Conjectural asymptotics
for prime orders of points
on elliptic curves over number fields

Michael Stoll
Universität Bayreuth
joint with Maarten Derickx
Representation Theory XVIII / Number Theory
Dubrovnik, June 19, 2023

The Problem

Goal.

Fix d ≥ 1.
Determine the possible groups $E(K)_{\text {tors }}$ for elliptic curves E over a number field K of degree d!

The Problem

Goal.

Fix d ≥ 1.
Determine the possible groups $\mathrm{E}(\mathrm{K})_{\text {tors }}$ for elliptic curves E over a number field K of degree d!

The first step is to determine the prime divisors of $\# \mathrm{E}(\mathrm{K})$.
Definition.

$$
S(d):=\{p \text { prime } \mid \exists \mathbb{Q} \subset K,[K: \mathbb{Q}]=d \exists E / K \text { ell. curve } \exists P \in E(K): \operatorname{ord}(P)=p\}
$$

The Problem

Goal.

Fix d ≥ 1.
Determine the possible groups $\mathrm{E}(\mathrm{K})_{\text {tors }}$ for elliptic curves E over a number field K of degree d!

The first step is to determine the prime divisors of $\# \mathrm{E}(\mathrm{K})$.
Definition.

$$
S(d):=\{p \text { prime } \mid \exists \mathbb{Q} \subset K,[K: \mathbb{Q}]=d \exists E / K \text { ell. curve } \exists P \in E(K): \operatorname{ord}(P)=p\}
$$

Merel: $S(d)$ is finite.

The Problem

Definition.

$S(d):=\{p$ prime $\mid \exists \mathbb{Q} \subset K,[K: \mathbb{Q}]=d \exists E / K$ ell. curve $\exists P \in E(K): \operatorname{ord}(P)=p\}$

The Problem

Definition.

$S(d):=\{p$ prime $\mid \exists \mathbb{Q} \subset K,[K: \mathbb{Q}]=d \exists E / K$ ell. curve $\exists P \in E(K): \operatorname{ord}(P)=p\}$

Problems.

(1) Determine $S(d)$ for small d!

The Problem

Definition.

$S(d):=\{p$ prime $\mid \exists \mathbb{Q} \subset K,[K: \mathbb{Q}]=d \exists E / K$ ell. curve $\exists P \in E(K): \operatorname{ord}(P)=p\}$

Problems.

(1) Determine $S(d)$ for small d!

$$
\begin{array}{ll}
S(1)=\{2,3,5,7\} & \text { (Mazur) } \\
S(2)=\{2,3,5,7,11,13\} & \text { (Kamienny) } \\
S(3)=\{2,3,5,7,11,13\} & \text { (Parent) } \\
S(4)=\{2,3,5,7,11,13,17\} & \text { (DKSS) } \\
S(5)=\{2,3,5,7,11,13,17,19\} & \text { (DKSS) } \\
S(6)=\{2,3,5,7,11,13,17,19,37\} & \text { (DKSS) } \\
S(7)=\{2,3,5,7,11,13,17,19,23\} & \text { (DKSS) } \\
S(8)=\{2,3,5,7,11,13,17,19,23\} & \text { (DS, Khawaja) }
\end{array}
$$

The Problem

(1) Determine $S(d)$ for small d !
(2) Bound the elements of $S(d)$ for large d !

The Problem

(1) Determine $S(d)$ for small d!
(2) Bound the elements of $S(d)$ for large d !

We will focus on © in this talk.

The Problem

(1) Determine $S(d)$ for small d !
(2) Bound the elements of $S(d)$ for large d !

We will focus on © in this talk.
The best general result in this direction is due to Oesterlé:

$$
\max S(d) \leq\left(3^{d / 2}+1\right)^{2}
$$

Relation With Rational Points

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

Relation With Rational Points

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_{1}(p)(K)$ that is not a cusp.

Relation With Rational Points

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_{1}(p)(K)$ that is not a cusp.
Then $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ is a \mathbb{Q}-rational effective divisor of degree d on $X_{1}(p)$. Such divisors correspond to points on the dth symmetric power $X_{1}(\mathrm{p})^{(d)}$.

