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Abstract. We show that there is a bound depending only on g and [K : Q] for the number
of K-rational points on a hyperelliptic curve C of genus g over a number field K such that
the Mordell-Weil rank r of its Jacobian is at most g − 3. If K = Q, an explicit bound is
8(r + 4)(g − 1) + max{1, 4r} · g.

The proof is based on Chabauty’s method; the new ingredient is an estimate for the
number of zeros of a logarithm in a p-adic ‘annulus’ on the curve, which generalizes the
standard bound on disks. The key observation is that for a p-adic field k, the set of k-points
on C can be covered by a collection of disks and annuli whose number is bounded in terms
of g (and k).

1. Introduction

Since Faltings’ proof [Fal83] of Mordell’s conjecture, we know that a curve of genus g ≥ 2
can have only finitely many rational points. This raises the question whether there might be
uniform bounds of some sort on the number of rational points. Caporaso, Harris, and Mazur
have shown [CHM97] that the validity of the Bombieri-Lang conjecture on rational points
on varieties of general type would imply the existence of a bound depending only on the
genus g. (For function fields like k = Fp(t), the number of k-points on curves over k of fixed
genus is unbounded, however, see for example [CUV12].) On the other hand, considering an
embedding of the curve into its Jacobian variety, which identifies the set of rational points
on the curve with the intersection of the curve and the Mordell-Weil group, one can ask
the following purely geometric question: Given a curve C of genus g ≥ 2 over a field k of
characteristic zero, embedded in its Jacobian J , and a finitely generated subgroup Γ of J(k)
of rank dimQ Γ ⊗Z Q ≤ r, is there a uniform bound in terms of g and r for the number of
points in C∩Γ? (See Mazur [Maz86, end of Section III.2].) That this number is finite for each
individual curve follows from further work by Faltings [Fal94]. Heuristic arguments suggest
that such a uniform bound should exist. The existence of such uniform bounds has been
shown for k a function field if C is not defined over the algebraic numbers by Buium [Bui93]
(and also for function fields in characteristic p by Buium and Voloch [BV96]).

However, to our knowledge, so far not even a uniform (and unconditional) bound for the
number of rational torsion points on curves of some fixed genus g ≥ 2 has been obtained!
In this note, we finally obtain such a bound for hyperelliptic curves of genus at least 3 (but
the method should generalize to arbitrary curves). More generally, we can show that on
a hyperelliptic curve C of genus g over number field of degree ≤ d, there can be at most
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R(d, g, r) rational points mapping into a given subgroup of rank r ≤ g − 3 of the Mordell-
Weil group, where R(d, g, r) depends only on d, g and r. This implies uniform bounds in
terms of d, g and r only for the number of rational points on such curves as long as the
Mordell-Weil rank is at most g − 3 and also for the number of rational points in a torsion
packet when g ≥ 3, see Theorem 7.1 and Corollary 7.3 below.

The proof is based on Chabauty’s method [Cha41,Col85,MP13,Sto06]. If C is a curve over Q,
with Jacobian J and minimal regular model C over Zp, where the prime p is sufficiently large,
and we assume that r = rank J(Q) < g, then one can bound #C(Q) by the number of smooth
Fp-points on the special fiber of C plus 2r, see [KZB13]. This bound is obtained as follows.
Consider the Chabauty-Coleman pairing (defined below in Section 2)

Ω1
J(Qp)× J(Qp) −→ Qp, (ω, P ) 7−→

∮ P

O

ω

This pairing is Qp-linear in ω and additive in P ; its kernel on the left is trivial. If r < g,
then there is a subspace V ⊂ Ω1

J(Qp) of dimension at least g − r ≥ 1 that annihilates the
Mordell-Weil group J(Q) ⊂ J(Qp) under the pairing. Let P0 ∈ C(Q) and use P0 as basepoint
for an embedding i : C → J . Then for all P ∈ C(Q) and all ω ∈ V , we have

0 =

∮ i(P )

O

ω =

∮ P

P0

i∗ω

where i∗ω ∈ Ω1
C(Qp) is a regular differential on C. The integral on the right is defined by this

equality. One then shows (see for example [Sto06]) that the number of zeros of the function

P 7−→
∮ P

P0

i∗ω

on a p-adic residue disk of C, which is the set of p-adic points reducing mod p to a given
smooth point on the special fiber of C, is at most one plus the number of zeros (counted
with multiplicity) of ω on that residue disk. (Here we use that p is large enough, otherwise
the bound has to be modified.) Choosing a ‘good’ ω ∈ V for each residue disk leads to the
bound

#C(Q) ≤ #C(Fp)smooth + 2r

mentioned earlier.

