

Conjectural asymptotics for prime orders of points on elliptic curves over number fields

Michael Stoll Universität Bayreuth

joint with Maarten Derickx

Representation Theory XVIII / Number Theory Dubrovnik, June 19, 2023

Goal.

Fix $d \ge 1$. Determine the possible groups $E(K)_{tors}$ for elliptic curves E over a number field K of degree d!

Goal.

Fix $d \ge 1$. Determine the possible groups $E(K)_{tors}$ for elliptic curves E over a number field K of degree d!

The first step is to determine the prime divisors of #E(K).

Definition.

 $S(d) := \{p \text{ prime} \mid \exists \mathbb{Q} \subset K, [K : \mathbb{Q}] = d \exists E/K \text{ ell. curve } \exists P \in E(K) : \text{ord}(P) = p\}$

Goal.

Fix $d \ge 1$. Determine the possible groups $E(K)_{tors}$ for elliptic curves E over a number field K of degree d!

The first step is to determine the prime divisors of #E(K).

Definition.

 $S(d) := \{p \text{ prime} \mid \exists \mathbb{Q} \subset K, [K : \mathbb{Q}] = d \exists E/K \text{ ell. curve } \exists P \in E(K) : \text{ord}(P) = p\}$

Merel: S(d) is finite.

Definition.

 $S(d) := \{p \text{ prime} \mid \exists \mathbb{Q} \subset K, [K : \mathbb{Q}] = d \exists E/K \text{ ell. curve } \exists P \in E(K) : \text{ord}(P) = p\}$

Definition.

 $S(d) := \{p \text{ prime} \mid \exists \mathbb{Q} \subset K, [K : \mathbb{Q}] = d \exists E/K \text{ ell. curve } \exists P \in E(K) : \text{ord}(P) = p\}$

Problems.

1 Determine S(d) for small d!

Definition.

 $S(d) := \{p \text{ prime} \mid \exists \mathbb{Q} \subset K, [K : \mathbb{Q}] = d \exists E/K \text{ ell. curve } \exists P \in E(K) : \text{ord}(P) = p\}$

Problems.

• Determine S(d) for small d!

$$\begin{split} &S(1) = \{2,3,5,7\} \\ &S(2) = \{2,3,5,7,11,13\} \\ &S(3) = \{2,3,5,7,11,13\} \\ &S(4) = \{2,3,5,7,11,13,17\} \\ &S(5) = \{2,3,5,7,11,13,17,19\} \\ &S(6) = \{2,3,5,7,11,13,17,19, 37\} \\ &S(7) = \{2,3,5,7,11,13,17,19,23\} \\ &S(8) = \{2,3,5,7,11,13,17,19,23\} \end{split}$$

(Mazur) (Kamienny) (Parent) (DKSS) (DKSS) (DKSS) (DKSS) (DS, Khawaja)

- **1** Determine S(d) for small d!
- **2** Bound the elements of S(d) for large d!

- Determine S(d) for small d!
- **2** Bound the elements of S(d) for large d!

We will focus on **2** in this talk.

- Determine S(d) for small d!
- **2** Bound the elements of S(d) for large d!

We will focus on **2** in this talk.

The best general result in this direction is due to Oesterlé:

 $\max S(d) \le (3^{d/2} + 1)^2$.

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_1(p)(K)$ that is not a cusp.

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_1(p)(K)$ that is not a cusp.

Then $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ is a \mathbb{Q} -rational effective divisor of degree d on $X_1(p)$. Such divisors correspond to points on the dth symmetric power $X_1(p)^{(d)}$.

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_1(p)(K)$ that is not a cusp.

Then $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ is a \mathbb{Q} -rational effective divisor of degree d on $X_1(p)$. Such divisors correspond to points on the dth symmetric power $X_1(p)^{(d)}$.

So we obtain a rational point on $X_1(p)^{(d)}$ whose support does not contain a cusp.

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_1(p)(K)$ that is not a cusp.

Then $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ is a \mathbb{Q} -rational effective divisor of degree d on $X_1(p)$. Such divisors correspond to points on the <u>dth symmetric power</u> $X_1(p)^{(d)}$.

So we obtain a rational point on $X_1(p)^{(d)}$ whose support does not contain a cusp.

Conclusion.

If all rational points on $X_1(p)^{(d)}$ have cusps in their support, then $p \notin S(d)$.

Gonality (1)

Definition.