Relation With Rational Points

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_{1}(p)(K)$ that is not a cusp.
Then $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ is a \mathbb{Q}-rational effective divisor of degree d on $X_{1}(p)$. Such divisors correspond to points on the dth symmetric power $\mathrm{X}_{1}(\mathrm{p})^{(d)}$. So we obtain a rational point on $X_{1}(p)^{(d)}$ whose support does not contain a cusp.

Relation With Rational Points

If $p \in S(d)$, then there is a number field K of degree d, an elliptic curve E over K and a point $P \in E(K)$ of order p.

The pair (E, P) gives rise to a point $x \in X_{1}(p)(K)$ that is not a cusp.
Then $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ is a \mathbb{Q}-rational effective divisor of degree d on $X_{1}(p)$. Such divisors correspond to points on the dth symmetric power $\mathrm{X}_{1}(\mathrm{p})^{(d)}$. So we obtain a rational point on $X_{1}(p)^{(d)}$ whose support does not contain a cusp.

Conclusion.

If all rational points on $X_{1}(p)^{(d)}$ have cusps in their support, then $p \notin S(d)$.

Gonality (1)

Definition.

Let X be a (nice) curve over K.
The K-gonality of $X, \operatorname{gon}_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Gonality (1)

Definition.

Let X be a (nice) curve over K.
The K-gonality of $X, g o n_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Fact.

If D_{1} and D_{2} are linearly equivalent effective K-rational divisors on X with $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}<\operatorname{gon} \mathrm{K}_{\mathrm{K}}(\mathrm{X})$, then $\mathrm{D}_{1}=\mathrm{D}_{2}$.

Gonality (1)

Definition.

Let X be a (nice) curve over K.
The K-gonality of $X, g o n_{K}(X)$, is the minimal degree of a non-constant function $f \in K(X)$.

Fact.

If D_{1} and D_{2} are linearly equivalent effective K-rational divisors on X with $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}<\operatorname{gon} \mathrm{K}_{\mathrm{K}}(\mathrm{X})$, then $\mathrm{D}_{1}=\mathrm{D}_{2}$.

Fact (Abramovich; Kim-Sarnak).

$$
\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right) \geq \frac{325}{2^{16}}\left(p^{2}-1\right) \quad \text { for prime } p
$$

Gonality (2)

Fact.
When $g\left(X_{1}(p)\right) \geq 2$,

$$
\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right) \leq g\left(X_{1}(p)\right) \leq \frac{p^{2}-1}{24}
$$

Better (by a constant) asymptotic upper bounds are known.

Gonality (2)

Fact.
When $g\left(X_{1}(p)\right) \geq 2$,

$$
\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right) \leq g\left(X_{1}(p)\right) \leq \frac{p^{2}-1}{24}
$$

Better (by a constant) asymptotic upper bounds are known.

This implies that

$$
\{p: p \text { prime and } p \leq \sqrt{24 d+1}\} \subset S(d)
$$

and these prime orders occur in infinite families.

Gonality (2)

Fact.
When $g\left(X_{1}(p)\right) \geq 2$,

$$
\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right) \leq g\left(X_{1}(p)\right) \leq \frac{p^{2}-1}{24}
$$

Better (by a constant) asymptotic upper bounds are known.

This implies that

$$
\{p: p \text { prime and } p \leq \sqrt{24 d+1}\} \subset S(d)
$$

and these prime orders occur in infinite families.

Since $\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right) \asymp p^{2}-1$,
this gives the asymptotics for non-sporadic points up to a constant factor.

Hecke Correspondences

Fix a prime p and let $\ell \neq p$ be another prime.
Let $X_{1,0}(p, \ell)$ denote the modular curve
whose points classify triples (E, P, C)
with $P \in E$ point of order p and $C \subset E$ a subgroup of order ℓ.

Hecke Correspondences

Fix a prime p and let $\ell \neq p$ be another prime.
Let $X_{1,0}(p, \ell)$ denote the modular curve
whose points classify triples (E, P, C)
with $\mathrm{P} \in \mathrm{E}$ a point of order p and $\mathrm{C} \subset \mathrm{E}$ a subgroup of order ℓ.
There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \rightarrow X_{1}(p)$
given by $\alpha:(E, P, C) \mapsto(E, P)$ and $\beta:(E, P, C) \mapsto(E / C, P+C)$.

