
DOCUMENTATION FOR THE RATPOINTS PROGRAM

MICHAEL STOLL

1 Introduction

This paper describes the ratpoints program. This program tries to find all rational points within
a given height bound on a hyperelliptic curve in the most efficient way possible.

2 History and Acknowledgments

This program goes back to an implementation of the ‘quadratic sieving’ idea by Noam Elkies that
was around in the early 1990s. My own first contribution was to replace the char arrays that
were used to store the sieving information by bit arrays, in 1995. Colin Stahlke then made use of
the gmp library, so that points could be checked exactly, and implemented the selection of sieving
primes according to their likely success rate, in 1998. After that, I successively put in numerous
improvements (and some bug fixes). For details of how the program works, see Section 8 below.

Along with Noam Elkies and Colin Stahlke, I would like to thank John Cremona and Sophie
Labour for bug reports and suggestions for improvements. Further thanks are due to Bill Al-
lombert for a first implementation of the use of 256-bit (and possibly 512-bit) registers.

3 Availability

The ratpoints-2.2.2 package can be downloaded from my homepage, see [rat], or from github

at https://github.com/MichaelStollBayreuth/ratpoints.

This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

You should receive a copy of the GNU General Public License along with this program.

If not, see http://www.gnu.org/licenses/.

4 Installation

This section describes the installation procedure under Linux.

4.1 Extract the archive

> tar xzf ratpoints-2.2.2.tar.gz

This sets up a directory ratpoints-2.2.2 containing the various files that belong to the installa-
tion.

Date: May 15, 2023.

1

https://github.com/MichaelStollBayreuth/ratpoints
http://www.gnu.org/licenses/

4.2 Build the program and library

Do

> cd ratpoints-2.2.2

> make all

This will build the library libratpoints.a, the executable ratpoints, and also run pdflatex to
generate this documentation.

By default, the program will use primes up to 127. If you intend to do computations with large
height bounds or with curves that you expect to have many points, it may make sense to increase
the range of primes. This can be achieved via

> make all PRIME_SIZE=8

perhaps after a

> make distclean

to remove the files that were generated previously. The PRIME SIZE argument can be given any
value from 5 to 10; otherwise it is taken to be 7. The precise meaning is that the program will
work with primes < 2s, when PRIME SIZE = s.

The program now uses SSE instructions if available, working with 128-bit registers. Compared to
using word-size registers, this results in a noticeable speed-up. If you don’t want this, do

> make distclean

> make all CCFLAGS=-UUSE_SSE

As of version 2.2, ratpoints can also use 256-bit AVX registers. To activate this, change the line

CCFLAGS1 = ${CCFLAGS128}

in Makefile into

CCFLAGS1 = ${CCFLAGS256}

before building ratpoints. This usually gives a further speed-up. You may have to change -mavx2

in the line

CCFLAGS256 = -DUSE_AVX -mavx2

into -mavx or leave it out altogether, depending on the capabilities of your CPU. You will notice
that AVX2 (or AVX) is not supported, when the executable throws an ‘unknown instruction’ error
or similar.

4.3 Run a test

Run

> make test1

in the working directory. This will build an executable rptest and then run (and time) it. Finally,
the output (which was written to a file rptest.out) is compared against testbase, which contains
the output of a sample run. The two should be identical; otherwise the message Test failed!

will be displayed (on its own on a line).

> make test2

2

calls ratpoints on a curve with lots of rational points and with a fairly large height bound, times
it, and compares the output to what is expected. This may take a few minutes, so be patient!

> make timing

times ratpoints on some curve with height bound 400 000. This maybe useful for comparisons.

Finally,

> make test

does all three of the above.

4.4 Install

If you like, you can install the library, executable and header file on your system.

> sudo make install

The executable is copied to /usr/local/bin/, the library to /usr/local/lib/, and the header file
to /usr/local/include/. You can change the /usr/local prefix via

> make install INSTALL_DIR=...

4.5 Debugging

In case you found a bug and would like to find out where it comes from, or if you just want to see
exactly what the program is doing, you can do

> make debug

in the working directory. This will build an executable ratpoints-debug, which, when run, will
dump loads of output on the screen, so it is best to send the output to a file, which you can then
study at leisure.

