

Uniform bounds on the number of rational points on hyperelliptic curves of low Mordell-Weil rank

Michael Stoll Universität Bayreuth

Second ERC Research Period on Diophantine Geometry Cetraro

July 21, 2014

Let $E_{\lambda}: y^2 = x(x-1)(x-\lambda).$ For $\alpha \in \mathbb{C} \setminus \{0,1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0,1\}: (\alpha,*) \in (E_{\lambda})_{tors}\}.$

Let

 $\mathbf{E}_{\boldsymbol{\lambda}}: \mathbf{y}^2 = \mathbf{x}(\mathbf{x} - 1)(\mathbf{x} - \boldsymbol{\lambda}).$

For $\alpha \in \mathbb{C} \setminus \{0, 1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0, 1\} : (\alpha, *) \in (E_{\lambda})_{tors}\}.$

Masser and Zannier show that $T(2) \cap T(3)$ is finite,

and more generally, that $T(\alpha) \cap T(\beta)$ is finite for $\alpha \neq \beta$.

Let $E_{\lambda}: y^2 = x(x-1)(x-\lambda).$ For $\alpha \in \mathbb{C} \setminus \{0,1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0,1\}: (\alpha,*) \in (E_{\lambda})_{tors}\}.$ Masser and Zannier show that $T(2) \cap T(3)$ is finite, and more generally, that $T(\alpha) \cap T(\beta)$ is finite for $\alpha \neq \beta$.

New Result (from last Friday):

• $T(2) \cap T(3) = \emptyset$.

Let $E_{\lambda}: y^2 = x(x-1)(x-\lambda).$ For $\alpha \in \mathbb{C} \setminus \{0,1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0,1\}: (\alpha,*) \in (E_{\lambda})_{tors}\}.$ Masser and Zannier show that $T(2) \cap T(3)$ is finite, and more generally, that $T(\alpha) \cap T(\beta)$ is finite for $\alpha \neq \beta$.

New Result (from last Friday):

- $T(2) \cap T(3) = \emptyset$.
- Let ω be a primitive cube root of unity. Then $T(\omega) \cap T(\omega^2) = \{\omega, \omega^2\}$ and $T(\omega - 2) \cap T(-5\omega + 3) = \{-5\omega + 3\}$.

Let

$$\mathbf{E}_{\boldsymbol{\lambda}}: \mathbf{y}^2 = \mathbf{x}(\mathbf{x} - \mathbf{1})(\mathbf{x} - \boldsymbol{\lambda}).$$

For $\alpha \in \mathbb{C} \setminus \{0, 1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0, 1\} : (\alpha, *) \in (E_{\lambda})_{tors}\}$. Masser and Zannier show that $T(2) \cap T(3)$ is finite, and more generally, that $T(\alpha) \cap T(\beta)$ is finite for $\alpha \neq \beta$.

New Result (from last Friday):

- $T(2) \cap T(3) = \emptyset$.
- Let ω be a primitive cube root of unity. Then $T(\omega) \cap T(\omega^2) = \{\omega, \omega^2\}$ and $T(\omega - 2) \cap T(-5\omega + 3) = \{-5\omega + 3\}$.
- stronger than M-Z: effective and explicit.
- weaker than M-Z: applies only to special cases.

Let

$$\mathbf{E}_{\boldsymbol{\lambda}}: \mathbf{y}^2 = \mathbf{x}(\mathbf{x} - 1)(\mathbf{x} - \boldsymbol{\lambda}).$$

For $\alpha \in \mathbb{C} \setminus \{0, 1\}$ define $T(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0, 1\} : (\alpha, *) \in (E_{\lambda})_{tors}\}$. Masser and Zannier show that $T(2) \cap T(3)$ is finite, and more generally, that $T(\alpha) \cap T(\beta)$ is finite for $\alpha \neq \beta$.

New Result (from last Friday):

- $T(2) \cap T(3) = \emptyset$.
- Let ω be a primitive cube root of unity. Then $T(\omega) \cap T(\omega^2) = \{\omega, \omega^2\}$ and $T(\omega - 2) \cap T(-5\omega + 3) = \{-5\omega + 3\}$.
- stronger than M-Z: effective and explicit.
- weaker than M-Z: applies only to special cases.
- proof uses 2-adic properties of division polynomials.

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over \mathbb{Q} . Then $C(\mathbb{Q})$ is finite.

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over \mathbb{Q} . Then $C(\mathbb{Q})$ is finite.

Question.

Is there a uniform bound N(g) (depending only on g) for $\#C(\mathbb{Q})$?