Let X be a (nice) curve over K. The K-gonality of X, $gon_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Gonality (1)

Definition.

Let X be a (nice) curve over K. The K-gonality of X, $gon_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Fact.

If D_1 and D_2 are linearly equivalent effective K-rational divisors on X with deg $D_1 = \text{deg } D_2 < \text{gon}_K(X)$, then $D_1 = D_2$.

Gonality (1)

Definition.

Let X be a (nice) curve over K. The K-gonality of X, $gon_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Fact.

If D_1 and D_2 are linearly equivalent effective K-rational divisors on X with deg $D_1 = \text{deg } D_2 < \text{gon}_K(X)$, then $D_1 = D_2$.

Fact (Abramovich; Kim-Sarnak).

$$gon_{\mathbb{Q}}(X_1(p)) \geq \frac{325}{2^{16}}(p^2 - 1) \qquad \text{ for prime } p$$

Gonality (2)

Fact. When $g(X_1(p)) \ge 2$,

 $\operatorname{gon}_{\mathbb{Q}}(X_1(p)) \leq g(X_1(p)) \leq \frac{p^2 - 1}{24}.$

Better (by a constant) asymptotic upper bounds are known.

Gonality (2)

Fact. When $g(X_1(p)) \ge 2$,

$$\text{gon}_{\mathbb{Q}}\big(X_1(p)\big) \leq g\big(X_1(p)\big) \leq \frac{p^2-1}{24}.$$

Better (by a constant) asymptotic upper bounds are known.

This implies that

$$\{p: p \text{ prime and } p \leq \sqrt{24d+1}\} \subset S(d)$$

and these prime orders occur in infinite families.

Gonality (2)

Fact. When $g(X_1(p)) \ge 2$,

$$\text{gon}_{\mathbb{Q}}\big(X_1(p)\big) \leq g\big(X_1(p)\big) \leq \frac{p^2 - 1}{24}$$

Better (by a constant) asymptotic upper bounds are known.

This implies that

```
\{p : p \text{ prime and } p \leq \sqrt{24d+1}\} \subset S(d)
```

and these prime orders occur in infinite families.

Since $gon_{\mathbb{Q}}(X_1(p)) \asymp p^2 - 1$, this gives the asymptotics for non-sporadic points up to a constant factor.

Fix a prime p and let $\ell \neq p$ be another prime. Let $X_{1,0}(p, \ell)$ denote the modular curve whose points classify triples (E, P, C) with P \in E a point of order p and C \subset E a subgroup of order ℓ .

Fix a prime p and let $\ell \neq p$ be another prime. Let $X_{1,0}(p, \ell)$ denote the modular curve whose points classify triples (E, P, C) with P \in E a point of order p and C \subset E a subgroup of order ℓ .

There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \to X_1(p)$ given by $\alpha: (E, P, C) \mapsto (E, P)$ and $\beta: (E, P, C) \mapsto (E/C, P + C)$.

Fix a prime p and let $l \neq p$ be another prime. Let $X_{1,0}(p, l)$ denote the modular curve whose points classify triples (E, P, C) with P \in E a point of order p and C \subset E a subgroup of order l.

There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \to X_1(p)$ given by $\alpha: (E, P, C) \mapsto (E, P)$ and $\beta: (E, P, C) \mapsto (E/C, P + C)$.

They induce the correspondence $T_{\ell} = \beta_* \circ \alpha^*$ on $X_1(p)$, which gives an endomorphism T_{ℓ} of the divisor group $\text{Div} X_1(p)$, which in turn induces $T_{\ell} \in \text{End} J_1(p)$.

Fix a prime p and let $l \neq p$ be another prime. Let $X_{1,0}(p, l)$ denote the modular curve whose points classify triples (E, P, C) with P \in E a point of order p and C \subset E a subgroup of order l.

There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \to X_1(p)$ given by $\alpha: (E, P, C) \mapsto (E, P)$ and $\beta: (E, P, C) \mapsto (E/C, P + C)$.

They induce the correspondence $T_{\ell} = \beta_* \circ \alpha^*$ on $X_1(p)$, which gives an endomorphism T_{ℓ} of the divisor group $\text{Div} X_1(p)$, which in turn induces $T_{\ell} \in \text{End} J_1(p)$.

