DOCUMENTATION FOR THE RATPOINTS PROGRAM

MICHAEL STOLL

1. INTRODUCTION

This paper describes the ratpoints program. This program tries to find all
rational points within a given height bound on a hyperelliptic curve in the most
efficient way possible.

2. HISTORY AND ACKNOWLEDGEMENTS

This program goes back to an implementation of the ‘quadratic sieving’ idea by
NoAM ELKIES that was around in the early 1990s. My own first contribution
was to replace the char arrays that were used to store the sieving information by
bit arrays, in 1995. COLIN STAHLKE then made use of the gmp library, so that
points could be checked exactly, and implemented the selection of sieving primes
according to their likely success rate, in 1998. After that, I successively put in
numerous improvements (and some bug fixes). For details of how the program
works, see Section 8 below.

Along with NoAM ELKIES and COLIN STAHLKE, I would like to thank JOHN
CREMONA and SOPHIE LABOUR for bug reports and suggestions for improve-
ments.

3. AVAILABILITY

The ratpoints-2.1.3 package can be downloaded from my homepage, see [rat].

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantibility or fitness for
a particular purpose. See the GNU General Public License for more details.

You should receive a copy of the GNU General Public License along with this
program.

If not, see http://www.gnu.org/licenses/.

Date: March 10, 2011.

DOCUMENTATION FOR THE RATPOINTS PROGRAM 2

4. INSTALLATION

This section describes the installation procedure under Linux.

4.1. Extract the archive.
> tar xzf ratpoints-2.1.3.tar.gz

This sets up a directory ratpoints-2.1.3 containing the various files that belong
to the installation.

4.2. Build the program and library.
Do

> cd ratpoints-2.1.3

> make all

This will build the library 1libratpoints.a and the executable ratpoints.

By default, the program will use primes up to 127. If you intend to do compu-
tations with large height bounds or with curves that you expect to have many
points, it may make sense to increase the range of primes. This can be achieved
via

> make all PRIME_SIZE=8
perhaps after a
> make distclean

to remove the files that were generated previously. The PRIME_SIZE argument can
be given any value from 5 to 10; otherwise it is taken to be 7. The precise meaning
is that the program will work with primes < 2%, when PRIME SIZE = s.

The program now uses SSE instructions if available. If you don’t want this, do

> make distclean
> make all CCFLAGS=-UUSE_SSE

4.3. Run a test.
Run

> make test

in the working directory. This will build an executable rptest and then run (and
time) it. Finally, the output (which was written to a file rptest.out) is compared
against testbase, which contains the output of a sample run. The two should be
identical.

DOCUMENTATION FOR THE RATPOINTS PROGRAM 3

4.4. Install.

If you like, you can install the library, executable and header file on your system.

> su
> make install

The executable is copied to /usr/local/bin/, the library to /usr/local/lib/,
and the header file to /usr/local/include/. You can change the /usr/local
prefix by giving the option INSTALL DIR=... to make install.

4.5. Debugging.

In case you found a bug and would like to find out where it comes from, or if you
just want to see exactly what the program is doing, you can do

> make debug

in the working directory. This will build an executable ratpoints-debug, which,
when run, will dump loads of output on the screen, so it is best to send the output
to a file, which you can then study at leisure.

4.6. Cleaning up.

In order to get rid of the temporary files, do

> make clean
To remove everything except the files from the archive, use

> make distclean

4.7. Requirements.

You need a C compiler (like gcc, which is the default specified for the CC variable
in Makefile; if necessary, it can be changed there).

In addition to the standard libraries, the program also requires the gmp (GNU
multi-precision) library [gmp].

4.8. List of files.

The archive contains the following files.

e Makefile

e ratpoints.h — the header file for programs using ratpoints

e rp-private.h, primes.h — header files used internally

e gen find points_h.c, gen_init_sieve_h.c — short programs that write

additional header files depending on the system configuration

e sift.c, init.c, sturm.c, find points.c — the source code for the
ratpoints library

e main.c, rptest.c — the source code for the ratpoints and rptest ex-
ecutables, respectively

e testdata.h, testbase — data for the test run

DOCUMENTATION FOR THE RATPOINTS PROGRAM 4

e ratpoints-doc.pdf — this documentation file
e gpl-2.0.txt — the GNU license that applies to this program.