The problem with this approach is that the bound depends on the complexity of the special
fiber of C, which is unbounded — there can be arbitrarily long chains of rational curves in the
special fiber, which can lead to an arbitrarily large number of smooth Fp-points. The idea
for overcoming this problem is to parametrize the subset of C(Qp) corresponding to such a
chain not by a union of (an unbounded number of) disks, but by an ‘annulus’. We can then
obtain a bound for the number of points in that subset that is independent of the number
of residue disks. Since both the number of such annuli and the number of remaining residue
disks are bounded in terms of the genus (and p), we do obtain a uniform bound. The price
we have to pay is that on (at least some of) the annuli, we need to impose additional linear
conditions on the differential ω, so that we need the space of differentials annihilating the
relevant subgroup of J(Qp) to be of dimension at least three. This translates into the rank
bound r ≤ g− 3. The key result for our application is Proposition 5.4, which gives a precise
comparison of the abelian integral pulled back to an annulus and the p-adic integral of the
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pulled-back 1-form. It turns out that the difference between the two is a linear function of
the valuation.

We carry out this approach in the case of hyperelliptic curves. We expect that the approach
can be generalized to arbitrary curves; we will pursue this in future work.

Acknowledgments. The vague idea that one should be able to use Chabauty’s method to
prove uniform upper bounds for the number of rational points had long been in the author’s
mind, but was put aside as infeasible because of the apparent problems described above.
The new activity leading to the results presented here was prompted by a question Manjul
Bhargava asked related to [PS13]: could we give a family of odd degree hyperelliptic curves C
of any genus, defined by congruences, such that our method would not work for any curve
in the family? The intuition that this should not be possible for large genus led to the idea
of using integration on annuli to prove that the image of C(Q2) in Pg−1(F2) under the ‘ρ log’
map of [PS13] is bounded by a polynomial in g. This result will be presented in a separate
paper or in a later version of this article. The idea then extended naturally to the original
question. So I would like to thank Manjul for asking the right question. I also wish to
thank Amnon Besser for help with questions about p-adic integration and Stefan Wewers
for answering my questions on stable models (which have now been eliminated from the
argument). Dino Lorenzini was very helpful on the question (discussed in Section 3) of how
to bound the number of ‘A1-components’ in the special fiber of the minimal regular model
of a curve. Felipe Voloch provided some pointers to the literature.

2. Notation

Until further notice, we fix the following notation.

Let p be a prime number. As usual, Qp denotes the field of p-adic numbers and Cp the
completion of an algebraic closure of Qp. We let v : Cp → Q ∪ {∞} denote the valuation
on Cp that is normalized by v(p) = 1. We also fix an absolute value | · | on Cp. Throughout
the paper, k ⊂ Cp stands for a finite field extension of Qp with ramification index e; we
write O for its ring of integers and κ for the residue field. We set q := #κ; kunr ⊂ Cp is the
maximal unramified extension of k.

Let g ≥ 3 be an integer and let C be a smooth, projective, and geometrically integral curve
of genus g over k. The Jacobian variety of C is denoted J ; the origin on J is O. We denote
the image of the divisor (P )−(Q) on C in J by [P−Q]. We denote by logJ the p-adic abelian
logarithm J(k) → TOJ(k) ∼= kg. On a sufficiently small subgroup neighborhood of O, it is
given by evaluating the formal logarithm, and then extended to all of J(k) by linearity. The
space Ω1

J(k) of global regular 1-forms on J defined over k agrees with the space of invariant
(under translations) 1-forms on J and can be identified with the cotangent space (TOJ(k))∗

of J at the origin. This induces a pairing

Ω1
J(k)× J(k) −→ k, (ω, P ) 7→ 〈ω, logJ(P )〉 =:

∮ P

O

ω ,

which we call the Chabauty-Coleman pairing. It is k-linear in ω and additive (and O-linear
on the kernel of reduction) in P . Its kernel on the left is trivial, and its kernel on the right
is the torsion subgroup of J(k).
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Let P0 ∈ C(k) and let i : C → J be the embedding given by P 7→ [P−P0]. Then i∗ : Ω1
J → Ω1

C

is an isomorphism (which does not depend on P0). If ω ∈ Ω1
C(k) is i∗ωJ for some ωJ ∈ Ω1

J(k),
then we set for points P,Q ∈ C(k)∮ Q

P

ω :=

∮ i(Q)

i(P )

ωJ =

∮ [Q−P ]

O

ωJ .

We use the symbol
∮

to distinguish this integral defined via abelian logarithms from the
p-adic integral

∫
given by p-adic integration theory.