4.6 Cleaning up

In order to get rid of the temporary files, do

> make clean

To remove everything except the files from the archive, use

> make distclean

4.7 Requirements

You need a C compiler (like gcc, which is the default specified for the CC variable in Makefile; if
necessary, it can be changed there).

In addition to the standard libraries, the program also requires the gmp (GNU multi-precision)
library [gmp].

3

4.8 List of files

The archive contains the following files.

• Makefile

• ratpoints.h — the header file for programs using ratpoints
• rp-private.h, primes.h — header files used internally
• gen find points h.c, gen init sieve h.c — short programs that write additional header

files depending on the system configuration
• sift.c, init.c, sturm.c, find points.c — the source code for the ratpoints library
• main.c, rptest.c — the source code for the ratpoints and rptest executables, respec-

tively
• testdata.h, testbase, testbase2 — data for the test runs
• ratpoints-doc-2.2.pdf — this documentation file
• gpl-2.0.txt — the GNU license that applies to this program.

5 How to use ratpoints

5.1 Basic operation

Let

C : y2 = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

be your curve, and let H be the bound for the denominator and absolute value of the numerator
of the x-coordinate of the points you want to find. The command to search for the points is then

> ratpoints ’a0 a1 . . .an−1 an’ H

The first argument to ratpoints is the list of the coefficients, which have to be integers, are
separated by spaces, and are listed starting with the constant term. There is no bound on the size
of the coefficients; they are read as multi-precision integers.

The degree n of the polynomial is limited to RATPOINTS MAX DEGREE (defined in ratpoints.h),
which is set to 100 by default.

The program will give an error message when the polynomial (considered as a binary form of the
smallest even degree ≥ n) is not squarefree (e.g., if you specify two leading zero coefficients).

The following subsections discuss how to modify the standard behavior. This is achieved by adding
options after the two required arguments. Some of the options have arguments, others don’t; the
ordering of the options and option-argument pairs is arbitrary (except for options with opposite
effect, where the last one given counts, and for the specification of the search intervals, which
must be in order).

5.2 Early abort

By default, ratpoints will search the whole region that you specify and print all the points it
finds. If you just want to find one point (for example when dealing with 2-covering curves of
elliptic curves), you can tell the program to quit after it has found one point via the -1 option, e.g.,

> ratpoints ’-18 116 48 -12 30’ 60000000 -1

If you don’t want to see points at infinity, specify the -i option. The two options can be combined:
-i -1 will stop the program after it has found one finite point.

4

5.3 Changing the output

By default, ratpoints prints some general information before and after the points, which are
given in the form (x : y : z), one per line. Here, (x : y : z) are the coordinates of the point
considered as a point in the (1, ⌈n/2⌉, 1)-weighted projective plane, which is the natural ambient
space for the curve. The coordinates are integers with x and z coprime and z > 0, or z = 0 and
x = 1 (for points at infinity).
There are various ways to change this behavior.

• To suppress all output except the points, use -q (for quiet).

• To add some more output explaining what the program is doing, use -v (for verbose). This
has no effect if the -q option is also given.

• To suppress printing of the points, use -z.

• If you only want to list the x-coordinates of point pairs rather than individual points,
use -y.

• There are four options that influence the format in which the points are printed:
-f format -fs string-before -fm string-between -fe string-after

The arguments to all of them are strings; "\n", "\t", "\\" and "\%" are recognized and
do what you expect. The format string can contain markers %x, %y, %z that will be replaced
with the x, y, and z-coordinate of the point, respectively. The defaults are empty for string-
before, string-between and string-after, and "(%x : %y : %z)\n" for format when -y is not
specified; otherwise "(%x : %z)\n".

The effect is as follows. Before any point is printed, string-before is output. Then every
point is printed according to format. Between any two points, string-between is output, and
after the last point, string-after is output.

As an example, consider the effect of
-f "[%x,%y,%z]" -fs "{" -fm "," -fe "}\n"

5.4 Restricting the search domain

There are two ways to restrict the domain of the search. The first is to restrict the range of
denominators considered. This is done via
-dl dmin -du dmax .