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over \mathbb{Q} . Then $C(\mathbb{Q})$ is finite.

Question.

Is there a uniform bound N(g) (depending only on g) for $\#C(\mathbb{Q})$?

Theorem. (Caporaso-Harris-Mazur 1997)

The Bombieri-Lang Conjecture

(rational points on varieties of general type are not Zariski dense) implies a positive answer.

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over \mathbb{Q} . Then $C(\mathbb{Q})$ is finite.

Question.

Is there a uniform bound N(g) (depending only on g) for $\#C(\mathbb{Q})$?

Theorem. (Caporaso-Harris-Mazur 1997)

The Lang Conjecture

(rational points on varieties of general type are not Zariski dense) implies a positive answer.

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \ge 2$ over \mathbb{C} , with an embedding $i: \mathbb{C} \to J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \ge 2$ over \mathbb{C} , with an embedding $i: \mathbb{C} \to J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

Question.

Is there a uniform bound N'(g,r) (depending only on g and r) for $\#i^{-1}(\Gamma)$?

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \ge 2$ over \mathbb{C} , with an embedding $i: \mathbb{C} \to J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

Question.

Is there a uniform bound N'(g,r) (depending only on g and r) for $\#i^{-1}(\Gamma)$?

Theorem.

The Zilber-Pink Conjecture for families of abelian varieties implies a positive answer.

Theorem.

Let K be a p-adic field (with p > 2).

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$.

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that for every hyperelliptic curve C of genus g over K,

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that for every hyperelliptic curve C of genus g over K, any embedding $i: C \to J$ given by a base-point $P_0 \in C(K)$

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that for every hyperelliptic curve C of genus g over K, any embedding i: $C \rightarrow J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r,

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that for every hyperelliptic curve C of genus g over K, any embedding $i: C \to J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r, we have

 $\#\mathfrak{i}^{-1}(\Gamma) \leq B(K,g,r).$

Theorem.

Let K be a p-adic field (with p > 2). Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. There is a number B(K, g, r) such that for every hyperelliptic curve C of genus g over K, any embedding $i: C \to J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r, we have

 $\#\mathfrak{i}^{-1}(\Gamma) \leq B(K,g,r).$

For example, we can take

```
B(Q_3, g, r) = 8(r+4)(g-1) + max\{1, 4r\} \cdot g.
```

Bound for the number of rational points

Taking $K = \mathbb{Q}_3$, C defined over \mathbb{Q} and $\Gamma = J(\mathbb{Q})$, we obtain:

Theorem.

Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. Then for every hyperelliptic curve C of genus g over \mathbb{Q} with $J(\mathbb{Q})$ of rank r, we have

 $\#C(\mathbb{Q}) \le 8(r+4)(g-1) + \max\{1, 4r\} \cdot g.$

Bound for the number of rational points

Taking $K = \mathbb{Q}_3$, C defined over \mathbb{Q} and $\Gamma = J(\mathbb{Q})$, we obtain:

Theorem.

Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g - 3$. Then for every hyperelliptic curve C of genus g over \mathbb{Q} with $J(\mathbb{Q})$ of rank r, we have

 $\#C(\mathbb{Q}) \le 8(r+4)(g-1) + \max\{1, 4r\} \cdot g.$

More generally, there is a bound N(d, g, r) (for $r \le g - 3$) such that for all number fields K with $[K : \mathbb{Q}] \le d$ and all hyperelliptic curves of genus g over K with J(K) of rank r, we have

 $\#C(K) \leq N(d,g,r).$

Chabauty-Coleman

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013) Let C be a curve of genus g over \mathbb{Q}_p with p > 2, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let $\mathbf{i} \colon C \to J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g - 1$. Then

$$\#\mathfrak{i}^{-1}(\Gamma) \leq \#\mathcal{C}_s^{smooth}(\mathbb{F}_p) + 2r + \left\lfloor \frac{2r}{p-2} \right\rfloor.$$

Chabauty-Coleman

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013) Let C be a curve of genus g over \mathbb{Q}_p with p > 2, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let $\mathbf{i} \colon C \to J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g - 1$. Then

$$\#i^{-1}(\Gamma) \leq \#\mathcal{C}_{s}^{smooth}(\mathbb{F}_{p}) + 2r + \left\lfloor \frac{2r}{p-2} \right\rfloor$$

Problem: $#C_s^{smooth}(\mathbb{F}_p)$ cannot be bounded in terms of g and p!

