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New Result (from last Friday):
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o Let w be a primitive cube root of unity.
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e stronger than M-Z: effective and explicit.
e Wweaker than M-Z: applies only to special cases.

e proof uses 2-adic properties of division polynomials.
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A geometric variant:

Theorem. (‘Mordell-Lang Conjecture’, Faltings 1994)

Let C be a curve of genus g > 2 over C,

with an embedding 1: C — ] into its Jacobian.
Let I' C J(C) be a subgroup of finite rank r.
Then i~ 1(I") is finite.

Question.
Is there a uniform bound N’(g,r) (depending only on g and r) for #i~ ("7

T heorem.

The Zilber-Pink Conjecture for families of abelian varieties
implies a positive answer.
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Let K be a p-adic field (with p > 2).

Fix r,g € Z~o with r < g — 3.

There is a number B(K, g,r) such that

for every hyperelliptic curve C of genus g over K,

any embedding i: C — | given by a base-point Py € C(K)
and any subgroup I' C J(K) of rank r, we have

#i71(I) <B(K,g,7).

For example, we can take

B(Q3,9,1) =8(r+4)(g — 1) + max{l,4r}-g.
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Bound for the number of rational points

Taking K=Q3, C defined over Q and ' =](Q), we obtain:

T heorem.

Fix r,g € Z~o with r < g — 3.

Then for every hyperelliptic curve C of genus g over Q
with J(Q) of rank r, we have

#C(Q) <8(r+4)(g—1)+max{l,4r}-g.

More generally, there is a bound N(d, g,r) (for r < g—3) such that
for all number fields K with [K: Q] < d and
all hyperelliptic curves of genus g over K with J(K) of rank r, we have

#C(K) <N(d,g,1).
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A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013)

Let C be a curve of genus g over Qp, with p > 2,

with (minimal) proper regular model C over Z, (with special fiber Cs).
Let i: C — ] be an embedding given by a base-point Py € C(Qp)

and let I' C J(Qp) be a subgroup of rank r < g—1. Then

Problem: #C$MC°tN(F,) cannot be bounded in terms of g and p!
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We have canonical isomorphisms QL(Qp) = Q}(@p) = ToJ(Qp)*
and the p-adic abelian logarithm logy: J(Qp) — ToJ(Qp).

We obtain a pairing  QL(Qp) x J(Qp) = Qp,  (w,P) = (w,P)
by evaluating w, considered as a cotangent vector, on Iog]P.

This pairing is related to integration:
For Py, P € C(Qp), we have

P

<w,[P—PO]>:J w.

Po

Let Vi € QL(Qp) be the annihilator of T'; then dim vr >g—1>0.
Note that i (") ¢ {P e C(Qp): Vw € Vp: ( =0}.
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Let  p: C(Qp) — CEMOCtN(F,)  be the reduction map.
Fix a residue disk D = p—1(P).
There is an analytic isomorphism e: &€ Qp:l&lp <1} = D.

We can write  ¢"w =w(t)dt =d{(t) with power series w,{ c Qpl[tl.
Then

(T) (0) T
(w,1(@(T))) :J(p w:J’(p w+J w(t)dt =c+L(T).

Po Po 0
Considering the Newton Polygon of w and £, one shows that
D
#{P D (w,i(P)) =0} < 1+v(w,D)+ H}w_’z )J ,

where v(w,D) is the number of zeros of w on D(@p).

Picking an ‘optimal’ w for each D and summing gives the result.
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The only source for the unboundedness of #CngOth(IFp)
is arbitrarily long chains of P!'s in Cs (Artin & Winters 1971).

Proposition.

The number of components of CEMO9th outside of chains is <« g.
The number of chains in C2Mo°th js « g¢.

The preimage in C(Qp) of a chain is analytically isomorphic
to an annulus {£ € Qp : 1y < [E]p < 12}

So we can cover C(Qp) by < pg disks D
coming from points in CngOth(IFp) outside chains
and by < g annuli A coming from the chains.
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he key result

Proposition.

For each annulus A there is a subspace V, C Q1C(Qp) with codimV,y <2
such that for 0 4 w € Va, if C is hyperelliptic,

#{P e A:{(w,i(P)) =0} < v(w,A)+ {

Idea of proof: Let ¢:{§ € Qp: 11 <[lp <12} = A parametrize A.

t
The pull-back of wis @ w =w(t)dt = d{(t) +c(w)dT

with Laurent series w and {. There is a(w) € Qp such that

¢(T2) 4%)
J w=4L(ty) —lt7) +c(w) log —= + Cl(w)(\)p(’tz) —vp(T1)) :
@(T7) 1

Set Vi ={w € QL(Qp) : a(w) = c(w) = 0O}
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End of proof

Since r < g—3, we have VrnNV, # {0} for all A,
SO we can always pick a suitable w #0 to get a bound

v(w,A)
p—ZJ'

#{1(MNNA) <v(w,A)+ L

Taking the ‘optimal’ w for each annulus and for each disk and summing,
we obtain the desired bound, which is of the shape

<L (p+r+1)g.
For a general p-adic field with ramification index e <p — 1
and residue field of size ¢, the bound takes the shape

< (q+e(r+1))g.