For example, to only look for integral points, you can say -du 1. By default, the lower limit is 1
and the upper limit is H.
The other way is to restrict the search to a union of (closed) intervals. If you only want to search
for points in

[l1, u1] ∪ [l2, u2] ∪ · · · ∪ [lk, uk] ,

you can specify this in the form
-l l1 -u u1 -l l2 -u u2 . . . -l lk -u uk .

The first -l option is optional; l1 defaults to −∞. Similarly the last -u option is optional, and uk

defaults to +∞. The number k of intervals is bounded by RATPOINTS MAX DEGREE (usually, 100).

5.5 Setting the parameters for the sieve

It is possible to change the number of primes that are used in the various stages of the algorithm.
This is done by the following options.
-p M -N N -n n

5

This sets the number of (odd) primes that are considered for the sieve to M, the number of
primes that are actually used for the sieve to N, and the number of primes used in the first sieving
stage to n. The program will, if necessary, reduce M, N, and n (in this order) to ensure that
n ≤ N ≤ M ≤ RATPOINTS NUM PRIMES. The latter is usually 30 (the number of odd primes < 27),
but will be 53 (the number of odd primes < 28) if PRIME SIZE is set to 8, etc.

There are two more parameters that can be set.
-F D

sets the maximal number of ‘forbidden divisors’. If the degree is even and the leading coefficient
is not a square, then the denominator of any x-coordinate of a rational point cannot be divisible
by a prime p such that the leading coefficient is a non-square mod p. If the leading coefficient is
divisible by p, but not a p-adic square, the denominator cannot be divisible by some power of p.
The program constructs a list of such forbidden divisors against which to check the denominators,
and this option specifies how many of these should be used.

The other option is
-S S or -s .

In the first form, it sets the number of refinement (interval halving) steps in the isolation of the
real components to S. This part of the program computes a Sturm sequence for the polynomial
and uses it in order to find a union of intervals that contains the intervals of positivity of the
polynomial. This is done by a successive subdivision of the interval]−∞,+∞[. The number S sets
the recursion depth. S can be omitted; then it is given a default value. The option -s skips the
Sturm sequence computation completely. This also has the effect of removing most of the check
for squarefreeness.

5.6 Switching off optimizations

The options -k and -j can be used to prevent the program from reversing the polynomial, which
it usually does if this will lead to faster operation (-k), and to prevent the program from using
the Jacobi symbol test on the denominators (-j). This last test extends the ‘forbidden divisors’
method described in Subsection 5.5 above by computing the Jacobi symbol (l/d), where l is the
leading coefficient and d is the odd and coprime-to-l part of the denominator. If the symbol is −1,
the denominator need not be considered. The use of these options may be questionable, unless
you want to see how much performance is gained by using these optimizations.

5.7 Switching off exact testing of points

The option -x will prevent the program from checking the potential points that survive the sieve
whether they really give rise to rational points. This implies that the points that are output may not
actually be points. It also effectively sets the -y option, since the y-coordinates are not computed.

5.8 Overriding previous options

The options -I, -Y, -Z, -S, -K, -J, -X can be used to cancel the effect of the corresponding lower-
case option (and thereby restore the default behavior), when this occurs earlier in the list of
options. This may be useful if you want to set a default behavior that is different from what the
program does out-of-the-box (e.g., in a shell script), but want the caller to be able to override this
change.

6 How to use the library

It is possible to use the ratpoints machinery from within your own programs.

6

The library libratpoints.a provides the following functions.

long find_points(ratpoints_args*,

int proc(long, long, const mpz_t, void*, int*),

void*);

void find_points_init(ratpoints_args*);

long find_points_work(ratpoints_args*,

int proc(long, long, const mpz_t, void*, int*),

void*);

void find_points_clear(ratpoints_args*);

The passing of arguments to these functions is via the ratpoints args structure, which is defined
as follows.

typedef struct { mpz_t *cof; long degree; long height;

ratpoints_interval *domain; long num_inter;

long b_low; long b_high; long sp1; long sp2;

long array_size;

long sturm; long num_primes; long max_forbidden;

unsigned int flags; ...}

ratpoints_args;

The dots at the end stand for additional fields that are used internally and are not of interest here.
When calling find points, the cof field must point to an array of size degree + 1 of properly
initialized gmp integers; these are the coefficients of the polynomial. The program can alter the
values of the integers in this array. To prevent this, set the RATPOINTS NO REVERSE bit in flags;
this may result in a loss of performance, though.

height gives the height bound. It is an error for the degree or the height bound to be nonpositive;
in this case the function returns the value RATPOINTS BAD ARGS.