We have canonical isomorphisms and the p-adic abelian logarithm

 $\begin{array}{l} \Omega^1_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p) \cong \mathsf{T}_0 J(\mathbb{Q}_p)^* \\ \text{log}_J \colon J(\mathbb{Q}_p) \to \mathsf{T}_0 J(\mathbb{Q}_p). \end{array}$

We have canonical isomorphisms and the p-adic abelian logarithm

 $\begin{array}{l} \Omega^1_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p) \cong \mathsf{T}_0 J(\mathbb{Q}_p)^* \\ \text{log}_J \colon J(\mathbb{Q}_p) \to \mathsf{T}_0 J(\mathbb{Q}_p). \end{array}$

We obtain a pairing $\Omega^1_C(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \to \mathbb{Q}_p$, $(\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on $\log_I P$.

We have canonical isomorphisms and the p-adic abelian logarithm

 $\begin{array}{l} \Omega^1_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p) \cong \mathsf{T}_0 J(\mathbb{Q}_p)^* \\ \text{log}_J \colon J(\mathbb{Q}_p) \to \mathsf{T}_0 J(\mathbb{Q}_p). \end{array}$

We obtain a pairing $\Omega^1_C(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \to \mathbb{Q}_p$, $(\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on $\log_I P$.

This pairing is related to integration: For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$\langle \omega, [P - P_0] \rangle = \int_{P_0}^{P} \omega.$$

We have canonical isomorphisms and the p-adic abelian logarithm

 $\begin{array}{l} \Omega^1_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p) \cong \mathsf{T}_0 J(\mathbb{Q}_p)^* \\ \text{log}_J \colon J(\mathbb{Q}_p) \to \mathsf{T}_0 J(\mathbb{Q}_p). \end{array}$

We obtain a pairing $\Omega^1_C(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \to \mathbb{Q}_p$, $(\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on $\log_I P$.

This pairing is related to integration: For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$\langle \omega, [\mathbf{P} - \mathbf{P}_0] \rangle = \int_{\mathbf{P}_0}^{\mathbf{P}} \omega \,.$$

Let $V_{\Gamma} \subset \Omega^1_C(\mathbb{Q}_p)$ be the annihilator of Γ ; then dim $V_{\Gamma} \ge g - r > 0$.

We have canonical isomorphisms and the p-adic abelian logarithm

 $\begin{array}{l} \Omega^1_C(\mathbb{Q}_p) \cong \Omega^1_J(\mathbb{Q}_p) \cong \mathsf{T}_0 J(\mathbb{Q}_p)^* \\ \text{log}_J \colon J(\mathbb{Q}_p) \to \mathsf{T}_0 J(\mathbb{Q}_p). \end{array}$

We obtain a pairing $\Omega^1_C(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \to \mathbb{Q}_p$, $(\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on $\log_J P$.

This pairing is related to integration: For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$\langle \omega, [\mathbf{P} - \mathbf{P}_0] \rangle = \int_{\mathbf{P}_0}^{\mathbf{P}} \omega.$$

Let $V_{\Gamma} \subset \Omega^{1}_{C}(\mathbb{Q}_{p})$ be the annihilator of Γ ; then dim $V_{\Gamma} \geq g - r > 0$. Note that $i^{-1}(\Gamma) \subset \{P \in C(\mathbb{Q}_{p}) : \forall \omega \in V_{\Gamma} : \langle \omega, i(P) \rangle = 0\}.$

 $\begin{array}{ll} \text{Let} & \rho \colon C(\mathbb{Q}_p) \to \mathcal{C}^{smooth}_{s}(\mathbb{F}_p) & \text{ be the reduction map.} \\ \text{Fix a residue disk } D = \rho^{-1}(\overline{P}). \\ \text{There is an analytic isomorphism} & \phi \colon \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D. \end{array}$

 $\begin{array}{ll} \text{Let} & \rho \colon C(\mathbb{Q}_p) \to \mathcal{C}^{smooth}_{s}(\mathbb{F}_p) & \text{ be the reduction map.} \\ \text{Fix a residue disk } D = \rho^{-1}(\overline{P}). \\ \text{There is an analytic isomorphism} & \phi \colon \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D. \end{array}$

We can write $\phi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[t]$. Then

$$\langle \boldsymbol{\omega}, \mathbf{i}(\boldsymbol{\varphi}(\tau)) \rangle = \int_{P_0}^{\boldsymbol{\varphi}(\tau)} \boldsymbol{\omega} = \int_{P_0}^{\boldsymbol{\varphi}(0)} \boldsymbol{\omega} + \int_0^{\tau} \boldsymbol{w}(t) \, dt = \mathbf{c} + \boldsymbol{\ell}(\tau) \, .$$

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}^{smooth}_{s}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$.