Hecke Correspondences

Fix a prime p and let $\ell \neq p$ be another prime.
Let $X_{1,0}(p, \ell)$ denote the modular curve
whose points classify triples (E, P, C) with $\mathrm{P} \in \mathrm{E}$ a point of order p and $\mathrm{C} \subset \mathrm{E}$ a subgroup of order ℓ.

There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \rightarrow X_{1}(p)$
given by $\alpha:(E, P, C) \mapsto(E, P)$ and $\beta:(E, P, C) \mapsto(E / C, P+C)$.
They induce the correspondence $T_{\ell}=\beta_{*} \circ \alpha^{*}$ on $X_{1}(\mathfrak{p})$,
which gives an endomorphism T_{ℓ} of the divisor group $\operatorname{Div} X_{1}(p)$, which in turn induces $T_{\ell} \in E n d J_{1}(p)$.

Hecke Correspondences

Fix a prime p and let $\ell \neq p$ be another prime.
Let $X_{1,0}(p, \ell)$ denote the modular curve
whose points classify triples (E, P, C)
with $\mathrm{P} \in \mathrm{E}$ a point of order p and $\mathrm{C} \subset \mathrm{E}$ a subgroup of order ℓ.
There are two degeneracy maps $\alpha, \beta: X_{1,0}(p, \ell) \rightarrow X_{1}(p)$
given by $\alpha:(E, P, C) \mapsto(E, P)$ and $\beta:(E, P, C) \mapsto(E / C, P+C)$.
They induce the correspondence $T_{\ell}=\beta_{*} \circ \alpha^{*}$ on $X_{1}(p)$,
which gives an endomorphism T_{ℓ} of the divisor group $\operatorname{Div} X_{1}(p)$, which in turn induces $T_{\ell} \in E n d J_{1}(p)$.

On (non-cuspidal) points, it is given by

$$
T_{\ell}(E, P)=\sum_{C \leq E, \# C=\ell}(E / C, P+C)
$$

Properties of the Hecke Correspondence

For each $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, we have the diamond operator $\langle a\rangle$ of $X_{1}(p)$ given by $\langle a\rangle:(E, P) \mapsto(E, a P)$; it is an automorphism of $X_{1}(p) \rightarrow X_{0}(p)$.

Properties of the Hecke Correspondence

For each $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, we have the diamond operator $\langle a\rangle$ of $X_{1}(p)$ given by $\langle a\rangle:(E, P) \mapsto(E, a P)$; it is an automorphism of $X_{1}(p) \rightarrow X_{0}(p)$.

Theorem. (D-S)
Let F be a monic polynomial whose coefficients are integral linear combinations of diamond operators. Then the kernel of $\mathrm{F}\left(\mathrm{T}_{\ell}\right)$ on $\operatorname{Div} \mathrm{X}_{1}(\mathfrak{p})(\ell \neq \mathrm{p}$ primes) consists of divisors supported in cusps.

Properties of the Hecke Correspondence

For each $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, we have the diamond operator $\langle a\rangle$ of $X_{1}(p)$ given by $\langle a\rangle:(E, P) \mapsto(E, a P)$; it is an automorphism of $X_{1}(p) \rightarrow X_{0}(p)$.

Theorem. (D-S)
Let F be a monic polynomial whose coefficients are integral linear combinations of diamond operators. Then the kernel of $F\left(T_{\ell}\right)$ on $\operatorname{Div} X_{1}(p)(\ell \neq p$ primes $)$ consists of divisors supported in cusps.

Proposition (Eichler-Shimura).
Let $\ell \neq p$ be an odd prime.
Then $\mathrm{T}_{\ell}-\ell\langle\ell\rangle-1 \in$ End $\mathrm{J}_{1}(\mathrm{p})$ kills $\mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }}$.