The field domain must contain a pointer to an array of ratpoints interval structures of length at
least num inter plus degree. This array gives (in its first num inter entries) the intervals for the
search region. The type ratpoints interval is just

typedef struct {double low; double up;} ratpoints_interval;

the meaning of this should be clear. In ratpoints, this is set via the -l and -u options. Usually,
you do not want to restrict the range of x-coordinates; then you set num inter = 0 (but you still
have to fill domain with a valid pointer to at least degree intervals, unless you set sturm to a
negative value!) The program may alter the values in the array domain points to, unless sturm has
a negative value (which may lead to a performance loss).

b low and b high carry the lower and upper bounds for the denominator; if non-positive, they are
set to 1 and the height bound, respectively. In ratpoints, these fields are set by the -dl and -du

options.

sp1 and sp2 specify the number of primes to be used in the first sieving stage and in both sieving
stages together, respectively. If negative, they are set to certain default values. In ratpoints, these
fields are set by the -n and -N options. Similar statements are true for num primes (option -p),
sturm (options -s, -S) and max forbidden (option -F). The field array size specifies the maximal
size (in bit arrays; a bit array contains 32, 64, 128, 256, . . . bits, depending on the configuration)

7

of the array that is used in the first sieving stage. If non-positive, it is set to a default value. The
various default values are defined at the beginning of the header file ratpoints.h, where also the
maximal degree of the polynomial is set.

The flags field holds a number of bit flags.

• RATPOINTS NO CHECK — when set, do not check whether the surviving x-coordinates give
rise to rational points (set by the -x option to ratpoints).

• RATPOINTS NO Y — only list x-coordinates (in the form (x : z) ∈ P1(Q)) instead of actual
points (with a y-coordinate); this is set by the -y option to ratpoints.

• RATPOINTS NO REVERSE — when set, do not allow reversal of the polynomial (set by the -k

option to ratpoints).
• RATPOINTS NO JACOBI — when set, prevent the use of the Jacobi symbol test (set by the -j

option to ratpoints).
• RATPOINTS VERBOSE — when set, causes the procedure to print some output on what it is

doing (set by the -v option to ratpoints).

There are some other flags that are used internally. One of them might be of interest:

• RATPOINTS REVERSED — when set after the function call, this indicates that the polynomial
has been reversed (and the contents of the cof array have been modified).

The main vehicle for passing information back to the caller is the proc function argument together
with the pointer info. This function
int proc(long x, long z, const mpz_t y, void *info, int *quit)

is called whenever a point was found. x, y and z are the coordinates of the point (where y is
a gmp integer). info is the pointer that was passed to find points; this can be used to store
information that should persist between calls to proc. If *quit is set to a non-zero value, this
indicates that find points should abort the point search and return immediately; otherwise the
search continues. This is how the -1 option works. The return value is taken as a weight for
counting the points; usually it will be 1.

The usual framework for using find points is as follows.

(...)

#include "ratpoints.h"

(...)

mpz_t c[RATPOINTS_MAX_DEGREE+1]; /* The coefficients of f */

ratpoints_interval domain[2*RATPOINTS_MAX_DEGREE];

/* This contains the intervals representing the

search region */

/***

* function that processes the points *

***/

typedef struct {...} data;

int process(long x, long z, const mpz_t y, void *info0, int *quit)

{ data *info = (data *)info0;

8

(...)

return(1);

}

/***

* main *

***/

int main(int argc, char *argv[])

{

long total, n;

ratpoints_args args;

long degree = 6;

long height = 16383;

long sieve_primes1 = RATPOINTS_DEFAULT_SP1;

long sieve_primes2 = RATPOINTS_DEFAULT_SP2;

long num_primes = RATPOINTS_DEFAULT_NUM_PRIMES;

long max_forbidden = RATPOINTS_DEFAULT_MAX_FORBIDDEN;

long b_low = 1;

long b_high = height;

long sturm_iter = RATPOINTS_DEFAULT_STURM;

long array_size = RATPOINTS_ARRAY_SIZE;

int no_check = 0;

int no_y = 0;

int no_reverse = 0;

int no_jacobi = 0;

int no_output = 0;

unsigned int flags = 0;

data *info = malloc(sizeof(data));

/* initialize multi-precision integer variables */

for(n = 0; n <= degree; n++) { mpz_init(c[n]); }

(...)