There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D.$

We can write $\phi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[t]$. Then

$$\langle \boldsymbol{\omega}, \mathfrak{i}(\boldsymbol{\varphi}(\tau)) \rangle = \int_{P_0}^{\boldsymbol{\varphi}(\tau)} \boldsymbol{\omega} = \int_{P_0}^{\boldsymbol{\varphi}(0)} \boldsymbol{\omega} + \int_0^{\tau} \boldsymbol{w}(t) \, \mathrm{d}t = \mathbf{c} + \boldsymbol{\ell}(\tau) \, .$$

Considering the Newton Polygon of w and ℓ , one shows that

$$\# \{ \mathsf{P} \in \mathsf{D} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = 0 \} \le 1 + \nu(\omega, \mathsf{D}) + \left\lfloor \frac{\nu(\omega, \mathsf{D})}{p - 2} \right\rfloor,$$

where $v(\omega, D)$ is the number of zeros of ω on $D(\overline{\mathbb{Q}}_p)$.

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}^{smooth}_{s}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$.

There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D.$

We can write $\phi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[t]$. Then

$$\langle \boldsymbol{\omega}, \mathbf{i}(\boldsymbol{\varphi}(\boldsymbol{\tau})) \rangle = \int_{P_0}^{\boldsymbol{\varphi}(\boldsymbol{\tau})} \boldsymbol{\omega} = \int_{P_0}^{\boldsymbol{\varphi}(\boldsymbol{0})} \boldsymbol{\omega} + \int_{\boldsymbol{0}}^{\boldsymbol{\tau}} \boldsymbol{w}(\mathbf{t}) \, d\mathbf{t} = \mathbf{c} + \boldsymbol{\ell}(\boldsymbol{\tau}) \, .$$

Considering the Newton Polygon of w and l, one shows that

$$\# \{ \mathsf{P} \in \mathsf{D} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = 0 \} \le 1 + \nu(\omega, \mathsf{D}) + \left\lfloor \frac{\nu(\omega, \mathsf{D})}{p-2} \right\rfloor,$$

where $v(\omega, D)$ is the number of zeros of ω on $D(\overline{\mathbb{Q}}_p)$.

Picking an 'optimal' ω for each D and summing gives the result.

The only source for the unboundedness of $\#C_s^{smooth}(\mathbb{F}_p)$ is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_s (Artin & Winters 1971).

The only source for the unboundedness of $\#C_s^{smooth}(\mathbb{F}_p)$ is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_s (Artin & Winters 1971).

Proposition.

The number of components of C_s^{smooth} outside of chains is $\ll g$. The number of chains in C_s^{smooth} is $\ll g$.

The only source for the unboundedness of $\#C_s^{smooth}(\mathbb{F}_p)$ is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_s (Artin & Winters 1971).

Proposition.

The number of components of C_s^{smooth} outside of chains is $\ll g$. The number of chains in C_s^{smooth} is $\ll g$.

The preimage in $C(\mathbb{Q}_p)$ of a chain is analytically isomorphic to an annulus $\{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\}$.

The only source for the unboundedness of $\#C_s^{\text{smooth}}(\mathbb{F}_p)$ is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_s (Artin & Winters 1971).

Proposition.

The number of components of C_s^{smooth} outside of chains is $\ll g$. The number of chains in C_s^{smooth} is $\ll g$.

The preimage in $C(\mathbb{Q}_p)$ of a chain is analytically isomorphic to an annulus $\{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\}$.

So we can cover $C(\mathbb{Q}_p)$ by $\ll pg$ disks D coming from points in $\mathcal{C}^{smooth}_{s}(\mathbb{F}_p)$ outside chains and by $\ll g$ annuli A coming from the chains.

Proposition.

For each annulus A there is a subspace $V_A \subset \Omega^1_C(\mathbb{Q}_p)$ with $\operatorname{codim} V_A \leq 2$ such that for $0 \neq \omega \in V_A$, if C is hyperelliptic,

$$\# \big\{ P \in A : \langle \omega, \mathfrak{i}(P) \rangle = 0 \big\} \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p - 2} \right\rfloor.$$

Proposition.

For each annulus A there is a subspace $V_A \subset \Omega^1_C(\mathbb{Q}_p)$ with codim $V_A \leq 2$ such that for $0 \neq \omega \in V_A$, if C is hyperelliptic,

$$\# \{ \mathsf{P} \in \mathsf{A} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = 0 \} \leq \nu(\omega, \mathsf{A}) + \left\lfloor \frac{\nu(\omega, \mathsf{A})}{p - 2} \right\rfloor$$

Idea of proof: Let $\varphi: \{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\} \to A$ parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{t}$ with Laurent series w and ℓ .