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
(\langle a\rangle-1)([c]) \in J_{1}(p)(\mathbb{Q})_{\text {tors }}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
(\langle\mathrm{a}\rangle-1)([\mathrm{c}]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} \stackrel{(\dagger)}{\Longrightarrow}(\langle\mathrm{a}\rangle-1)([\mathrm{x}]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
(\langle a\rangle-1)([c]) \in J_{1}(p)(\mathbb{Q})_{\text {tors }} & \stackrel{(\dagger)}{\Longrightarrow} \\
& (\langle a\rangle-1)([x]) \in J_{1}(p)(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0
\end{aligned}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
(\langle a\rangle-1)([c]) \in J_{1}(p)(\mathbb{Q})_{\text {tors }} & \stackrel{(\dagger)}{\Longrightarrow}(\langle a\rangle-1)([x]) \in J_{1}(p)(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0 \\
& \Longrightarrow\left(T_{3}\langle a\rangle+3\langle 3\rangle+1\right) x \sim\left(T_{3}+3\langle 3 a\rangle+\langle a\rangle\right) x
\end{aligned}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
(\langle a\rangle-1)([c]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} & \stackrel{(\dagger)}{\Longrightarrow}(\langle a\rangle-1)([x]) \in \mathrm{J}_{1}(p)(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0 \\
& \Longrightarrow\left(T_{3}\langle a\rangle+3\langle 3\rangle+1\right) x \sim\left(T_{3}+3\langle 3 a\rangle+\langle a\rangle\right) x \\
8 d & \Longleftrightarrow \text { gon }\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)(x)=0
\end{aligned}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
(\langle a\rangle-1)([\mathrm{c}]) \in \mathrm{J}_{1}(p)(\mathbb{Q})_{\text {tors }} & \stackrel{(\dagger)}{\Longrightarrow}(\langle a\rangle-1)([x]) \in \mathrm{J}_{1}(p)(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0 \\
& \Longrightarrow\left(T_{3}\langle a\rangle+3\langle 3\rangle+1\right) x \sim\left(T_{3}+3\langle 3 a\rangle+\langle a\rangle\right) x \\
8 \mathrm{~d} & \Longleftrightarrow \text { gon }\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)(x)=0 \\
& \Longrightarrow\langle a\rangle x-x \in \operatorname{ker}\left(T_{3}-3\langle 3\rangle-1 \mid \operatorname{Div}_{1}(p)\right)
\end{aligned}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
(\langle a\rangle-1)([\mathrm{c}]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} & \stackrel{(\dagger)}{ }(\langle a\rangle-1)([x]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0 \\
& \Longrightarrow\left(T_{3}\langle a\rangle+3\langle 3\rangle+1\right) x \sim\left(T_{3}+3\langle 3 a\rangle+\langle a\rangle\right) x \\
8 \mathrm{~d} & \Longleftrightarrow \text { gon }\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)(x)=0 \\
& \Longrightarrow\langle a\rangle x-x \in \operatorname{ker}\left(T_{3}-3\langle 3\rangle-1 \mid \operatorname{Div}_{1}(p)\right) \\
& \Longrightarrow\langle a\rangle x-x \text { supported in cusps } \Longrightarrow \text { claim. }
\end{aligned}
$$

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion (\dagger).
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Proof.

Fix a rational cusp c on $X_{1}(p)$ and consider $[x-d \cdot c] \in J_{1}(p)(\mathbb{Q})$.

$$
\begin{aligned}
& (\langle\mathrm{a}\rangle-1)([\mathrm{c}]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} \stackrel{(\dagger)}{\Longrightarrow}(\langle\mathrm{a}\rangle-1)([x]) \in \mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})_{\text {tors }} \\
& \Longrightarrow\left(T_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)([x])=0 \\
& \Longrightarrow\left(T_{3}\langle a\rangle+3\langle 3\rangle+1\right) x \sim\left(T_{3}+3\langle 3 a\rangle+\langle a\rangle\right) x \\
& \xrightarrow{8 \mathrm{~d} \text { gon }}\left(\mathrm{T}_{3}-3\langle 3\rangle-1\right)(\langle a\rangle-1)(x)=0 \\
& \Longrightarrow\langle a\rangle x-x \in \operatorname{ker}\left(T_{3}-3\langle 3\rangle-1 \mid \operatorname{Div} X_{1}(p)\right) \\
& \Longrightarrow\langle a\rangle x-x \text { supported in cusps } \Longrightarrow \text { claim. }
\end{aligned}
$$

(In some cases, one can replace 8 by a smaller number.)

