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The Problem

Goal.

Fix d ≥ 1.
Determine the possible groups E(K)tors
for elliptic curves E over a number field K of degree d!

The first step is to determine the prime divisors of #E(K).

Definition.

S(d) := {p prime | ∃Q ⊂ K, [K : Q] = d ∃E/K ell. curve ∃P ∈ E(K) : ord(P) = p}

Merel: S(d) is finite.
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The Problem

Definition.

S(d) := {p prime | ∃Q ⊂ K, [K : Q] = d ∃E/K ell. curve ∃P ∈ E(K) : ord(P) = p}

Problems.

➊ Determine S(d) for small d!

S(1) = {2, 3, 5, 7} (Mazur)
S(2) = {2, 3, 5, 7, 11, 13} (Kamienny)
S(3) = {2, 3, 5, 7, 11, 13} (Parent)
S(4) = {2, 3, 5, 7, 11, 13, 17} (DKSS)
S(5) = {2, 3, 5, 7, 11, 13, 17, 19} (DKSS)
S(6) = {2, 3, 5, 7, 11, 13, 17, 19, 37} (DKSS)
S(7) = {2, 3, 5, 7, 11, 13, 17, 19, 23} (DKSS)
S(8) = {2, 3, 5, 7, 11, 13, 17, 19, 23} (DS, Khawaja)
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The Problem

➊ Determine S(d) for small d!
➋ Bound the elements of S(d) for large d!

We will focus on ➋ in this talk.

The best general result in this direction is due to Oesterlé:

maxS(d) ≤ (3d/2 + 1)2 .
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Relation With Rational Points

If p ∈ S(d), then there is a number field K of degree d,
an elliptic curve E over K and a point P ∈ E(K) of order p.

The pair (E, P) gives rise to a point x ∈ X1(p)(K) that is not a cusp.

Then TrK/Q(x) is a Q-rational effective divisor of degree d on X1(p).

Such divisors correspond to points on the dth symmetric power X1(p)
(d).

So we obtain a rational point on X1(p)
(d)

whose support does not contain a cusp.

Conclusion.
If all rational points on X1(p)

(d) have cusps in their support,
then p /∈ S(d).
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Gonality (1)

Definition.
Let X be a (nice) curve over K.
The K-gonality of X, gonK(X), is the minimal degree
of a non-constant function f ∈ K(X).

Fact.
If D1 and D2 are linearly equivalent effective K-rational divisors on X

with degD1 = degD2 < gonK(X), then D1 = D2.

Fact (Abramovich; Kim-Sarnak).

gonQ
(
X1(p)

)
≥ 325

216
(p2 − 1) for prime p.
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Gonality (2)

Fact.
When g

(
X1(p)

)
≥ 2,

gonQ
(
X1(p)

)
≤ g

(
X1(p)

)
≤ p2 − 1

24
.

Better (by a constant) asymptotic upper bounds are known.

This implies that

{p : p prime and p ≤
√
24d+ 1} ⊂ S(d)

and these prime orders occur in infinite families.

Since gonQ
(
X1(p)

)
≍ p2 − 1,

this gives the asymptotics for non-sporadic points
up to a constant factor.
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Hecke Correspondences

Fix a prime p and let ℓ ̸= p be another prime.
Let X1,0(p, ℓ) denote the modular curve
whose points classify triples (E, P, C)

with P ∈ E a point of order p and C ⊂ E a subgroup of order ℓ.

There are two degeneracy maps α,β : X1,0(p, ℓ) → X1(p)

given by α : (E, P, C) 7→ (E, P) and β : (E, P, C) 7→ (E/C, P + C).

They induce the correspondence Tℓ = β∗ ◦ α∗ on X1(p),
which gives an endomorphism Tℓ of the divisor group DivX1(p),
which in turn induces Tℓ ∈ End J1(p).

On (non-cuspidal) points, it is given by

Tℓ(E, P) =
∑

C≤E,#C=ℓ

(E/C, P + C) .
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Properties of the Hecke Correspondence

For each a ∈ (Z/pZ)×, we have the diamond operator ⟨a⟩ of X1(p)

given by ⟨a⟩ : (E, P) 7→ (E, aP); it is an automorphism of X1(p) → X0(p).

Theorem. (D-S)

Let F be a monic polynomial whose coefficients are
integral linear combinations of diamond operators.
Then the kernel of F(Tℓ) on DivX1(p) (ℓ ̸= p primes)
consists of divisors supported in cusps.

Proposition (Eichler-Shimura).

Let ℓ ̸= p be an odd prime.
Then Tℓ − ℓ⟨ℓ⟩− 1 ∈ End J1(p) kills J1(p)(Q)tors.
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A Global Criterion

Theorem. (D-S)

Let p ≥ 5 be a prime, d ≥ 1, and x ∈ X1(p)
(d)(Q).

Let a ∈ (Z/pZ)× and assume that (⟨a⟩− 1)
(
J1(p)(Q)

)
is torsion (†).

If 8d < gonQ(X1(p)), then x is a sum of cusps plus a divisor fixed by ⟨a⟩.