Proposition.

For each annulus A there is a subspace $V_A \subset \Omega^1_C(\mathbb{Q}_p)$ with codim $V_A \leq 2$ such that for $0 \neq \omega \in V_A$, if C is hyperelliptic,

$$\# \{ \mathsf{P} \in \mathsf{A} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = 0 \} \leq \nu(\omega, \mathsf{A}) + \left\lfloor \frac{\nu(\omega, \mathsf{A})}{p - 2} \right\rfloor.$$

Idea of proof: Let $\varphi: \{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\} \to A$ parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{t}$ with Laurent series w and ℓ . Then

$$\int_{\phi(\tau_1)}^{\phi(\tau_2)} \omega = \ell(\tau_2) - \ell(\tau_1) + \mathbf{c}(\omega) \log \frac{\tau_2}{\tau_1}$$

Proposition.

For each annulus A there is a subspace $V_A \subset \Omega^1_C(\mathbb{Q}_p)$ with $\operatorname{codim} V_A \leq 2$ such that for $0 \neq \omega \in V_A$, if C is hyperelliptic,

$$\# \{ \mathsf{P} \in \mathsf{A} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = 0 \} \le \nu(\omega, \mathsf{A}) + \left\lfloor \frac{\nu(\omega, \mathsf{A})}{p - 2} \right\rfloor$$

Idea of proof: Let $\varphi: \{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\} \to A$ parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{t}$ with Laurent series w and ℓ . There is $a(\omega) \in \mathbb{Q}_p$ such that

$$\int_{\varphi(\tau_1)}^{\varphi(\tau_2)} \omega = \ell(\tau_2) - \ell(\tau_1) + \mathbf{c}(\omega) \log \frac{\tau_2}{\tau_1} + \mathbf{a}(\omega) \left(\nu_p(\tau_2) - \nu_p(\tau_1) \right).$$

Proposition.

For each annulus A there is a subspace $V_A \subset \Omega^1_C(\mathbb{Q}_p)$ with $\operatorname{codim} V_A \leq 2$ such that for $0 \neq \omega \in V_A$, if C is hyperelliptic,

$$\# \{ \mathsf{P} \in \mathsf{A} : \langle \omega, \mathfrak{i}(\mathsf{P}) \rangle = \mathfrak{0} \} \leq \nu(\omega, \mathsf{A}) + \left\lfloor \frac{\nu(\omega, \mathsf{A})}{p - 2} \right\rfloor.$$

Idea of proof: Let $\varphi: \{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\} \to A$ parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{t}$ with Laurent series w and ℓ . There is $a(\omega) \in \mathbb{Q}_p$ such that

$$\int_{\varphi(\tau_1)}^{\varphi(\tau_2)} \omega = \ell(\tau_2) - \ell(\tau_1) + \mathbf{c}(\omega) \log \frac{\tau_2}{\tau_1} + \mathbf{a}(\omega) \left(\nu_p(\tau_2) - \nu_p(\tau_1) \right).$$

Set $V_A = \{ \omega \in \Omega^1_C(\mathbb{Q}_p) : \mathfrak{a}(\omega) = \mathfrak{c}(\omega) = \mathfrak{0} \}.$

End of proof

Since $r \le g - 3$, we have $V_{\Gamma} \cap V_A \ne \{0\}$ for all A, so we can always pick a suitable $\omega \ne 0$ to get a bound

$$#(i^{-1}(\Gamma) \cap A) \leq v(\omega, A) + \left\lfloor \frac{v(\omega, A)}{p-2} \right\rfloor$$
.

End of proof

Since $r \le g - 3$, we have $V_{\Gamma} \cap V_A \ne \{0\}$ for all A, so we can always pick a suitable $\omega \ne 0$ to get a bound

$$#(i^{-1}(\Gamma) \cap A) \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p-2} \right\rfloor$$

Taking the 'optimal' ω for each annulus and for each disk and summing, we obtain the desired bound, which is of the shape

 $\ll (p+r+1)g$.

End of proof

Since $r \leq g - 3$, we have $V_{\Gamma} \cap V_A \neq \{0\}$ for all A, so we can always pick a suitable $\omega \neq 0$ to get a bound

$$#(i^{-1}(\Gamma) \cap A) \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p-2} \right\rfloor$$

Taking the 'optimal' ω for each annulus and for each disk and summing, we obtain the desired bound, which is of the shape

 $\ll (p+r+1)g$.

For a general p-adic field with ramification index eand residue field of size q, the bound takes the shape

 $\ll (q + e(r+1))g$.