A Global Criterion

Theorem. (D-S)

Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

A Global Criterion

Theorem. (D-S)
Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
If $8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.
Corollary.
In the Theorem, assume x has no cusps in its support.

A Global Criterion

Theorem. (D-S)
Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Corollary.

In the Theorem, assume x has no cusps in its support.
If we can take a to generate $(\mathbb{Z} / p \mathbb{Z})^{\times}$,
then x is a sum of (set-theoretic) pull-backs of points on $X_{0}(p)$.

A Global Criterion

Theorem. (D-S)
Let $p \geq 5$ be a prime, $d \geq 1$, and $x \in X_{1}(p)^{(d)}(\mathbb{Q})$.
Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and assume that $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
If $8 d<\operatorname{gon}_{\mathbb{Q}}\left(X_{1}(p)\right)$, then x is a sum of cusps plus a divisor fixed by $\langle a\rangle$.

Corollary.

In the Theorem, assume x has no cusps in its support.
If we can take a to generate $(\mathbb{Z} / p \mathbb{Z})^{\times}$,
then x is a sum of (set-theoretic) pull-backs of points on $X_{0}(p)$.
$p \equiv 1 \bmod 6$ and $j=0: \quad$ pull-backs have degree $(p-1) / 6$.
$p \equiv 1 \bmod 4$ and $j=1728: \quad$ pull-backs have degree $(p-1) / 4$.
Else:
pull-backs have degree $(p-1) / 2$.

A Global Criterion

Corollary.

In the Theorem, assume x has no cusps in its support.
If we can take a to generate $(\mathbb{Z} / \mathrm{p} \mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_{0}(p)$.
$p \equiv 1 \bmod 6$ and $j=0$: pull-backs have degree $(p-1) / 6$.
$p \equiv 1 \bmod 4$ and $j=1728$: pull-backs have degree $(p-1) / 4$.
Else:
pull-backs have degree $(p-1) / 2$.

A Global Criterion

Corollary.

In the Theorem, assume x has no cusps in its support.
If we can take a to generate $(\mathbb{Z} / \mathrm{p} \mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_{0}(p)$.
$p \equiv 1 \bmod 6$ and $j=0: \quad$ pull-backs have degree $(p-1) / 6$.
$p \equiv 1 \bmod 4$ and $j=1728: \quad$ pull-backs have degree $(p-1) / 4$.
Else:
pull-backs have degree $(p-1) / 2$.
Points on $X_{0}(p)$ with $j=0$ or $j=1728$ have degree ≥ 2.
$\rightsquigarrow p=3 d+1$ for $j=0, p=2 d+1$ for $j=1728$ (d even)

A Global Criterion

Corollary.

In the Theorem, assume x has no cusps in its support.
If we can take a to generate $(\mathbb{Z} / \mathrm{p} \mathbb{Z})^{\times}$, then x is a sum of (set-theoretic) pull-backs of points on $X_{0}(p)$.
$p \equiv 1 \bmod 6$ and $j=0: \quad$ pull-backs have degree $(p-1) / 6$.
$p \equiv 1 \bmod 4$ and $j=1728: \quad$ pull-backs have degree $(p-1) / 4$.
Else:
pull-backs have degree $(p-1) / 2$.

Points on $X_{0}(p)$ with $j=0$ or $j=1728$ have degree ≥ 2.
$\rightsquigarrow p=3 d+1$ for $j=0, p=2 d+1$ for $j=1728$ (d even)
$8 \mathrm{~d}<\operatorname{gon}_{\mathbb{Q}}\left(\mathrm{X}_{1}(\mathrm{p})\right)$ holds when $\mathrm{p}>\sqrt{\gamma \mathrm{d}+1}$ for some $\gamma>0$.
If d is large, then $p \in S(d)$ implies (under the assumption on a)
that $p \leq 2 d+1$, or else d is even and $p=3 d+1$.

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$
(i.e., the assumption on a does not hold.)

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_{1}(p) \sim J_{0}(p) \times A_{1} \times \cdots \times A_{n}$ up to isogeny with simple abelian varieties A_{1}, \ldots, A_{n} over \mathbb{Q}.
If a generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $(\langle a\rangle-1)\left(J_{1}(p)\right) \sim A_{1} \times \cdots \times A_{n}$.