{ /* set up polynomial */

long k;

for(k = 0; k < 7; k++) { mpz_set_si(c[k], ...); }

args.cof = &c[0];

args.degree = 6;

args.height = height;

args.domain = &domain[0];

args.num_inter = 0;

args.b_low = b_low;

args.b_high = b_high;

9

args.sp1 = sieve_primes1;

args.sp2 = sieve_primes2;

args.array_size = array_size;

args.sturm = sturm_iter;

args.num_primes = num_primes;

args.max_forbidden = max_forbidden;

args.flags = flags;

info->... = ...;

(...)

total = find_points(&args, process, (void *)info);

if(total == RATPOINTS_NON_SQUAREFREE)

{ ... }

if(total == RATPOINTS_BAD_ARGS)

{ ... }

(...)

}

/* clean up multi-precision integer variables */

for(n = 0; n <= degree; n++) {mpz_clear(c[n]); }

return(0);

}

If points are to be searched on many curves of the same degree, then it is slightly more efficient to
use the sequence

args.degree = degree; /* this information is needed */

find_points_init(&args);

for(...)

{ ...

total = find_points_work(&args, process, (void *)info);

...

}

find_points_clear(&args);

This avoids the repeated allocation and freeing of memory.

For practical examples, see main.c (the code that wraps find points for the command line pro-
gram ratpoints) or rptest.c (which runs find points on some test data).

7 Fine-tuning the parameters

For large computations, it may be a good idea to try to find the best (or at least, a good) com-
bination of parameters for the given kind of data. The default values are chosen for optimal
performance on my current laptop for random genus 2 curves with small coefficients and a height
bound of 100 000. For your machine and input data, other values may be better. You can replace

10

the testdata.h file with your own collection of test data (and edit rptest.c if necessary to adapt
the degree and height settings) and then time ./rptest -z (the -z option suppresses the output)
for various combinations of the parameter settings. rptest accepts most of the optional parame-
ters of ratpoints, in particular the -p, -N, -n, -F and -S parameters, so you can easily change the
parameters used on the command line. In addition, there is an option -h H to change the default
height bound and an option -m m that causes the program to repeat the computations m times.

Once you have found a good set of parameter values for your application, you can hard-code them
as defaults into ratpoints by changing the definitions in ratpoints.h (and then make distclean

all test), or you can use them to fill the ratpoints args structure for your call to find points.

8 Implementation

8.1 Overview

Let F(x, z) be the binary form of even degree corresponding to the polynomial on the right hand
side of the curve equation. The basic idea is to let run b from 1 to the height bound H, for each b,
let a run from −H to H, and for each coprime pair (a, b) check if F(a, b) is a square.

Of course, in this form, this would take a very long time. To speed up the process, we try to
eliminate quickly as many pairs (a, b) as possible before the actual test. This can be done by
‘quadratic sieving’ modulo several primes: if F(a, b) is a square, it certainly has to be a square
mod p, and so we can rule out all (a, b) that do not satisfy this condition. Another ingredient is to
represent (for a fixed b) the various values of a by bits and treat all the bits in a ‘bit array’ (of 32
or 64 bits, as the case may be, or 128 or 256 bits when SSE/AVX instructions are used) in parallel.
For this, we organize the sieving information for each prime p into p arrays of p words each, one
such array for every b mod p, such that the jth bit in this array is set if and only if F(j, b) is a
square mod p.