On (non-cuspidal) points, it is given by

$$T_{\ell}(E, P) = \sum_{C \le E, \#C = \ell} (E/C, P + C).$$

Properties of the Hecke Correspondence

For each $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, we have the diamond operator $\langle a \rangle$ of $X_1(p)$ given by $\langle a \rangle \colon (E, P) \mapsto (E, aP)$; it is an automorphism of $X_1(p) \to X_0(p)$.

Properties of the Hecke Correspondence

For each $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, we have the diamond operator $\langle a \rangle$ of $X_1(p)$ given by $\langle a \rangle \colon (E, P) \mapsto (E, aP)$; it is an automorphism of $X_1(p) \to X_0(p)$.

Theorem. (D-S)

Let F be a monic polynomial whose coefficients are integral linear combinations of diamond operators. Then the kernel of $F(T_{\ell})$ on $Div X_1(p)$ ($\ell \neq p$ primes) consists of divisors supported in cusps.

Properties of the Hecke Correspondence

For each $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, we have the diamond operator $\langle a \rangle$ of $X_1(p)$ given by $\langle a \rangle \colon (E, P) \mapsto (E, aP)$; it is an automorphism of $X_1(p) \to X_0(p)$.

Theorem. (D-S)

Let F be a monic polynomial whose coefficients are integral linear combinations of diamond operators. Then the kernel of $F(T_{\ell})$ on $Div X_1(p)$ ($\ell \neq p$ primes) consists of divisors supported in cusps.

Proposition (Eichler-Shimura).

Let $l \neq p$ be an odd prime.

Then $T_{\ell} - \ell \langle \ell \rangle - 1 \in \text{End } J_1(p)$ kills $J_1(p)(\mathbb{Q})_{\text{tors}}$.

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†).

If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

Fix a rational cusp c on $X_1(p)$ and consider $[\mathbf{x} - \mathbf{d} \cdot \mathbf{c}] \in J_1(p)(\mathbb{Q})$.

 $(\langle \alpha \rangle - 1)([c]) \in J_1(p)(\mathbb{Q})_{tors}$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

$$(\langle a \rangle - 1)([c]) \in J_1(p)(\mathbb{Q})_{tors} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{tors}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

$$\begin{aligned} (\langle a \rangle - 1)([c]) \in J_1(p)(\mathbb{Q})_{tors} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{tors} \\ \implies (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \end{aligned}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

$$\begin{aligned} (\langle a \rangle - 1)([c]) &\in J_1(p)(\mathbb{Q})_{tors} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{tors} \\ &\implies (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \\ &\implies (T_3\langle a \rangle + 3\langle 3 \rangle + 1)x \sim (T_3 + 3\langle 3a \rangle + \langle a \rangle)x \end{aligned}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

$$\begin{split} (\langle a \rangle - 1)([c]) &\in J_1(p)(\mathbb{Q})_{tors} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{tors} \\ &\Longrightarrow (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \\ &\Longrightarrow (T_3\langle a \rangle + 3\langle 3 \rangle + 1)x \sim (T_3 + 3\langle 3a \rangle + \langle a \rangle)x \\ \stackrel{8d < \text{gon}}{\Longrightarrow} (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)(x) = 0 \end{split}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

$$\begin{split} (\langle a \rangle - 1)([c]) &\in J_1(p)(\mathbb{Q})_{\text{tors}} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{\text{tors}} \\ &\implies (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \\ &\implies (T_3\langle a \rangle + 3\langle 3 \rangle + 1)x \sim (T_3 + 3\langle 3a \rangle + \langle a \rangle)x \\ \stackrel{\text{8d} \leq \text{gon}}{\Longrightarrow} (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)(x) = 0 \\ &\implies \langle a \rangle x - x \in \text{ker} \big(T_3 - 3\langle 3 \rangle - 1 \mid \text{Div} X_1(p) \big) \end{split}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

Fix a rational cusp c on $X_1(p)$ and consider $[\mathbf{x} - \mathbf{d} \cdot \mathbf{c}] \in J_1(p)(\mathbb{Q})$.

$$\begin{split} (\langle a \rangle - 1)([c]) &\in J_1(p)(\mathbb{Q})_{tors} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{tors} \\ &\implies (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \\ &\implies (T_3\langle a \rangle + 3\langle 3 \rangle + 1)x \sim (T_3 + 3\langle 3a \rangle + \langle a \rangle)x \\ \stackrel{8d &\leq \text{gon}}{\Longrightarrow} (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)(x) = 0 \\ &\implies \langle a \rangle x - x \in \text{ker} \left(T_3 - 3\langle 3 \rangle - 1 \mid \text{Div} X_1(p) \right) \\ &\implies \langle a \rangle x - x \text{ supported in cusps} \Longrightarrow \text{claim.} \end{split}$$

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion (†). If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Proof.