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_{1}(p) \sim J_{0}(p) \times A_{1} \times \cdots \times A_{n}$ up to isogeny with simple abelian varieties A_{1}, \ldots, A_{n} over \mathbb{Q}. If a generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $(\langle a\rangle-1)\left(J_{1}(p)\right) \sim A_{1} \times \cdots \times A_{n}$.

So p is strange iff $r k A_{j}(\mathbb{Q})>0$ for some $1 \leq \mathfrak{j} \leq n$.

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_{1}(p) \sim J_{0}(p) \times A_{1} \times \cdots \times A_{n}$ up to isogeny with simple abelian varieties A_{1}, \ldots, A_{n} over \mathbb{Q}.
If a generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $(\langle a\rangle-1)\left(J_{1}(p)\right) \sim A_{1} \times \cdots \times A_{n}$.
So p is strange iff $r k A_{j}(\mathbb{Q})>0$ for some $1 \leq \mathfrak{j} \leq n$.
By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_{1}(p)$ with nontrivial character χ such that $L(f, 1)=0$.

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_{1}(p) \sim J_{0}(p) \times A_{1} \times \cdots \times A_{n}$ up to isogeny with simple abelian varieties A_{1}, \ldots, A_{n} over \mathbb{Q}.
If a generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $(\langle a\rangle-1)\left(J_{1}(p)\right) \sim A_{1} \times \cdots \times A_{n}$.
So p is strange iff $r k A_{j}(\mathbb{Q})>0$ for some $1 \leq \mathfrak{j} \leq n$.
By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_{1}(p)$ with nontrivial character χ such that $L(f, 1)=0$.
This can be checked by a computation with modular symbols.

Strange Primes

We say that a prime p is strange
if $(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ has positive rank for a generator a of $(\mathbb{Z} / p \mathbb{Z})^{\times}$ (i.e., the assumption on a does not hold.)

We can split $J_{1}(p) \sim J_{0}(p) \times A_{1} \times \cdots \times A_{n}$ up to isogeny with simple abelian varieties A_{1}, \ldots, A_{n} over \mathbb{Q}.
If a generates $(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $(\langle a\rangle-1)\left(J_{1}(p)\right) \sim A_{1} \times \cdots \times A_{n}$.
So p is strange iff $r k A_{j}(\mathbb{Q})>0$ for some $1 \leq \mathfrak{j} \leq n$.
By results of Kolyvagin-Logachëv and Kato, this implies that there is a newform f of weight 2 for $\Gamma_{1}(p)$ with nontrivial character χ such that $L(f, 1)=0$.
This can be checked by a computation with modular symbols.
Define strdim(p) to be the number of such "strange newforms" of level p.

Strange Primes Below 10^{5}

p	61	97	101	181	193	409	421	733	853	1021
$\operatorname{ord}(\mathrm{x})$	6	12	10	6	12	12	6	6	6	30
strdim(p)	2	4	4	2	4	4	2	2	2	8
p	1777	1801	1861	2377	2917	3229	3793	4201	4733	5441
$\operatorname{ord}(\chi)$	3	5	6	12	6	3	12	3	7	10
strdim(p)	2	4	6	4	2	2	4	2	6	4
p	5821	5953	6133	6781	7477	8681	8713	10093	11497	12941
$\operatorname{ord}(\chi)$	6	3	6	6	14	10	4,12	6	3	10
strdim(p)	2	2	2	2	6	4	$4+4$	2	2	4
p	14533	15061	15289	17041	17053	17257	18199	20341	22093	23017
$\operatorname{ord}(\chi)$	6	6	12	3	6	12	3	6	6	12
strdim(p)	2	4	4	2	2	4	4	2	2	4
p	23593	26161	26177	28201	29569	31033	31657	32497	35521	35537
$\operatorname{ord}(\chi)$	12	3	4	3	2	3	3	3	3	4
strdim(p)	4	2	4	2	2	2	2	2	2	4
p	36373	39313	41081	41131	41593	42793	48733	52561	52691	53113
$\operatorname{ord}(\chi)$	6	12	5	3	12	3	6	3	5	12
strdim (p)	2	4	4	2	4	2	2	2	4	4
p	53857	63313	63901	65171	65449	66973	68737	69061	69401	69457
$\operatorname{ord}(\chi)$	12	12	6	5	12	6	12	6	5	4
strdim(p)	4	4	2	4	4	2	4	2	4	4
p	73009	86113	86161	96289						
$\operatorname{ord}(\chi)$	12	12	4	12						
strdim(p)	4	4	4	4						

A More General Statement

We can fix a bound s on strdim(p).
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with $\operatorname{strdim}(p) \leq s$.

