Coverings and Mordell-Weil Sieve

Michael Stoll
International University Bremen
(Jacobs University as of soon)

Banff, February 6, 2007
Local Obstruction

Let C/\mathbb{Q} be a smooth projective curve of genus $g \geq 2$.

Goal:
Determine $C(\mathbb{Q})$!

Sub-Goal 1:
Decide if $C(\mathbb{Q}) = \emptyset$!

Sub-Goal 2:
If $C(\mathbb{Q}) \neq \emptyset$, find all the points (and prove that these are all)!

Easy Case for Sub-Goal 1:
$C(\mathbb{R}) = \emptyset$ or $C(\mathbb{Q}_p) = \emptyset$ for some prime p.
This is equivalent to $C(\mathbb{A}_\mathbb{Q}) = \emptyset$.
Coverings

Let \(\pi : D \to C \) be a finite étale, geometrically Galois covering (more precisely: a \(C \)-torsor under a finite \(\mathbb{Q} \)-group scheme \(G \)).

This covering has twists \(\pi_\xi : D_\xi \to C \) for \(\xi \in H^1(\mathbb{Q}, G) \).

More concretely, a twist \(\pi_\xi : D_\xi \to C \) of \(\pi : D \to C \) is another covering of \(C \) that over \(\overline{\mathbb{Q}} \) is isomorphic to \(\pi : D \to C \).

Example. Consider \(C : y^2 = g(x)h(x) \) with \(\deg g, \deg h \) even.
Then \(D : u^2 = g(x), \ v^2 = h(x) \) is a \(C \)-torsor under \(\mathbb{Z}/2\mathbb{Z} \), and the twists are \(D_d : u^2 = dg(x), \ v^2 = dh(x), \ d \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^2 \).

Every rational point on \(C \) lifts to one of the twists, and there are only finitely many twists such that \(D_d(\mathbb{Q}_v) \neq \emptyset \) for all \(v \).
Coverings

Let $\pi : D \to C$ be a finite étale, geometrically Galois covering (more precisely: a C-torsor under a finite \mathbb{Q}-group scheme G). This covering has twists $\pi_\xi : D_\xi \to C$ for $\xi \in H^1(\mathbb{Q}, G)$.

More concretely, a twist $\pi_\xi : D_\xi \to C$ of $\pi : D \to C$ is another covering of C that over $\overline{\mathbb{Q}}$ is isomorphic to $\pi : D \to C$.

Example. Consider $C : y^2 = g(x)h(x)$ with $\text{deg } g, \text{deg } h$ even. Then $D : u^2 = g(x), v^2 = h(x)$ is a C-torsor under $\mathbb{Z}/2\mathbb{Z}$, and the twists are $D_d : u^2 = dg(x), v^2 = dh(x), \quad d \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^2$.

Every rational point on C lifts to one of the twists, and there are only finitely many twists such that $D_d(\mathbb{Q}_v) \neq \emptyset$ for all v.
Descent

More generally, we have the following result.

Theorem.

- $C(\mathbb{Q}) = \bigcup_{\xi \in H^1(\mathbb{Q}, G)} \pi_\xi(D_\xi(\mathbb{Q}))$.
- $\text{Sel}^{\pi}(C) := \{\xi \in H^1(\mathbb{Q}, G) : D_\xi(\mathbb{A}_\mathbb{Q}) \neq \emptyset\}$ is finite (and computable).

(Fermat, Chevalley-Weil, . . .)

If we find $\text{Sel}^{\pi}(C) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
Example

Consider the genus 2 curve

\[C : y^2 = -(x^2 + x - 1)(x^4 + x^3 + x^2 + x + 2) = f(x). \]

\(C \) has points everywhere locally
\((f(0) = 2, f(1) = -6, f(-2) = -3 \cdot 2^2, f(18) \in (\mathbb{Q}_2^\times)^2, f(4) \in (\mathbb{Q}_3^\times)^2).\)

The relevant twists of the obvious \(\mathbb{Z}/2\mathbb{Z}\)-covering are

\[du^2 = -x^2 - x + 1, \quad dv^2 = x^4 + x^3 + x^2 + x + 2 \]

where \(d \) is one of \(1, -1, 19, -19\).

If \(d < 0 \), the second equation has no solution in \(\mathbb{R}\);
if \(d = 1 \) or \(19 \), the pair of equations has no solution over \(\mathbb{F}_3\).

So the Selmer set is empty, and \(C(\mathbb{Q}) = \emptyset. \)
First Conjectures

This should always work. More precisely:

Conjecture 1
If $C(\mathbb{Q}) = \emptyset$, then there is a covering π of C such that $\text{Sel}^\pi(C) = \emptyset$.

Conjecture 2
If $C(\mathbb{Q}) = \emptyset$, then there is an **abelian** covering π of C such that $\text{Sel}^\pi(C) = \emptyset$.

(A covering is **abelian** if its Galois group is abelian.)