Fix a rational cusp c on $X_1(p)$ and consider $[\mathbf{x} - \mathbf{d} \cdot \mathbf{c}] \in J_1(p)(\mathbb{Q})$.

$$\begin{split} (\langle a \rangle - 1)([c]) &\in J_1(p)(\mathbb{Q})_{\text{tors}} \stackrel{(\dagger)}{\Longrightarrow} (\langle a \rangle - 1)([x]) \in J_1(p)(\mathbb{Q})_{\text{tors}} \\ &\implies (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)([x]) = 0 \\ &\implies (T_3\langle a \rangle + 3\langle 3 \rangle + 1)x \sim (T_3 + 3\langle 3 a \rangle + \langle a \rangle)x \\ \stackrel{\text{8d} \leq \text{gon}}{\Longrightarrow} (T_3 - 3\langle 3 \rangle - 1)(\langle a \rangle - 1)(x) = 0 \\ &\implies \langle a \rangle x - x \in \text{ker} \left(T_3 - 3\langle 3 \rangle - 1 \mid \text{Div} X_1(p) \right) \\ &\implies \langle a \rangle x - x \text{ supported in cusps} \Longrightarrow \text{claim.} \end{split}$$

(In some cases, one can replace 8 by a smaller number.)

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$.

Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion.

If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Theorem. (D-S)

Let $p \ge 5$ be a prime, $d \ge 1$, and $x \in X_1(p)^{(d)}(\mathbb{Q})$. Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and assume that $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion. If $8d < gon_{\mathbb{Q}}(X_1(p))$, then x is a sum of cusps plus a divisor fixed by $\langle a \rangle$.

Corollary.

In the Theorem, assume x has no cusps in its support.

Theorem. (D-S)

```
Let p \ge 5 be a prime, d \ge 1, and x \in X_1(p)^{(d)}(\mathbb{Q}).
Let a \in (\mathbb{Z}/p\mathbb{Z})^{\times} and assume that (\langle a \rangle - 1)(J_1(p)(\mathbb{Q})) is torsion.
If 8d < gon_{\mathbb{Q}}(X_1(p)), then x is a sum of cusps plus a divisor fixed by \langle a \rangle.
```

Corollary.

In the Theorem, assume x has no cusps in its support.

If we can take a to generate $(\mathbb{Z}/p\mathbb{Z})^{\times}$,

then x is a sum of (set-theoretic) pull-backs of points on $X_0(p)$.

Theorem. (D-S)

```
Let p \ge 5 be a prime, d \ge 1, and x \in X_1(p)^{(d)}(\mathbb{Q}).
Let a \in (\mathbb{Z}/p\mathbb{Z})^{\times} and assume that (\langle a \rangle - 1)(J_1(p)(\mathbb{Q})) is torsion.
If 8d < gon_{\mathbb{Q}}(X_1(p)), then x is a sum of cusps plus a divisor fixed by \langle a \rangle.
```

Corollary.

Else:

In the Theorem, assume x has no cusps in its support.

If we can take a to generate $(\mathbb{Z}/p\mathbb{Z})^{\times}$,

then x is a sum of (set-theoretic) pull-backs of points on $X_0(p)$.

```
p \equiv 1 \mod 6 and j = 0: pull-backs have degree (p - 1)/6.
```

 $p \equiv 1 \mod 4$ and j = 1728: pull-backs have degree (p - 1)/4.

pull-backs have degree (p-1)/2.

Corollary.

In the Theorem, assume x has no cusps in its support. If we can take a to generate $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_0(p)$. $p \equiv 1 \mod 6$ and j = 0: pull-backs have degree (p - 1)/6. $p \equiv 1 \mod 4$ and j = 1728: pull-backs have degree (p - 1)/4. Else: pull-backs have degree (p - 1)/2.

Corollary.

In the Theorem, assume x has no cusps in its support. If we can take a to generate $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_0(p)$. $p \equiv 1 \mod 6$ and j = 0: pull-backs have degree (p - 1)/6. $p \equiv 1 \mod 4$ and j = 1728: pull-backs have degree (p - 1)/4. Else: pull-backs have degree (p - 1)/2.