5. HOwW TO USE ratpoints

5.1. Basic operation.

Let

C:y?=a,2" +ap 12" '+ + a1z +ag
be your curve, and let H be the bound for the denominator and absolute value of
the numerator of the z-coordinate of the points you want to find. The command
to search for the points is then

> ratpoints ’ag a; ...an—1 ay,’ H

The first argument to ratpoints is the list of the coefficients, which have to be
integers, are separated by spaces, and are listed starting with the constant term.
There is no bound on the size of the coefficients; they are read as multi-precision
integers.

The degree n of the polynomial is limited to RATPOINTS MAX DEGREE (which is
defined in ratpoints.h), which is set to 100 by default.

The program will give an error message when the polynomial (considered as a
binary form of the smallest even degree > n) is not squarefree (e.g., if you specify
two leading zero coefficients).

The following subsections discuss how to modify the standard behavior. This is
achieved by adding options after the two required arguments. Some of the options
have arguments, others don’t; the ordering of the options and option-argument
pairs is arbitrary (except for options with opposite effect, where the last one given
counts, and for the specification of the search intervals, which must be in order).

5.2. Early abort.

By default, ratpoints will search the whole region that you specify and print all
the points it finds. If you just want to find one point (for example when dealing
with 2-covering curves of elliptic curves), you can tell the program to quit after it
has found one point via the -1 option, e.g.,

> ratpoints ’-18 116 48 -12 30’ 60000000 -1

If you don’t want to see points at infinity, specify the -i option. The two options
can be combined: -i -1 will stop the program after it has found one finite point.

5.3. Changing the output.

By default, ratpoints prints some general information before and after the points,
which are given in the form (z : y : z), one per line. Here, (z : y : 2) are
the coordinates of the point considered as a point in the (1, [n/2],1)-weighted
projective plane, which is the natural ambient space for the curve. The coordinates
are integers with « and z coprime and z > 0, or z = 0 and = = 1 (for points at
infinity).

DOCUMENTATION FOR THE RATPOINTS PROGRAM 5

There are various ways to change this behavior.

e To suppress all output except the points, use -q (for quiet).

e To add some more output explaining what the program is doing, use -v
(for verbose). This has no effect if the -q option is also given.

e To suppress printing of the points, use -z.

e If you only want to list the z-coordinates of point pairs rather than indi-
vidual points, use -y.

e There are four options that influence the format in which the points are

printed:
-f format -fs string-before —fm string-between —fe string-after

The arguments to all of them are strings; "\n", "\t", "\\" and "\%" are
recognized and do what you expect. The format string can contain markers
hx, hy, hz that will be replaced with the x, y, and z-coordinate of the point,
respectively. The defaults are empty for string-before, string-between and
string-after, and " (%x : %Gy : %z)\n" for format when -y is not specified;
otherwise " (%x : %z)\n".

The effect is as follows. Before any point is printed, string-before is output.
Then every point is printed according to format. Between any two points,
string-between is output, and after the last point, string-after is output.

As an example, consider the effect of
-f " [%X,%y,%z] " _fg u{u —fm " s " —fe "}\Il"

5.4. Restricting the search domain.

There are two ways to restrict the domain of the search. The first is to restrict
the range of denominators considered. This is done via

-d1 dyiy ~dU Aoy -
For example, to only look for integral points, you can say —du 1. By default, the
lower limit is 1 and the upper limit is H.

The other way is to restrict the search to a union of (closed) intervals. If you only
want to search for points in

[ll,ul] U [ZQ,UQ] J---u [lk,uk] y

you can specify this in the form

-1l uwu -1l uuy...-11l; —uuy .
The first -1 option is optional; [; defaults to —oo. Similarly the last —u option
is optional, and u; defaults to +o00. The number k of intervals is bounded by
RATPOINTS MAX DEGREE (usually, 100).

