This is joint work with Bjorn Poonen.



A First Idea

Let J denote the Jacobian of C and Sel(J) the 2-Selmer group of J.

We take ∞ as base-point to embed C into J.

Recall the connecting map δ : J(Q)→ Sel(J) from the Kummer sequence.

There is the following commuting diagram.

J(Q) δ //Sel(J)
r

((

C(Q)
+ �

99

� s

%%

J(Q2)/2J(Q2)

C(Q2) �
�

//

s 11

J(Q2)

66

If the images of r and s only meet in 0 (which is the image of ∞)

and r is injective, then C(Q) ⊂ C(Q2) ∩ 2J(Q).

This is not good enough.



A Better Idea

We look at the following ‘scale-and-reduce’ map.

σ : J(Q2) \ J(Q2)tors −→ J(Q2)
J(Q2)tors

\ {0}
∼=−→ Zg2 \ {0}

s&r−→ Fg2 \ {0}

where the last map s&r first scales to obtain a primitive element

and then reduces mod 2.

Lemma.

If the map σS : Sel(J) −→ J(Q2)
2J(Q2) + J(Q2)tors

∼= Fg2 is injective,

then

σ
(
J(Q) \ J(Q)tors

)
⊂ σS

(
Sel(J)

)
.

Proof. Write P ∈ J(Q) \ J(Q)tors as P = 2nP ′ with P ′ /∈ 2J(Q).

Then 0 6= δ(P ′) ∈ Sel(J), so σ(P) = σ(P ′) = σS(δ(P
′)).



A Criterion

Corollary.

Assume that σS is injective. If

σ
(
C(Q2) \ C(Q2)tors

)
∩ σS

(
Sel(J)

)
= ∅ ,

then C(Q) = C(Q)tors.

Proof. If P ∈ C(Q) \ C(Q)tors, then σ(P) is in both images.

It is known that the set of curves with C(Q)tors 6= {∞} has density zero.

So it suffices to show that the lower density of curves such that

σS is injective and the intersection above is empty tends to 1.

We first show that σ
(
C(Q2) \ C(Q2)tors

)
is usually small

and then invoke results of Bhargava and Gross.



The Logarithm

The 2-adic abelian logarithm on J is a homomorphism

log : J(Q2) −→ T0 J(Q2) ∼= Qg2
that induces the isomorphism

J(Q2)
J(Q2)tors

∼=−→ Zg2 .

We can therefore choose differentials ω1, . . . ,ωg ∈ Ω1C(Q2) ∼= Ω1J(Q2)
such that this isomorphism is given by

P 7−→ (∫P
0
ω1, . . . ,

∫P
0
ωg

)
.

For P ∈ C(Q2) \ C(Q2)tors we then have

σ(P) = s&r
(∫P
∞ω1, . . . ,

∫P
∞ωg

)
.



Logarithms on Residue Disks

Let C be a (not necessarily minimal) regular model over Z2 of C.

Then every smooth F2-point P̄ on the special fiber of C gives rise

to a parametrized residue disk in C(Q2).

On such a residue disk D, the integrals
∫P∞ωj are given

by power series `j(t) that converge for |t|2 < 1.

Let nj(D) be the order of vanishing of the reduction of ωj at P̄.

We can write such a power series in the form

`j(t) = pj(t)qj(t)

with a polynomial pj ∈ Q2[t] of degree at most 2nj(D) + 2

and a power series qj whose value for t ∈ 2Z2 is always a 2-adic unit.

So σ
(
D \ C(Q2)tors

)
=
{
s&r

(
p1(t), . . . , pg(t)

)
: t ∈ 2Z2, ∃j : pj(t) 6= 0

}
.



Values of s&r on Polynomials

We have to bound the size of{
s&r

(
p1(t), . . . , pg(t)

)
: t ∈ 2Z2, ∃j : pj(t) 6= 0

}
.

Dividing by the gcd of the polynomials,

we can assume that they never all vanish simultaneously.

We will show that

#
{
s&r

(
p1(t), . . . , pg(t)

)
: t ∈ 2Z2

}
≤ (2g− 1)

(
2

g∑
j=1

deg(pj) − 1
)
.

Note that for any given t ∈ 2Z2, the image is determined by the set

I(t) =
{
j ∈ {1, 2, . . . , g} : v2

(
pj(t)

)
= min

i
v2
(
pi(t)

)}
.



Disks in Q̄2

For a ∈ Z2 and n ≥ 0, define

B(a, n) = {ξ ∈ Q̄2 : v2(ξ− a) > n} .