Points on $X_0(p)$ with j = 0 or j = 1728 have degree ≥ 2 . $\Rightarrow p = 3d + 1$ for j = 0, p = 2d + 1 for j = 1728 (d even)

Corollary.

In the Theorem, assume x has no cusps in its support. If we can take a to generate $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_0(p)$. $p \equiv 1 \mod 6$ and j = 0: pull-backs have degree (p - 1)/6. $p \equiv 1 \mod 4$ and j = 1728: pull-backs have degree (p - 1)/4. Else: pull-backs have degree (p - 1)/2.

Points on $X_0(p)$ with j = 0 or j = 1728 have degree ≥ 2 . $\Rightarrow p = 3d + 1$ for j = 0, p = 2d + 1 for j = 1728 (d even)

 $8d < gon_{\mathbb{Q}}(X_1(p))$ holds when $p > \sqrt{\gamma d + 1}$ for some $\gamma > 0$. If d is large, then $p \in S(d)$ implies (under the assumption on a) that $p \le 2d + 1$, or else d is even and p = 3d + 1.

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_1(p) \sim J_0(p) \times A_1 \times \cdots \times A_n$ up to isogeny with simple abelian varieties A_1, \ldots, A_n over \mathbb{Q} . If a generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then $(\langle a \rangle - 1)(J_1(p)) \sim A_1 \times \cdots \times A_n$.

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_1(p) \sim J_0(p) \times A_1 \times \cdots \times A_n$ up to isogeny with simple abelian varieties A_1, \ldots, A_n over \mathbb{Q} . If a generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then $(\langle a \rangle - 1)(J_1(p)) \sim A_1 \times \cdots \times A_n$.

So p is strange iff $\operatorname{rk} A_j(\mathbb{Q}) > 0$ for some $1 \le j \le n$.

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_1(p) \sim J_0(p) \times A_1 \times \cdots \times A_n$ up to isogeny with simple abelian varieties A_1, \ldots, A_n over \mathbb{Q} . If a generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then $(\langle a \rangle - 1)(J_1(p)) \sim A_1 \times \cdots \times A_n$.

So p is strange iff $\operatorname{rk} A_j(\mathbb{Q}) > 0$ for some $1 \le j \le n$. By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_1(p)$ with nontrivial character χ such that L(f, 1) = 0.

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_1(p) \sim J_0(p) \times A_1 \times \cdots \times A_n$ up to isogeny with simple abelian varieties A_1, \ldots, A_n over \mathbb{Q} . If a generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then $(\langle a \rangle - 1)(J_1(p)) \sim A_1 \times \cdots \times A_n$.

So p is strange iff $\operatorname{rk} A_j(\mathbb{Q}) > 0$ for some $1 \le j \le n$. By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_1(p)$ with nontrivial character χ such that L(f, 1) = 0.

This can be checked by a computation with modular symbols.

We say that a prime p is strange if $(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ has positive rank for a generator a of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_1(p) \sim J_0(p) \times A_1 \times \cdots \times A_n$ up to isogeny with simple abelian varieties A_1, \ldots, A_n over \mathbb{Q} . If a generates $(\mathbb{Z}/p\mathbb{Z})^{\times}$, then $(\langle a \rangle - 1)(J_1(p)) \sim A_1 \times \cdots \times A_n$.

So p is strange iff $\operatorname{rk} A_j(\mathbb{Q}) > 0$ for some $1 \le j \le n$. By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_1(p)$ with nontrivial character χ such that L(f, 1) = 0.

This can be checked by a computation with modular symbols.

Define strdim(p) to be the number of such "strange newforms" of level p.

