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Prelude: The Masser-Zannier set is empty

Let Eλ : y
2 = x(x− 1)(x− λ).

For α ∈ C \ {0, 1} define T(α) =
{
λ ∈ C \ {0, 1} : (α, ∗) ∈ (Eλ)tors

}
.

Masser and Zannier show that T(2) ∩ T(3) is finite,

and more generally, that T(α) ∩ T(β) is finite for α 6= β.

New Result (from last Friday):

• T(2) ∩ T(3) = ∅.
• Let ω be a primitive cube root of unity.

Then T(ω) ∩ T(ω2) = {ω,ω2} and T(ω− 2) ∩ T(−5ω+ 3) = {−5ω+ 3}.

• stronger than M-Z: effective and explicit.

• weaker than M-Z: applies only to special cases.

• proof uses 2-adic properties of division polynomials.
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Motivation (1)

Theorem. (‘Mordell’s Conjecture’, Faltings 1983)

Let C be a (‘nice’) curve of genus g ≥ 2 over Q.

Then C(Q) is finite.

Question.

Is there a uniform bound N(g) (depending only on g) for #C(Q)?

Theorem. (Caporaso-Harris-Mazur 1997)

The Bombieri-Lang Conjecture

(rational points on varieties of general type are not Zariski dense)

implies a positive answer.
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Motivation (2)

A geometric variant:

Theorem. (‘Mordell-Lang Conjecture’, Faltings 1994)

Let C be a curve of genus g ≥ 2 over C,

with an embedding i : C→ J into its Jacobian.

Let Γ ⊂ J(C) be a subgroup of finite rank r.

Then i−1(Γ) is finite.

Question.

Is there a uniform bound N ′(g, r) (depending only on g and r) for #i−1(Γ)?

Theorem.

The Zilber-Pink Conjecture for families of abelian varieties

implies a positive answer.
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Main Theorem

Theorem.

Let K be a p-adic field (with p > 2).

Fix r, g ∈ Z≥0 with r ≤ g− 3.
There is a number B(K, g, r) such that

for every hyperelliptic curve C of genus g over K,

any embedding i : C→ J given by a base-point P0 ∈ C(K)
and any subgroup Γ ⊂ J(K) of rank r, we have

#i−1(Γ) ≤ B(K, g, r) .

For example, we can take

B(Q3, g, r) = 8(r+ 4)(g− 1) + max{1, 4r} · g .
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Bound for the number of rational points

Taking K = Q3, C defined over Q and Γ = J(Q), we obtain:

Theorem.

Fix r, g ∈ Z≥0 with r ≤ g− 3.
Then for every hyperelliptic curve C of genus g over Q
with J(Q) of rank r, we have

#C(Q) ≤ 8(r+ 4)(g− 1) + max{1, 4r} · g .

More generally, there is a bound N(d, g, r) (for r ≤ g− 3) such that

for all number fields K with [K : Q] ≤ d and

all hyperelliptic curves of genus g over K with J(K) of rank r, we have

#C(K) ≤ N(d, g, r) .
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Chabauty-Coleman

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013)

Let C be a curve of genus g over Qp with p > 2,

with (minimal) proper regular model C over Zp (with special fiber Cs).

Let i : C→ J be an embedding given by a base-point P0 ∈ C(Qp)
and let Γ ⊂ J(Qp) be a subgroup of rank r ≤ g− 1. Then

#i−1(Γ) ≤#Csmooth
s (Fp) + 2r+

⌊
2r

p− 2

⌋
.

Problem: #Csmooth
s (Fp) cannot be bounded in terms of g and p!
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Sketch of proof (1)

We have canonical isomorphisms Ω1C(Qp) ∼= Ω1J(Qp) ∼= T0J(Qp)∗
and the p-adic abelian logarithm logJ : J(Qp)→ T0J(Qp).

We obtain a pairing Ω1C(Qp)× J(Qp)→ Qp, (ω,P) 7→ 〈ω,P〉
by evaluating ω, considered as a cotangent vector, on logJ P.

This pairing is related to integration:

For P0, P ∈ C(Qp), we have

〈ω, [P − P0]〉 =
∫P
P0

ω.

Let VΓ ⊂ Ω1C(Qp) be the annihilator of Γ ; then dimVΓ ≥ g− r > 0.
Note that i−1(Γ) ⊂

{
P ∈ C(Qp) : ∀ω ∈ VΓ : 〈ω, i(P)〉 = 0

}
.
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Sketch of proof (2)

Let ρ : C(Qp)→ Csmooth
s (Fp) be the reduction map.

Fix a residue disk D = ρ−1(P̄).

There is an analytic isomorphism ϕ : {ξ ∈ Qp : |ξ|p < 1}→ D.

We can write ϕ∗ω = w(t)dt = d`(t) with power series w, ` ∈ Qp[[t]].
Then

〈ω, i(ϕ(τ))〉 =
∫ϕ(τ)
P0

ω =

∫ϕ(0)
P0

ω+

∫τ
0
w(t)dt = c+ `(τ) .

Considering the Newton Polygon of w and `, one shows that

#
{
P ∈ D : 〈ω, i(P)〉 = 0

}
≤ 1+ ν(ω,D) +

⌊
ν(ω,D)

p− 2

⌋
,

where ν(ω,D) is the number of zeros of ω on D(Q̄p).

Picking an ‘optimal’ ω for each D and summing gives the result.
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How to fix the problem

The only source for the unboundedness of #Csmooth
s (Fp)

is arbitrarily long chains of P1’s in Cs (Artin & Winters 1971).

Proposition.

The number of components of Csmooth
s outside of chains is � g.

The number of chains in Csmooth
s is � g.

The preimage in C(Qp) of a chain is analytically isomorphic

to an annulus {ξ ∈ Qp : r1 < |ξ|p < r2}.

So we can cover C(Qp) by � pg disks D

coming from points in Csmooth
s (Fp) outside chains

and by � g annuli A coming from the chains.
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The key result

Proposition.

For each annulus A there is a subspace VA ⊂ Ω1C(Qp) with codimVA ≤ 2
such that for 0 6= ω ∈ VA, if C is hyperelliptic,

#
{
P ∈ A : 〈ω, i(P)〉 = 0

}
≤ ν(ω,A) +

⌊
ν(ω,A)

p− 2

⌋
.

Idea of proof: Let ϕ : {ξ ∈ Qp : r1 < |ξ|p < r2}→ A parametrize A.

The pull-back of ω is ϕ∗ω = w(t)dt = d`(t) + c(ω)
dt

t
with Laurent series w and `. There is a(ω) ∈ Qp such that∫ϕ(τ2)

ϕ(τ1)
ω = `(τ2) − `(τ1) + c(ω) log

τ2
τ1

+ a(ω)
(
vp(τ2) − vp(τ1)

)
.

Set VA = {ω ∈ Ω1C(Qp) : a(ω) = c(ω) = 0}.
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End of proof

Since r ≤ g− 3, we have VΓ ∩ VA 6= {0} for all A,

so we can always pick a suitable ω 6= 0 to get a bound

#
(
i−1(Γ) ∩A

)
≤ ν(ω,A) +

⌊
ν(ω,A)

p− 2

⌋
.

Taking the ‘optimal’ ω for each annulus and for each disk and summing,

we obtain the desired bound, which is of the shape

� (p+ r+ 1)g .

For a general p-adic field with ramification index e < p− 1

and residue field of size q, the bound takes the shape

�
(
q+ e(r+ 1)

)
g .
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