5.5. Setting the parameters for the sieve.

It is possible to change the number of primes that are used in the various stages
of the algorithm. This is done by the following options.
-pM-NN-nn

DOCUMENTATION FOR THE RATPOINTS PROGRAM 6

This sets the number of (odd) primes that are considered for the sieve to M, the
number of primes that are actually used for the sieve to N, and the number of
primes used in the first sieving stage to n. The program will, if necessary, reduce
M, N, and n (in this order) to ensure that n < N < M < RATPOINTS_NUM_PRIMES.
The latter is usually 30 (the number of odd primes < 27), but will be 53 (the
number of odd primes < 2%) if PRIME_SIZE is set to 8, etc.

There are two more parameters that can be set.
-F D

sets the maximal number of ‘forbidden divisors’. If the degree is even and the
leading coefficient is not a square, then the denominator of any x-coordinate of a
rational point cannot be divisible by a prime p such that the leading coefficient
is a non-square mod p. If the leading coefficient is divisible by p, but not a
p-adic square, the denominator cannot be divisible by some power of p. The
program constructs a list of such forbidden divisors against which to check the
denominators, and this option specifies how many of these should be used.

The other option is

-SS or -s.
In the first form, it sets the number of refinement (interval halving) steps in the
isolation of the real components to S. This part of the program computes a Sturm
sequence for the polynomial and uses it in order to find a union of intervals that
contains the intervals of positivity of the polynomial. This is done by a successive
subdivision of the interval |—oo, 4+00[. The number S sets the recursion depth. S
can be omitted; then it is given a default value. The option -s skips the Sturm
sequence computation completely. This also has the effect of removing most of
the check for squarefreeness.

5.6. Switching off optimizations.

The options -k and -j can be used to prevent the program from reversing the
polynomial, which it usually does if this will lead to faster operation (-k), and to
prevent the program from using the Jacobi symbol test on the denominators (-j).
This last test extends the ‘forbidden divisors’” method described in Subsection 5.5
above by computing the Jacobi symbol (I/d), where [is the leading coefficient
and d is the odd and coprime-to-/ part of the denominator. If the symbol is —1,
the denominator need not be considered. The use of these options may be ques-
tionable, unless you want to see how much performance is gained by using these
optimizations.

5.7. Switching off exact testing of points.

The option -x will prevent the program from checking the potential points that
survive the sieve whether they really give rise to rational points. This implies that
the points that are output may not actually be points. It also effectively sets the
-y option, since the y-coordinates are not computed.

DOCUMENTATION FOR THE RATPOINTS PROGRAM 7

5.8. Overriding previous options.

The options -I, =Y, -Z, =S, -K, -J, -X can be used to cancel the effect of the
corresponding lower-case option (and thereby restore the default behavior), when
this occurs earlier in the list of options. This may be useful if you want to set a
default behavior that is different from what the program does out-of-the-box (e.g.,
in a shell script), but want the caller to be able to override this change.

6. HOwW TO USE THE LIBRARY

It is possible to use the ratpoints machinery from within your own programs. The
library libratpoints.a provides the following functions.

long find_points(ratpoints_args*,
int proc(long, long, const mpz_t, voidx, intx),
voidx) ;

void find_points_init(ratpoints_args*);

long find_points_work(ratpoints_argsx*,
int proc(long, long, const mpz_t, void*, intx),
voidx) ;

void find_points_clear(ratpoints_argsx*);

The passing of arguments to these functions is via the ratpoints_args structure,
which is defined as follows.

typedef struct { mpz_t *cof; long degree; long height;
ratpoints_interval *domain; long num_inter;
long b_low; long b_high; long spl; long sp2;
long array_size;
long sturm; long num_primes; long max_forbidden;
unsigned int flags; ...}
ratpoints_args;

The dots at the end stand for additional fields that are used internally and are not
of interest here. When calling find _points, the cof field must point to an array
of size degree + 1 of properly initialized gmp integers; these are the coefficients
of the polynomial. The program can alter the values of the integers in this array.
To prevent this, set the RATPOINTS_NO_REVERSE bit in flags; this may result in a
loss of performance, though.

height gives the height bound. It is an error for the degree or the height bound to
be nonpositive; in this case the function returns the value RATPOINTS _BAD_ARGS.