Strange Primes Below 10⁵

p	61	97	101	181	193	409	421	733	853	1021
$ord(\chi)$	6	12	10	6	12	12	6	6	6	30
strdim(p)	2	4	4	2	4	4	2	2	2	8
p	1777	1801	1861	2377	2917	3229	3793	4201	4733	5441
$ord(\chi)$	3	5	6	12	6	3	12	3	7	10
strdim(p)	2	4	6	4	2	2	4	2	6	4
p	5821	5953	6133	6781	7477	8681	8713	10093	11497	12941
$ord(\chi)$	6	3	6	6	14	10	4,12	6	3	10
strdim(p)	2	2	2	2	6	4	4+4	2	2	4
p	14533	15061	15289	17041	17053	17257	18199	20341	22093	23017
$ord(\chi)$	6	6	12	3	6	12	3	6	6	12
strdim(p)	2	4	4	2	2	4	4	2	2	4
p	23593	26161	26177	28201	29569	31033	31657	32497	35521	35537
$ord(\chi)$	12	3	4	3	2	3	3	3	3	4
strdim(p)	4	2	4	2	2	2	2	2	2	4
p	36373	39313	41081	41131	41593	42793	48733	52561	52691	53113
$ord(\chi)$	6	12	5	3	12	3	6	3	5	12
strdim(p)	2	4	4	2	4	2	2	2	4	4
p	53857	63313	63901	65171	65449	66973	68737	69061	69401	69457
$ord(\chi)$	12	12	6	5	12	6	12	6	5	4
strdim(p)	4	4	2	4	4	2	4	2	4	4
p	73009	86113	86161	96289						
$ord(\chi)$	12	12	4	12						
strdim(p)	4	4	4	4						

We can fix a bound s on strdim(p).

Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with $strdim(p) \le s$.

We can fix a bound s on strdim(p).

```
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with strdim(p) \le s.
```

Sketch of proof.

There is a monic polyomial F of degree strdim(p) and with bounded (in terms of strdim(p)) coefficients such that $F(T_2)(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion.

We can then run a similar argument as before.

We can fix a bound s on strdim(p).

```
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with strdim(p) \le s.
```

Sketch of proof.

There is a monic polyomial F of degree strdim(p) and with bounded (in terms of strdim(p)) coefficients such that $F(T_2)(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion.

We can then run a similar argument as before.

Conjecture.

strdim(p) is uniformly bounded (or at least grows very slowly).

We can fix a bound s on strdim(p).

```
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with strdim(p) \le s.
```

Sketch of proof.

There is a monic polyomial F of degree strdim(p) and with bounded (in terms of strdim(p)) coefficients such that $F(T_2)(\langle a \rangle - 1)(J_1(p)(\mathbb{Q}))$ is torsion.

We can then run a similar argument as before.

Conjecture.

strdim(p) is uniformly bounded (or at least grows very slowly).

This would imply $\max S(d) \le 3d + 1$ for all sufficiently large d.

A Refined Result

A similar conjecture on the "even rank part" of $J_0(p)$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_0(p)$ (p prime) such that $w_p(f) = -f$ and L(f, 1) = 0.

A Refined Result

A similar conjecture on the "even rank part" of $J_0(p)$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_0(p)$ (p prime) such that $w_p(f) = -f$ and L(f, 1) = 0.

Together, both conjectures imply:

There is C > 0 such that for d sufficiently large,

$$\begin{split} S(d) \subset & \left\{ p \leq \sqrt{Cd+1} \right\} \cup \begin{cases} \left\{ \frac{2d}{m} + 1 : m \mid d, m = h\left(- \left\{ \begin{array}{c} 1 \\ 0 \\ 4 \end{array} \right\} \left(\frac{2d}{m} + 1 \right) \right) \right\} & d \text{ odd }, \\ & \left\{ \frac{d}{m} + 1 : m \mid d \right\} \cup \left\{ 2d + 1, 3d + 1 \right\} & d \text{ even }. \end{split} \end{split}$$

A Refined Result

A similar conjecture on the "even rank part" of $J_0(p)$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_0(p)$ (p prime) such that $w_p(f) = -f$ and L(f, 1) = 0.

Together, both conjectures imply:

There is C > 0 such that for d sufficiently large,

$$\begin{split} S(d) \subset & \left\{ p \leq \sqrt{Cd+1} \right\} \cup \begin{cases} \left\{ \frac{2d}{m} + 1 : m \mid d, m = h\left(- \left\{ \begin{array}{c} 1 \\ 0 \\ 4 \end{array} \right\} \left(\frac{2d}{m} + 1 \right) \right) \right\} & d \text{ odd }, \\ & \left\{ \frac{d}{m} + 1 : m \mid d \right\} \cup \left\{ 2d + 1, 3d + 1 \right\} & d \text{ even }. \end{split}$$

In particular,

$$\limsup_{n \to \infty} \frac{\max S(2n)}{2n} = 3 \qquad \text{and} \qquad \limsup_{n \to \infty} \frac{\max S(2n+1)}{2n+1} = 0.$$

Thank You!