A More General Statement

We can fix a bound s on strdim(p).
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with $\operatorname{strdim}(p) \leq s$.

Sketch of proof.

There is a monic polyomial F of degree $\operatorname{strdim}(p)$ and with bounded (in terms of strdim(p)) coefficients such that $\mathrm{F}\left(\mathrm{T}_{2}\right)(\langle\mathrm{a}\rangle-1)\left(\mathrm{J}_{1}(\mathrm{p})(\mathbb{Q})\right)$ is torsion.
We can then run a similar argument as before.

A More General Statement

We can fix a bound s on strdim(p).
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with $\operatorname{strdim}(p) \leq s$.

Sketch of proof.

There is a monic polyomial F of degree $\operatorname{strdim}(p)$
and with bounded (in terms of strdim(p)) coefficients such that $F\left(T_{2}\right)(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
We can then run a similar argument as before.

Conjecture.

strdim (p) is uniformly bounded (or at least grows very slowly).

A More General Statement

We can fix a bound s on strdim(p).
Then our conclusions remain valid for sufficiently large d (depending on s) and all primes p with $\operatorname{strdim}(p) \leq s$.

Sketch of proof.

There is a monic polyomial F of degree $\operatorname{strdim}(p)$
and with bounded (in terms of strdim(p)) coefficients such that $F\left(T_{2}\right)(\langle a\rangle-1)\left(J_{1}(p)(\mathbb{Q})\right)$ is torsion.
We can then run a similar argument as before.

Conjecture.

strdim(p) is uniformly bounded (or at least grows very slowly).
This would imply $\max S(d) \leq 3 d+1$ for all sufficiently large d.

A Refined Result

A similar conjecture on the "even rank part" of $\mathrm{J}_{0}(\mathrm{p})$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_{0}(p)$ (p prime) such that $w_{p}(f)=-f$ and $L(f, 1)=0$.

A Refined Result

A similar conjecture on the "even rank part" of $\mathrm{J}_{0}(\mathrm{p})$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_{0}(p)$ (p prime) such that $w_{p}(f)=-f$ and $L(f, 1)=0$.

Together, both conjectures imply:
There is $C>0$ such that for d sufficiently Iarge,

$$
S(d) \subset\{p \leq \sqrt{C d+1}\} \cup \begin{cases}\left\{\frac{2 d}{m}+1: m \mid d, m=h\left(-\left\{\begin{array}{c}
1 \\
0 r \\
4
\end{array}\right\}\left(\frac{2 d}{m}+1\right)\right)\right\} & d \text { odd }, \\
\left\{\frac{d}{m}+1: m \mid d\right\} \cup\{2 d+1,3 d+1\} & d \text { even. } .\end{cases}
$$

A Refined Result

A similar conjecture on the "even rank part" of $\mathrm{J}_{0}(p)$:

Conjecture.

There is a uniform (or sufficiently slowly growing) bound for the number of newforms f of weight 2 for $\Gamma_{0}(p)$ (p prime) such that $w_{p}(f)=-f$ and $L(f, 1)=0$.

Together, both conjectures imply:
There is $C>0$ such that for d sufficiently large,

$$
S(d) \subset\{p \leq \sqrt{C d+1}\} \cup \begin{cases}\left\{\frac{2 d}{m}+1: m \mid d, m=h\left(-\left\{\begin{array}{c}
1 \\
0 r \\
4
\end{array}\right\}\left(\frac{2 d}{m}+1\right)\right)\right\} & d \text { odd } \\
\left\{\frac{d}{m}+1: m \mid d\right\} \cup\{2 d+1,3 d+1\} & d \text { even. } .\end{cases}
$$

In particular,

$$
\limsup _{n \rightarrow \infty} \frac{\max S(2 n)}{2 n}=3 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{\max S(2 n+1)}{2 n+1}=0
$$

Thank You!