Let α ∈ Q̄2. If α /∈ B(a, n), then v2(ξ− α) = v2(a− α) is constant on B(a, n).

Let R be the set of all roots of all the polynomials pj.

Lemma A.

There are at most 2#R− 1 ≤ 2
∑
j deg(pj) − 1 different sets B(a, n) ∩ R 6= ∅.

Proof. Allowing disks B(α, r) with α ∈ Q̄2 and r ∈ Q,

these sets correspond to the branching nodes and leaves of a tree

whose set of leaves is R.

(The tree can be seen inside the Berkovich projective line over C2.)



Values of s&r on Annuli

Lemma B.

Each set B ∩ R contributes at most 2g− 1 distinct values under s&r.

Proof.

Let S = B ∩ R and AS = {a ∈ 2Z2 : v2(a− ρ) is minimal exactly for ρ ∈ S}.
(This is some kind of 2-adic annulus.)

Then there is α ∈ Q̄2 such that v2
(
pj(t)

)
= mjv2(t− α) +m

′
j for t ∈ AS.

Given the linear functions lj : x 7→ mjx+ a
′
j on R,

there are at most 2g− 1 possibilities for {j : lj(x) = mini li(x)}.

Lemmas A and B imply the result:

#
{
s&r

(
p1(t), . . . , pg(t)

)
: t ∈ 2Z2

}
≤ (2g−1)(2#R−1) ≤ (2g−1)

(
2

g∑
j=1

deg(pj)−1
)
.



Bounding the Number of Residue Disks

Let ∆ be the discriminant and Rf the set of all roots of f.

Lemma C.

C(Q2) can be covered with at most 2v2(∆) + 17 residue disks.

Proof (Sketch).

The disks B(a, n) are the nodes of two infinite binary trees

(rooted at B(0, 0) and B(1, 0)).

The subset of disks B with #(B ∩ Rf) ≥ 2 is a union T of two finite subtrees

with less than v2(∆)/2 edges in total.

Z2 is partitioned into sets B ∩ Z2 where B /∈ T is a child of a node in T ;

the points in C(Q2) with x-coordinate in B fall into ≤ 4 residue disks.

The number of B’s is the number of edges plus 4; add a disk for ∞.



Bounding the Discriminant

Lemma D.

The density of the set of curves in Fg such that v2(∆) ≥ n
exists and is ≤ 2g 2−n/(2g).

Remark.

We think that it should actually be ≤ 2−n/2.
Does anybody know results in this direction?

Corollary.

For a set of curves in Fg of lower density ≥ 1− 2g 2−g,
we have #σ

(
C(Q2) \ C(Q2)tors

)
� g4.

Proof. There are � g2 residue disks with � g4 distinct values in total.

This uses
∑
Dnj(D) ≤ 2g− 2 for all j.



Bhargava-Gross

Manjul Bhargava and Dick Gross have recently proved the following.

Theorem.

The average of # Sel(J) exists in Fg and equals 3.

This is still true for subfamilies defined by congruence conditions.

If in such a subfamily J(Q2)/2J(Q2) = G is constant,

then each element of G has on average 2
#G nontrivial preimages in Sel(J).

This implies that on 2-adically small subsets of Fg,
an element of Fg2 \ {0} is in the image of σS with density ≤ 21−g

and that σS is not injective on a set of density ≤ 21−g.



Conclusion

Excluding a set of density ≤ 2g 2−g, we have

#σ
(
C(Q2) \ C(Q2)tors

)
� g4 .

Excluding a further set of density ≤ 2 · 2−g, we have that σS is injective.

Excluding a further set of density � g42−g,

we have that the image of σS misses σ
(
C(Q2) \ C(Q2)tors

)
.

Conclusion.

The set Cg of curves C in Fg with C(Q) = {∞}

has lower density 1−O(g42−g).



Small Genus

We can also use this approach to show that

Cg has positive lower density for all g ≥ 3.

For this, it is sufficient to exhibit one curve C0 ∈ Fg
such that #σ

(
C0(Q2) \ C0(Q2)tors

)
= 1.

This will remain true for curves C 2-adically sufficiently close to C0,

so on a subfamily of positive density.

Let σ
(
C0(Q2) \ C0(Q2)tors

)
= {w} ⊂ Fg2 \ {0}.

Apply Bhargava-Gross to this subfamily to obtain positive density of

σS injective and w /∈ σS
(
Sel(J)

)
.

(For g = 2 the equidistribution result of Bhargava-Gross

is not strong enough for this last step.)