The field domain must contain a pointer to an array of ratpoints_interval
structures of length at least num_inter plus degree. This array gives (in its first
num_inter entries) the intervals for the search region. The type ratpoints_interval
is just

DOCUMENTATION FOR THE RATPOINTS PROGRAM 8

typedef struct {double low; double up;} ratpoints_interval;

the meaning of this should be clear. In ratpoints, this is set via the -1 and -u
options. Usually, you do not want to restrict the range of x-coordinates; then you
set num_inter = 0 (but you still have to fill domain with a valid pointer to at
least degree intervals, unless you set sturm to a negative value!) The program
may alter the values in the array domain points to, unless sturm has a negative
value (which may lead to a performance loss).

b_low and b_high carry the lower and upper bounds for the denominator; if non-
positive, they are set to 1 and the height bound, respectively. In ratpoints, these
fields are set by the -d1 and -du options.

spl and sp2 specify the number of primes to be used in the first sieving stage and
in both sieving stages together, respectively. If negative, they are set to certain
default values. In ratpoints, these fields are set by the -n and -N options.
Similar statements are true for num primes (option -p), sturm (options -s, -S)
and max_forbidden (option -F). The field array_size specifies the maximal size
(in long words) of the array that is used in the first sieving stage. If non-positive,
it is set to a default value. The various default values are defined at the beginning
of the header file ratpoints.h, where also the maximal degree of the polynomial
is set.

The flags field holds a number of bit flags.

e RATPOINTS NO_CHECK — when set, do not check whether the surviving x-
coordinates give rise to rational points (set by the -x option to ratpoints).

e RATPOINTS NO_Y — only list z-coordinates (in the form (z : 2z) € P}(Q))
instead of actual points (with a y-coordinate); this is set by the -y option
to ratpoints.

e RATPOINTS _NO REVERSE — when set, do not allow reversal of the polyno-
mial (set by the -k option to ratpoints).

e RATPOINTS_NO_JACOBI — when set, prevent the use of the Jacobi symbol

test (set by the -j option to ratpoints).

RATPOINTS_VERBOSE — when set, causes the procedure to print some out-

put on what it is doing (set by the -v option to ratpoints).

There are some other flags that are used internally. One of them might be of
interest:

e RATPOINTS_REVERSED — when set after the function call, this indicates
that the polynomial has been reversed (and the contents of the cof array
have been modified).

The main vehicle for passing information back to the caller is the proc function
argument together with the pointer info. This function

int proc(long x, long z, const mpz_t y, void *info, int *quit)
is called whenever a point was found. x, y and z are the coordinates of the point
(where y is a gmp integer). info is the pointer that was passed to find points;
this can be used to store information that should persist between calls to proc. If

DOCUMENTATION FOR THE RATPOINTS PROGRAM 9

*xquit is set to a non-zero value, this indicates that find _points should abort the
point search and return immediately; otherwise the search continues. The return
value is taken as a weight for counting the points; usually it will be 1.

The usual framework for using find _points is as follows.

...

#include "ratpoints.h"

...

mpz_t c[RATPOINTS_MAX_DEGREE+1]; /* The coefficients of f */
ratpoints_interval domain[2+*RATPOINTS_MAX_DEGREE] ;
/* This contains the intervals representing the
search region */

/KoK sk ok sk sk ok ok sk ok ok sk ok ok sk K ok ok k3 ok sk K ok ok K 3 ok ok K ok ok sk K ok ok sk 3 ok ok K ok ok sk ok ok sk ok K ok ok K sk ok ok ok ok ok

* function that processes the points *
sk sk sk ok ok ok ok o ok ok sk sk sk sk sk sk ok o o ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk o sk sk ok sk sk sk sk sk sk ok /

typedef struct {...} data;

int process(long x, long z, const mpz_t y, void *infoO, int *quit)
{ data *info = (data *)infoO;

return(l);

b

/KoK sk ok ok sk ok ok sk ok ok sk ok ok sk K ok ok K 3 ok sk K ok ok K 3 ok ok sk 3k ok sk K ok ok K 3 ok sk K ok ok K ok ok ok ok K K ok ok K ok ok ok ok ok
* main *
st ok ok ok ok ok ok sk ok ok ok s ok ok sk ok ok K ok ok ok ok ok sk 3k ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok /

int main(int argc, char *argv[])
{

long total, n;

ratpoints_args args;

long degree = 6;

long height = 16383;

long sieve_primesl = RATPOINTS_DEFAULT_SP1;

long sieve_primes2 = RATPOINTS_DEFAULT_SP2;

long num_primes = RATPOINTS_DEFAULT_NUM_PRIMES;
long max_forbidden = RATPOINTS_DEFAULT_MAX_FORBIDDEN;
long b_low =1;

long b_high height;