Proof.
Fix a rational cusp c on X1(p) and consider [x− d · c] ∈ J1(p)(Q).

(⟨a⟩− 1)([c]) ∈ J1(p)(Q)tors
(†)
=⇒ (⟨a⟩− 1)([x]) ∈ J1(p)(Q)tors

=⇒ (T3 − 3⟨3⟩− 1)(⟨a⟩− 1)([x]) = 0

=⇒ (T3⟨a⟩+ 3⟨3⟩+ 1)x ∼ (T3 + 3⟨3a⟩+ ⟨a⟩)x
8d < gon

=⇒ (T3 − 3⟨3⟩− 1)(⟨a⟩− 1)(x) = 0

=⇒ ⟨a⟩x− x ∈ ker
(
T3 − 3⟨3⟩− 1 | DivX1(p)

)
=⇒ ⟨a⟩x− x supported in cusps =⇒ claim.

(In some cases, one can replace 8 by a smaller number.)
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If we can take a to generate (Z/pZ)×,
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p ≡ 1 mod 6 and j = 0: pull-backs have degree (p− 1)/6.
p ≡ 1 mod 4 and j = 1728: pull-backs have degree (p− 1)/4.
Else: pull-backs have degree (p− 1)/2.



A Global Criterion

Theorem. (D-S)

Let p ≥ 5 be a prime, d ≥ 1, and x ∈ X1(p)
(d)(Q).

Let a ∈ (Z/pZ)× and assume that (⟨a⟩− 1)
(
J1(p)(Q)

)
is torsion.

If 8d < gonQ(X1(p)), then x is a sum of cusps plus a divisor fixed by ⟨a⟩.

Corollary.
In the Theorem, assume x has no cusps in its support.
If we can take a to generate (Z/pZ)×,
then x is a sum of (set-theoretic) pull-backs of points on X0(p).

p ≡ 1 mod 6 and j = 0: pull-backs have degree (p− 1)/6.
p ≡ 1 mod 4 and j = 1728: pull-backs have degree (p− 1)/4.
Else: pull-backs have degree (p− 1)/2.



A Global Criterion

Theorem. (D-S)

Let p ≥ 5 be a prime, d ≥ 1, and x ∈ X1(p)
(d)(Q).

Let a ∈ (Z/pZ)× and assume that (⟨a⟩− 1)
(
J1(p)(Q)

)
is torsion.

If 8d < gonQ(X1(p)), then x is a sum of cusps plus a divisor fixed by ⟨a⟩.

Corollary.
In the Theorem, assume x has no cusps in its support.
If we can take a to generate (Z/pZ)×,
then x is a sum of (set-theoretic) pull-backs of points on X0(p).

p ≡ 1 mod 6 and j = 0: pull-backs have degree (p− 1)/6.
p ≡ 1 mod 4 and j = 1728: pull-backs have degree (p− 1)/4.
Else: pull-backs have degree (p− 1)/2.



A Global Criterion

Theorem. (D-S)

Let p ≥ 5 be a prime, d ≥ 1, and x ∈ X1(p)
(d)(Q).

Let a ∈ (Z/pZ)× and assume that (⟨a⟩− 1)
(
J1(p)(Q)

)
is torsion.

If 8d < gonQ(X1(p)), then x is a sum of cusps plus a divisor fixed by ⟨a⟩.

Corollary.
In the Theorem, assume x has no cusps in its support.
If we can take a to generate (Z/pZ)×,
then x is a sum of (set-theoretic) pull-backs of points on X0(p).

p ≡ 1 mod 6 and j = 0: pull-backs have degree (p− 1)/6.
p ≡ 1 mod 4 and j = 1728: pull-backs have degree (p− 1)/4.
Else: pull-backs have degree (p− 1)/2.



A Global Criterion

Corollary.
In the Theorem, assume x has no cusps in its support.
If we can take a to generate (Z/pZ)×,
then x is a sum of (set-theoretic) pull-backs of points on X0(p).

p ≡ 1 mod 6 and j = 0: pull-backs have degree (p− 1)/6.
p ≡ 1 mod 4 and j = 1728: pull-backs have degree (p− 1)/4.
Else: pull-backs have degree (p− 1)/2.

Points on X0(p) with j = 0 or j = 1728 have degree ≥ 2.
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8d < gonQ(X1(p)) holds when p >
√
γd+ 1 for some γ > 0.

If d is large, then p ∈ S(d) implies (under the assumption on a)
that p ≤ 2d+ 1, or else d is even and p = 3d+ 1.
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Strange Primes

We say that a prime p is strange
if (⟨a⟩− 1)(J1(p)(Q)) has positive rank for a generator a of (Z/pZ)×

(i.e., the assumption on a does not hold.)

We can split J1(p) ∼ J0(p)×A1 × · · · ×An up to isogeny
with simple abelian varieties A1, . . . , An over Q.
If a generates (Z/pZ)×, then (⟨a⟩− 1)(J1(p)) ∼ A1 × · · · ×An.