For each ‘denominator’ b, we then set up an array of words whose bits represent the range −H ≤
a ≤ H (aligned so that a = 0 corresponds to the 0th bit of a word); the bits are initially set. Then
for each of the sieving primes p, we perform a bit-wise and operation between this array and the
sieving information at p. In a first stage, this is done on the whole array; after this first stage, each
remaining (‘surviving’) non-zero word in the array is subject to tests with more primes. If some
bits are still set after this second stage of sieving, the corresponding pairs (a, b) (if coprime) are
then checked exactly.

In the following subsections, we discuss a number of improvements that were made.

8.2 Sorting the primes

This idea is due to Colin Stahlke. We do not just take the first so many primes in increasing order
for the sieving, but we first compute the number of points the curve has mod p for a number of
primes p and then sort the primes according to the fraction of x-coordinates that give points. We
then take those primes for the sieving that have the smallest fraction of ‘surviving’ x-coordinates.
In this way, we need fewer sieving primes to achieve a comparable reduction of point tests.

8.3 Using connected components

We note that we can only have points when F(a, b) is non-negative. If we can determine intervals
on which f(x) = F(x, 1) is negative, then we do not have to look for points in these intervals.
The necessary computations can be performed exactly, by computing a Sturm sequence for f and
counting the number of sign changes at various points, see [Coh, Thm. 4.1.10]. This can in

11

particular tell us whether F is negative definite, in which case we have already proved that there
are no rational points in the curve. If there are real zeros, we use a subdivision method in order to
find a collection of intervals containing the projections of the connected components of the curve
over R.

8.4 Using 2-adic information

John Cremona suggested that in some cases, one can determine beforehand that all points will
have odd ‘numerators’ a, and so we can pack the bits more tightly by only representing odd
numbers. This approach can be extended. We first find all solutions mod 16 (higher powers
of 2 would be possible, but not very likely to give a significant improvement). Then for every
residue class mod 16 of the denominator b, we can find the residue classes mod 16 of potential
numerators a. If there are none, then we can eliminate b as a denominator altogether. If all
potential a’s are even or odd (this will always be the case for even denominators), we can restrict
the sieving to such numerators.

8.5 Elimination of denominators

Depending on the equation, certain denominators can be excluded. We have seen an instance of
this in the previous subsection, but we can also work with odd primes.

8.5.1 Odd degree and ±monic

If the polynomial has odd degree and leading coefficient ±1, then the denominator has to be a
square. This reduces the time complexity tremendously.

8.5.2 Odd degree general

In general, when f has odd degree, the denominator has to be ‘almost’ a square: it must be a
square times a (squarefree) divisor of the leading coefficient, and there are further restrictions
on the parity of the valuation at p, for p dividing the leading coefficient, when this valuation is
sufficiently large. This gives the same type of time complexity as in the monic case, but with a
larger constant.

8.5.3 Even degree with non-square leading coefficient

Here we can exclude denominators divisible by a prime p such that the leading coefficient is a
non-square mod p. We can also in some cases rule out denominators divisible by a certain power
of p when p is a prime that divides the leading coefficient (if the leading coefficient is not a p-
adic square). While computing the sieving information, we make a list of such primes and prime
powers, which we then use later to eliminate denominators. In addition, we use the necessary
condition that the Jacobi symbol

(
l
b ′

)
must be +1, where l is the leading coefficient and b ′ is the

part of b coprime to 2l.

8.6 Reversing the polynomial

The exclusion of denominators described above is more or less effective, depending on the situ-
ation; it is the better the earlier the case was described. Since the height of the points does not
change under the transformation (x, y) → (1/x, y/x⌈n/2⌉), we can as well search on the reversed
polynomial F(z, x). This will result in a speed-up if the reversed polynomial belongs to a ‘better’
class than the original.

12

8.7 Some general remarks

Modern processors are very fast when doing basic things like moving data around between regis-
ters or simple arithmetic operations (addition, subtraction, shift, . . . , comparison). Even memory
access can be fast when there is no cache miss. On the other hand, integer division is a slow
process. It turned out that quite some improvement of the performance was possible by removing
as many instances of integer division operations as reasonably possible.

For example, we use gcd and Jacobi symbol routines that rely (almost) entirely on differences and
shifts. We compute the residue classes of b modulo the various sieving primes by addition of the
difference from the last b and then correcting by subtracting p a number of times if necessary, and
we implement most of the testing of ‘forbidden divisors’ of b using bit arrays similar to those used
for sieving the numerators.