Inclusions ‘A ⊂ B’ are meant to be non-strict.

3. Combinatorics of arithmetic graphs

We begin with a study of the combinatorics of the (smooth part of the) special fiber of the
minimal regular model C over O of a (smooth projective geometrically integral) curve C of
genus g ≥ 2 over k. For the general background, we refer to [Liu02, Section 10.1].

The special fiber Cs of C decomposes into irreducible components; we assume for now that
the residue field κ is large enough so that the components are geometrically irreducible. Let
Γ be one of these components of Cs. If W denotes a relative canonical divisor, then by the
adjunction formula we have

(3.1) Γ ·W = 2pa(Γ)− 2− Γ2 .

There are two cases: Γ ·W > 0 and Γ ·W = 0. If m(Γ) denotes the multiplicity of Γ in Cs,
then

(3.2) 2g − 2 = Cs ·W =
∑

Γ

m(Γ)(Γ ·W ) ,

which implies that there can be at most 2g−2 components Γ having Γ ·W > 0 (note that W
is effective in the situation considered here). On the other hand, Γ ·W = 0 means pa(Γ) = 0
and Γ2 = −2 or pa(Γ) = 1 and Γ2 = 0 (the intersection pairing is negative semidefinite, so
Γ2 ≤ 0). Γ2 = 0 would imply that Γ is the only component; then 2g − 2 = 0 and so g = 1,
which we have excluded. So Γ is isomorphic to P1 over κ and has self-intersection −2. Such
components are called (−2)-curves.

Associated to the special fiber Cs is a graph G, whose vertices correspond to the components
of Cs, with two (distinct) vertices Γ1 and Γ2 joined by Γ1 ·Γ2 edges. The graph G is connected.
To each vertex Γ, we associate its multiplicity m(Γ) and its arithmetic genus pa(Γ). This
data is equivalent to what is called a ‘type’ in [AW71]. The intersection pairing satisfies

Γ ·
∑
Γ′

m(Γ′)Γ′ = Γ · Cs = 0 .

Using the adjunction formula (3.1), we can write this as∑
Γ′ 6=Γ

m(Γ′)Γ · Γ′ = −m(Γ)Γ2 = m(Γ)
(
Γ ·W + 2(1− pa(Γ))

)
.
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By adding pa(Γ) loops at the vertex Γ, we can assume that pa(Γ) = 0 for all Γ, so that

(3.3) m(Γ)(Γ ·W + 2) =
∑
Γ′ 6=Γ

m(Γ′)Γ · Γ′ .

We are interested in the structure of the smooth part Csmooth
s of the special fiber. It is the

union of the components of multiplicity 1 minus their singular points and the points where
they meet other components. We have already seen that there can be at most 2g − 2 such
components with Γ ·W > 0. The remaining components are (−2)-curves of multiplicity 1,
so by (3.3) the total intersection number with other components is 2. There are four cases
for such a component Γ.

1) Γ meets two components of multiplicity 1 in two distinct points. Then Γ is part of a
maximal chain of such components, ending in two components of multiplicity 1 (which
can be identical) that are not (−2)-curves.

2) Γ meets a component of multiplicity 2 in one point.
3) Γ meets two components of multiplicity 1 in the same point.
4) Γ meets a component of multiplicity 1 in one point with intersection multiplicity 2.

In the latter three cases, the corresponding component of Csmooth
s is isomorphic to A1. We

will call such components of C simply A1-components.

Artin and Winters in [AW71, Theorem 1.6] show that there are only finitely many different
‘types’ of fixed genus up to an equivalence that ignores the lengths of chains (also of higher
multiplicity) as above. This implies that there must be bounds that depend only on g for
the number of (maximal) chains and for the number of A1-components. The following result
gives explicit and optimal such bounds.

Theorem 3.4. Let Cs be the special fiber of the minimal proper regular model of a smooth
projective geometrically integral curve C of genus g ≥ 2 over a p-adic field k. Then there
are numbers t, u ≥ 0 with t+ u ≤ g such that

i) The number of components Γ with Γ ·W > 0 is N ≤ 2g − 2.
ii) The number of chains is ≤ N − 1 + t ≤ 2g − 3 + t.
iii) The number of (−2)-curves of multiplicity 1 outside of chains is ≤ 3u.

Remark 3.5. It is not very hard to construct an arithmetic graph of genus g with 2g − 2
components Γ such that Γ ·W > 0 and having 2g− 3 + t chains and 3(g− t) A1-components,
for every t = 0, 1, . . . , g. We leave this as an exercise for the interested reader. This shows
that the bounds given in the theorem above are optimal.