DOCUMENTATION FOR THE RATPOINTS PROGRAM

long sturm_iter =
long array_size
int no_check
int no_y

int no_reverse =
int no_jacobi =
int no_output

unsigned int flags

RATPOINTS_DEFAULT_STURM;
RATPOINTS_ARRAY_SIZE;

)
)
3

b

O O O OO

b

0;

data *info = malloc(sizeof(data));

/* initialise multi-precision integer variables */
for(n = 0; n <= degree; n++) { mpz_init(c[n]); }

C...)

{ /* set up polynomial */
long k;
for(k = 0; k¥ < 7; k++) { mpz_set_si(clk], ...); }
args.cof = &c[0];
args.degree = 6;
args.height = height;
args.domain = &domain[0];
args.num_inter = 0;
args.b_low = b_low;
args.b_high = b_high;
args.spl = sieve_primesl;
args.sp2 = sieve_primes2;

args.array_size
args.sturm
args.num_primes
args.max_forbidden
args.flags

info->... = ...;

...)

= array_size;

= sturm_iter;

= num_primes;
max_forbidden;
= flags,

total = find_points(&args, process, (void *)info);
if (total == RATPOINTS_NON_SQUAREFREE)

{ ...}

if (total == RATPOINTS_BAD_ARGS)

{ ...}

10

DOCUMENTATION FOR THE RATPOINTS PROGRAM 11

b

/* clean up multi-precision integer variables x/
for(n = 0; n <= degree; n++) {mpz_clear(c[n]); }

return(0) ;

}

If points are to be searched on many curves, then it is slightly more efficient to
use the sequence

args.degree = degree; /* this information is needed */
find_points_init(&args);

for(...)
{ ...

total = find_points_work(&args, process, (void *)info);
}

find_points_clear(&args);

This avoids the repeated allocation and freeing of memory.

For practical examples, see main.c (the code that wraps find points for the
command line program ratpoints) or rptest.c (which runs find points on
some test data).

7. FINE-TUNING THE PARAMETERS

For large computations, it may be a good idea to try to find the best (or at least, a
good) combination of parameters for the given kind of data. The default values are
chosen for optimal performance on an Intel (R) Core(TM)2 CPU T720002.00GHz,
for random genus 2 curves with small coefficients and a height bound of 2! — 1.
For your machine and input data, other values may be better. You can replace the
testdata.h file with your own collection of test data (and edit rptest.c if neces-
sary to adapt the degree and height settings) and then time ./rptest -z (the -z
option suppresses the output) for various combinations of the parameter settings.
rptest accepts most of the optional parameters of ratpoints, in particular the
-p, -N, -n, -F and -S parameters, so you can easily change the parameters used
on the command line. In addition, there is an option -h H to change the default
height bound.

Once you have found a good set of parameter values for your application, you
can hard-code them as defaults into ratpoints by changing the definitions in

DOCUMENTATION FOR THE RATPOINTS PROGRAM 12

ratpoints.h (and then make distclean all test), or you can use them to fill
the ratpoints_args structure for your call to find points.

As a number to compare against, on my laptop with the CPU above, make test
takes about 6.6 seconds. To put this into perspective, note that this means that
some 24 points are tested on average per CPU cycle.

8. IMPLEMENTATION

8.1. Overview.

Let F(z, z) be the binary form of even degree corresponding to the polynomial on
the right hand side of the curve equation. The basic idea is to let run b from 1 to
the height bound H, for each b, let @ run from —H to H, and for each coprime
pair (a,b) check if F(a,b) is a square.