Conjecture 2 is stronger than Conjecture 1.
The **Section Conjecture** implies Conjecture 1.
Poonen has a heuristic argument that supports Conjecture 2.
Abelian Coverings

By Geometric Class Field Theory, all (connected) abelian coverings “come from the Jacobian”.

More precisely, let $V = \text{Pic}^{1}_C$ be the principal homogeneous space for $J = \text{Pic}^{0}_C$ that has a natural embedding $C \to V$.

Then every abelian covering $D \to C$ is covered by an n-covering for some $n \geq 1$.

An n-covering is obtained by pull-back from an n-covering of V; geometrically, this is just multiplication by n: $J \to J$.

Let $\text{Sel}^{(n)}(C) \subset H^1(\mathbb{Q}, J[n])$ denote the corresponding Selmer set.

Conjecture 2: $C(\mathbb{Q}) = \emptyset$ implies $\text{Sel}^{(n)}(C) = \emptyset$ for some n.
Consider local conditions on C, given by a closed and open subset $X \subset C(\mathbb{A}_\mathbb{Q})$. (Concretely: congruence conditions, connected components of $C(\mathbb{R})$.)

Then we can consider $\text{Sel}^\pi(C; X)$, the subset of $\text{Sel}^\pi(C)$ consisting of twists that have adelic points whose image on C is in X.

Conjecture 1'.
For all X as above, if $C(\mathbb{Q}) \cap X = \emptyset$, then there is a covering π of C such that $\text{Sel}^\pi(C; X) = \emptyset$.

Conjecture 2'.
For all X as above, if $C(\mathbb{Q}) \cap X = \emptyset$, then there is some $n \geq 1$ such that $\text{Sel}^{(n)}(C; X) = \emptyset$.

Refinement
Comments

• The Section Conjecture implies Conjecture 1’, which is equivalent to Conjecture 1.

• Conjecture 2’ implies Conjecture 1’ and Conjecture 2.

• Evidence for Conjecture 2 in many examples (see my other talk).

• Conjecture 2’ is true for $X_0(N)$, $X_1(N)$, $X(N)$, if genus is positive.

• “Abelian descent information” is equivalent to “Brauer group information”.

 Conjecture 2 implies that the Brauer-Manin obstruction is the only one against rational points.

• See my paper Finite descent obstructions ...
Now assume that we know generators of $J(\mathbb{Q})$ and that we fix a basepoint $O \in C(\mathbb{Q})$ (or a rational divisor class of degree 1 on C).

Then we have the usual embedding $C \rightarrow J$.

We only need to consider n-coverings of C that are pull-backs of n-coverings of J that have rational points; they are of the form $J \rightarrow J, \ P \mapsto Q +nP$ for $Q \in J(\mathbb{Q})$.

We are then interested in the rational points on C that map into a given coset $Q + nJ(\mathbb{Q})$.

Mordell-Weil Sieve 1
Let S be a finite set of primes of good reduction. Consider the following diagram.

We can compute the maps α and β. If their images do not intersect, then $C(\mathbb{Q}) = \emptyset$.

Poonen Heuristic:
If $C(\mathbb{Q}) = \emptyset$, then this will be the case when n and S are sufficiently large.
We can also bring in a local condition. This is equivalent with requiring $P \in C(\mathbb{Q})$ to be mapped to certain cosets in $J(\mathbb{Q})/NJ(\mathbb{Q})$, for some N.

We can then use the procedure above with n a multiple of N and restricting to these cosets.

Conjecture 2”.
Let $Q \in J(\mathbb{Q})$. If no $P \in C(\mathbb{Q})$ maps into $Q + NJ(\mathbb{Q})$, then the procedure will prove that (for S and $n \in \mathbb{N}$ large enough).

Conjecture 2” is slightly stronger than Conjecture 2’.

Consequence:
If C satisfies Conjecture 2” and $N \geq 1$, then we can decide whether $Q + NJ(\mathbb{Q})$ contains a point from C.
Effective Mordell?

Given $O \in C(\mathbb{Q})$ and generators of $J(\mathbb{Q})$, here is a tentative procedure.

1. Find $N \geq 1$ such that $C(\mathbb{Q}) \rightarrow J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective (Minhyong).

2. For each coset, decide if it is in the image (Mordell-Weil sieve).

We can attempt the second step, and if Conjecture 2” is satisfied, we will be successful. (Otherwise, the procedure will not terminate.)

Question.
Is there an N for step 1 that only depends on the genus?
Chabauty

In the Chabauty situation, the first step can be done as follows.

Let $\omega \in \Omega_C(\mathbb{Q}_p)$ be a differential killing $J(\mathbb{Q})$.
If the reduction $\bar{\omega}$ does not vanish on $C(\mathbb{F}_p)$ and $p > 2$,
then each residue class contains at most one rational point.

This implies that $C(\mathbb{Q}) \to J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective, where $N = \#J(\mathbb{F}_p)$.

Heuristically, the set of primes p satisfying this condition
should have positive density (at least when J is simple).

In practice, this works very well for $g = 2$ and $r = 1$.