So p is strange iff rkAj(Q) > 0 for some 1 ≤ j ≤ n.
By results of Kolyvagin-Logachëv and Kato, this implies that
there is a newform f of weight 2 for Γ1(p) with nontrivial character χ

such that L(f, 1) = 0.
This can be checked by a computation with modular symbols.

Define strdim(p) to be the number of such “strange newforms” of level p.
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Strange Primes Below 105

p 61 97 101 181 193 409 421 733 853 1021

ord(χ) 6 12 10 6 12 12 6 6 6 30

strdim(p) 2 4 4 2 4 4 2 2 2 8

p 1777 1801 1861 2377 2917 3229 3793 4201 4733 5441

ord(χ) 3 5 6 12 6 3 12 3 7 10

strdim(p) 2 4 6 4 2 2 4 2 6 4

p 5821 5953 6133 6781 7477 8681 8713 10093 11497 12941

ord(χ) 6 3 6 6 14 10 4, 12 6 3 10

strdim(p) 2 2 2 2 6 4 4+ 4 2 2 4

p 14533 15061 15289 17041 17053 17257 18199 20341 22093 23017

ord(χ) 6 6 12 3 6 12 3 6 6 12

strdim(p) 2 4 4 2 2 4 4 2 2 4

p 23593 26161 26177 28201 29569 31033 31657 32497 35521 35537

ord(χ) 12 3 4 3 2 3 3 3 3 4

strdim(p) 4 2 4 2 2 2 2 2 2 4

p 36373 39313 41081 41131 41593 42793 48733 52561 52691 53113

ord(χ) 6 12 5 3 12 3 6 3 5 12

strdim(p) 2 4 4 2 4 2 2 2 4 4

p 53857 63313 63901 65171 65449 66973 68737 69061 69401 69457

ord(χ) 12 12 6 5 12 6 12 6 5 4

strdim(p) 4 4 2 4 4 2 4 2 4 4

p 73009 86113 86161 96289

ord(χ) 12 12 4 12

strdim(p) 4 4 4 4



A More General Statement

We can fix a bound s on strdim(p).
Then our conclusions remain valid for sufficiently large d (depending on s)
and all primes p with strdim(p) ≤ s.

Sketch of proof.
There is a monic polyomial F of degree strdim(p)
and with bounded (in terms of strdim(p)) coefficients
such that F(T2)(⟨a⟩− 1)(J1(p)(Q)) is torsion.

We can then run a similar argument as before.

Conjecture.
strdim(p) is uniformly bounded (or at least grows very slowly).

This would imply maxS(d) ≤ 3d+ 1 for all sufficiently large d.
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A Refined Result

A similar conjecture on the “even rank part” of J0(p):

Conjecture.
There is a uniform (or sufficiently slowly growing) bound
for the number of newforms f of weight 2 for Γ0(p) (p prime)
such that wp(f) = −f and L(f, 1) = 0.

Together, both conjectures imply:

There is C > 0 such that for d sufficiently large,

S(d) ⊂
{
p ≤

√
Cd+ 1

}
∪


{
2d
m + 1 : m | d,m = h

(
−
{

1
or
4

} (
2d
m + 1

))}
d odd ,{

d
m + 1 : m | d

}
∪
{
2d+ 1, 3d+ 1

}
d even .

In particular,

lim sup
n→∞ maxS(2n)

2n
= 3 and lim sup

n→∞ maxS(2n+ 1)

2n+ 1
= 0 .



A Refined Result

A similar conjecture on the “even rank part” of J0(p):

Conjecture.
There is a uniform (or sufficiently slowly growing) bound
for the number of newforms f of weight 2 for Γ0(p) (p prime)
such that wp(f) = −f and L(f, 1) = 0.

Together, both conjectures imply:

There is C > 0 such that for d sufficiently large,

S(d) ⊂
{
p ≤

√
Cd+ 1

}
∪


{
2d
m + 1 : m | d,m = h

(
−
{

1
or
4

} (
2d
m + 1

))}
d odd ,{

d
m + 1 : m | d

}
∪
{
2d+ 1, 3d+ 1

}
d even .

In particular,

lim sup
n→∞ maxS(2n)

2n
= 3 and lim sup

n→∞ maxS(2n+ 1)

2n+ 1
= 0 .



A Refined Result

A similar conjecture on the “even rank part” of J0(p):

Conjecture.
There is a uniform (or sufficiently slowly growing) bound
for the number of newforms f of weight 2 for Γ0(p) (p prime)
such that wp(f) = −f and L(f, 1) = 0.

Together, both conjectures imply:

There is C > 0 such that for d sufficiently large,

S(d) ⊂
{
p ≤

√
Cd+ 1

}
∪


{
2d
m + 1 : m | d,m = h

(
−
{

1
or
4

} (
2d
m + 1

))}
d odd ,{

d
m + 1 : m | d

}
∪
{
2d+ 1, 3d+ 1

}
d even .

In particular,

lim sup
n→∞ maxS(2n)

2n
= 3 and lim sup

n→∞ maxS(2n+ 1)

2n+ 1
= 0 .



Thank You!