Of course, in this form, this would take a very long time. To speed up the process,
we try to eliminate quickly as many pairs (a,b) as possible before the actual test.
This can be done by ‘quadratic sieving’” modulo several primes: if F'(a,b) is a
square, it certainly has to be a square mod p, and so we can rule out all (a,b) that
do not satisfy this condition. Another ingredient is to represent (for a fixed b)
the various values of a by bits and treat all the bits in a long word (32 or 64, as
the case may be, or 128 when SSE instructions are used) in parallel. For this, we
organize the sieving information for each prime p into p arrays of p words each,
one such array for every b mod p, such that the jth bit in this array is set if and
only if F'(j,b) is a square mod p.

For each ‘denominator’ b, we then set up an array of words whose bits represent
the range —H < a < H (aligned so that a = 0 corresponds to the Oth bit of a
word); the bits are initially set. Then for each of the sieving primes p, we perform
a bit-wise and operation between this array and the sieving information at p. In
a first stage, this is done on the whole array; after this first stage, each remaining
(‘surviving’) non-zero word in the array is subject to tests with more primes. If
some bits are still set after this second stage of sieving, the corresponding pairs
(a,b) (if coprime) are then checked exactly.

In the following subsections, we discuss a number of improvements that were made.

8.2. Sorting the primes.

This idea is due to COLIN STAHLKE. We do not just take the first so many primes
in increasing order for the sieving, but we first compute the number of points the
curve has mod p for a number of primes p and then sort the primes according to
the fraction of x-coordinates that give points. We then take those primes for the
sieving that have the smallest fraction of ‘surviving’ xz-coordinates. In this way,
we need fewer sieving primes to achieve a comparable reduction of point tests.

8.3. Using connected components.

We note that we can only have points when F'(a,b) is non-negative. If we can
determine intervals on which f(z) = F(z,1) is negative, then we do not have to

DOCUMENTATION FOR THE RATPOINTS PROGRAM 13

look for points in these intervals. The necessary computations can be performed
exactly, by computing a Sturm sequence for f and counting the number of sign
changes at various points, see [C'oh, Thm. 4.1.10]. This can in particular tell us
whether F' is negative definite, in which case we have already proved that there
are no rational points in the curve. If there are real zeros, we use a subdivision
method in order to find a collection of intervals containing the projections of the
connected components of the curve over R.

8.4. Using 2-adic information.

JOHN CREMONA suggested that in some cases, one can determine beforehand that
all points will have odd ‘numerators’ a, and so we can pack the bits more tightly
by only representing odd numbers. This approach can be extended. We first find
all solutions mod 16 (higher powers of 2 would be possible, but not very likely to
give an improvement). Then for every residue class mod 16 of the denominator b,
we can find the residue classes mod 16 of potential numerators a. If there are
none, then we can eliminate b as a denominator altogether. If all potential a’s are
even or odd (this will always be the case for even denominators), we can restrict
the sieving to such numerators.

8.5. Elimination of denominators.

Depending on the equation, certain denominators can be excluded. We have seen
an instance of this in the previous subsection, but we can also work with odd
primes.

8.5.1. Odd degree and £monic. If the polynomial has odd degree and leading
coefficient +1, then the denominator has to be a square. This reduces the time
complexity tremendously.

8.5.2. Odd degree general. In general, when f has odd degree, the denominator
has to be ‘almost’ a square: it must be a square times a (squarefree) divisor of the
leading coefficient, and there are further restrictions on the parity of the valuation
at p, for p dividing the leading coefficient, when this valuation is sufficiently large.
This gives the same type of time complexity as in the monic case, but with a larger
constant.

8.5.3. Fven degree with non-square leading coefficient. Here we can exclude de-
nominators divisible by a prime p such that the leading coefficient is a non-square
mod p. We can also in some cases rule out denominators divisible by a certain
power of p when p is a prime that divides the leading coefficient (if the leading
coefficient is not a p-adic square). While computing the sieving information, we
make a list of such primes and prime powers, which we then use later to eliminate
denominators. In addition, we use the necessary condition that the Jacobi symbol
(é) must be +1, where [is the leading coefficient and ¥’ is the part of b coprime
to 2[.