8.8 Change log

Version 2.0 was released January 9, 2008.

Version 2.0.1 was released July 7, 2008. It fixes a bug that prevented the ’-1’ option to work
properly.

Version 2.1 was released March 9, 2009. It makes use of the SSE instructions, so that the sieve
can work on 128 bits in parallel (instead of on 64 or 32). On my laptop (with an Intel Core2
processor), make test runs about 25% faster than before.

Version 2.1.1 was released April 14, 2009. It fixes a bug that in some cases prevented an early
abort when *quit was set by the callback function. Thanks to Robert Miller for the bug report and
the fix. In addition, it is now checked that __WORDSIZE == 64 before SSE instructions are used (in
rp-private.h), since the program then assumes that a bit array consists of two unsigned longs.
In this context, __SSE2__ has been replaced by a new macro USE_SSE. A further fix eliminates
unnecessary copying of sieving information when SSE instructions are not used (introduced in
version 2.1). This was almost always harmless, but could have resulted in memory corruption in
the extreme case that all the information had to be computed for all the primes.

Version 2.1.2 was released May 27, 2009. It fixes some memory leaks. Thanks to Robert Miller.

Version 2.1.3 was released September 21, 2009. The library function find_points should now
work without any bound on the degree of the polynomial. The degree bound for the ratpoints

executable is now set to 100 by default (specified by RATPOINTS_MAX_DEGREE, used to be 10).

A bug in rptest.c (pointed out to me by Giovanni Mascellani and Randall Rathbun) that could
lead to a segmentation fault was fixed on March 10, 2011.

Version 2.2 was released January 9, 2022. The main change is that ratpoints can now also
work with 256-bit (and, in principle, 512-bit) registers when the CPU has the relevant capabili-
ties. Thanks to Bill Allombert for doing a first implementation of this. In addition, the code has
been cleaned up to some extent (e.g., the variants according to register sizes are now completely
dealt with through macros defined in rp-private.h), and some more comments have been added.
There are also some further optimizations; for example, the first sieving phase now uses many of
the SSE/AVX registers in parallel, and on some architectures, the code uses a faster implementa-
tion for the test whether a bit array is zero. On my current laptop, the new code (using 256-bit
words) is about twice as fast as the old one (2.1.3 using 128-bit words).

Version 2.2.1 was released January 18, 2022. This fixes a small bug that was introduced in the
previous version, which could lead to the program missing points at the upper end of the search
interval for the numerators. Thanks to Bill Allombert.

13

Version 2.2.2 was released May 15, 2023. This fixes a small bug that led to the polynomials being
reversed incorrectly when the degree is odd. Thanks to Nicolas Mascot and Bill Allombert.

References

[Coh] H. Cohen, A course in computational algebraic number theory, Springer GTM 138, second corr. printing, 1995.
[gmp] The GNU Multiple Precision Arithmetic Library, http://gmplib.org/
[rat] The ratpoints-2.2.2 package. Available at

http://www.mathe2.uni-bayreuth.de/stoll/programs/ratpoints-2.2.2.tar.gz

MATHEMATISCHES INSTITUT, UNIVERSITÄT BAYREUTH, 95440 BAYREUTH, GERMANY.

Email address: Michael.Stoll@uni-bayreuth.de

14

http://gmplib.org/
http://www.mathe2.uni-bayreuth.de/stoll/programs/ratpoints-2.2.2.tar.gz

	Introduction
	History and Acknowledgments
	Availability
	Installation
	Extract the archive
	Build the program and library
	Run a test
	Install
	Debugging
	Cleaning up
	Requirements
	List of files

	How to use ratpoints
	Basic operation
	Early abort
	Changing the output
	Restricting the search domain
	Setting the parameters for the sieve
	Switching off optimizations
	Switching off exact testing of points
	Overriding previous options

	How to use the library
	Fine-tuning the parameters
	Implementation
	Overview
	Sorting the primes
	Using connected components
	Using 2-adic information
	Elimination of denominators
	Reversing the polynomial
	Some general remarks
	Change log