DOCUMENTATION FOR THE RATPOINTS PROGRAM 14

8.6. Reversing the polynomial.

The exclusion of denominators described above is more or less effective, depending
on the situation; it is the better the earlier the case was described. Since the height
of the points does not change under the transformation (z,y) — (1/z,y/x"/?1),
we can as well search on the reversed polynomial F'(z,x). This will result in a
speed-up if the reversed polynomial belongs to a ‘better’ class than the original.

8.7. Some general remarks.

Modern processors are very fast when doing basic things like moving data around
between registers or simple arithmetic operations (addition, subtraction, shift, ...,
comparison). Even memory access can be fast when there is no cache miss. On
the other hand, integer division is a slow process. It turned out that quite some
improvement of the performance was possible by removing as many instances of
integer division operations as reasonably possible.

For example, we use ged and Jacobi symbol routines that rely (almost) entirely
on differences and shifts. We compute the residue classes of b modulo the various
sieving primes by addition of the difference from the last b and then correcting
by subtracting p a number of times if necessary, and we implement most of the
testing of ‘forbidden divisors’ of b using bit arrays similar to those used for sieving
the numerators.

8.8. Change log.
Version 2.0 was released January 9, 2008.

Version 2.0.1 was released July 7, 2008. It fixes a bug that prevented the -1’
option to work properly.

Version 2.1 was released March 9, 2009. It makes use of the SSE instructions,
so that the sieve can work on 128 bits in parallel (instead of on 64 or 32). On my
laptop (with an Intel Core2 processor), make test runs about 25% faster than
before.

Version 2.1.1 was released April 14, 2009. It fixes a bug that in some cases
prevented an early abort when *quit was set by the callback function. Thanks
to ROBERT MILLER for the bug report and the fix. In addition, it is now checked
that __WORDSIZE == 64 before SSE instructions are used (in rp-private.h), since
the program then assumes that a bit array consists of two unsigned longs. In
this context, __SSE2__ has been replaced by a new macro USE_SSE. A further fix
eliminates unncessesary copying of sieving information when SSE instructions are
not used (introduced in version 2.1). This was almost always harmless, but could
have resulted in memory corruption in the extreme case that all the information
had to be computed for all the primes.

Version 2.1.2 was released May 27, 2009. It fixes some memory leaks. Thanks
to ROBERT MILLER.

Version 2.1.3 was released September 21, 2009. The library function find_points
should now work without any bound on the degree of the polynomial. The degree

DOCUMENTATION FOR THE RATPOINTS PROGRAM 15

bound for the ratpoints executable is now set to 100 by default (specified by
RATPOINTS_MAX_DEGREE, used to be 10).

A bug in rptest.c (pointed out to me by Giovanni Mascellani and Randall Rath-
bun) that could lead to a segmentation fault was fixed on March 10, 2011.

REFERENCES

[Coh] H. Cohen, A course in computational algebraic number theory, Springer GTM 138, second
corr. printing, 1995.

[gmp] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/

[rat] The ratpoints-2.1.3 package. Available at
http://www.mathe2.uni-bayreuth.de/stoll/programs/ratpoints-2.1.3.tar.gz

MATHEMATISCHES INSTITUT, UNIVERSITAT BAYREUTH, 95440 BAYREUTH, GERMANY.
E-mail address: Michael.Stoll@uni-bayreuth.de

	1. Introduction
	2. History and Acknowledgements
	3. Availability
	4. Installation
	4.1. Extract the archive
	4.2. Build the program and library
	4.3. Run a test
	4.4. Install
	4.5. Debugging
	4.6. Cleaning up
	4.7. Requirements
	4.8. List of files

	5. How to use ratpoints
	5.1. Basic operation
	5.2. Early abort
	5.3. Changing the output
	5.4. Restricting the search domain
	5.5. Setting the parameters for the sieve
	5.6. Switching off optimizations
	5.7. Switching off exact testing of points
	5.8. Overriding previous options

	6. How to use the library
	7. Fine-tuning the parameters
	8. Implementation
	8.1. Overview
	8.2. Sorting the primes
	8.3. Using connected components
	8.4. Using 2-adic information
	8.5. Elimination of denominators
	8.6. Reversing the polynomial
	8.7. Some general remarks
	8.8. Change log

	References