Remark 3.6. It is easy to see that the numbers t and u in the statement of the theorem can
be taken to be the toric and unipotent ranks of the special fiber of the Néron model of the
Jacobian of C.

Proof. We first bound the number of chains. As in the statement of the theorem, let N
denote the number of components Γ such that Γ · W > 0. Then N ≤ 2g − 2 by (3.2).
Consider the subgraph G′ of G spanned by the N corresponding vertices and the vertices
corresponding to components in chains. Contracting each chain to an edge, we obtain a
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graph G′′ whose Euler characteristic equals that of G′, which cannot be smaller than that
of G (since G is connected). So we find that

#{chains} ≤ #{edges of G′′} = N − χ(G′′) ≤ N − χ(G) = N − (1− t)
as claimed.

In the last two cases in the enumeration preceding the theorem, we can modify Cs locally to
obtain a situation with normal crossings, but with a larger number of A1-components. Below,
a vertex corresponding to a (−2)-curve is represented as •, whereas a vertex corresponding
to a component Γ with Γ ·W > 0 is represented as ◦. The numbers near the symbols are
the multiplicities.

•
1

•
1

•
1

◦
1

◦
1

−→ ◦
1
•
2
◦
1

•
1

•
1

◦
1

or ◦
1
•
1
−→ ◦

1
•
2
•
1

•
1

•
1

So we can assume that all the A1-components meet a component of multiplicity 2.

To obtain a bound on the number of A1-components, we classify the vertices Γ of G according
to the pair (m(Γ),Γ ·W ) ∈ Z>0 × Z≥0 of invariants. Given m ≥ 1 and w ≥ 0, we call a
vertex Γ of G with m(Γ) = m and Γ ·W = w an (m,w)-vertex. We denote by v(m,w) the
number of (m,w)-vertices. We consider each edge of G as an oriented edge with both possible
choices of orientation. We then denote by e(m,w),(m′,w′) the number of oriented edges leading
from an (m,w)-vertex to an (m′, w′)-vertex.

Taking the sum of (3.3) over all (m,w)-vertices, we obtain

m(w + 2)v(m,w) =
∑

(m′,w′)

m′e(m,w),(m′,w′) ,

or equivalently,

(3.7) v(m,w) =
1

m(w + 2)

∑
(m′,w′)

m′e(m,w),(m′,w′) ,

which allows us to replace v(m,w) by the right hand side. If we use this in (3.2), this gives

(3.8)
∑

(m,w),(m′,w′)

wm′

w + 2
e(m,w),(m′,w′) =

∑
(m,w)

mw v(m,w) = 2g − 2 .

In addition, denoting by t the number of independent loops in G (also known as the first
Betti number of G) and remembering that G is connected and that e(m,w),(m′,w′)+e(m′,w′),(m,w)

counts twice the edges between vertices with invariants (m,w) and (m′, w′), we have the
relation

2
∑

(m,w)

v(m,w) − 2 + 2t =
∑

(m,w),(m′,w′)

e(m,w),(m′,w′) ,
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which we rewrite using (3.7) as∑
(m,w),(m′,w′)

( 2m′

m(w + 2)
− 1
)
e(m,w),(m′,w′) = 2− 2t .

Adding (3.8) to this, we finally have

(3.9)
∑

(m,w),(m′,w′)

(m′(mw + 2)

m(w + 2)
− 1
)
e(m,w),(m′,w′) = 2(g − t) .

Let≤ denote the lexicographical ordering of the pairs (m,w). Since e(m,w),(m′,w′) = e(m′,w′),(m,w),
we can rewrite (3.9) as
(3.10)∑
(m,w)

(m− 1)w

w + 2
e(m,w),(m,w)+

∑
(m,w)<(m′,w′)

(m′(mw + 2)

m(w + 2)
+
m(m′w′ + 2)

m′(w′ + 2)
−2
)
e(m,w),(m′,w′) = 2(g−t).

We can bound the coefficient of e(m,w),(m′,w′) in (3.10) from below:

m′(mw + 2)

m(w + 2)
+
m(m′w′ + 2)

m′(w′ + 2)
− 2 = m′ − 2

m′(m− 1)

m(w + 2)
+m− 2

m(m′ − 1)

m′(w′ + 2)
− 2

w≥0

≥ m′ − m′(m− 1)

m
+m− m(m′ − 1)

m′
− 2

=
m′

m
+
m

m′
− 2 ≥ 0 .

So all coefficients on the left hand side of (3.10) are nonnegative; the coefficient of e(m,w),(m,w)

vanishes if and only if w = 0 or m = 1, and the coefficient of e(m,w),(m′,w′) vanishes if and
only if we have equality everywhere in the above, which is equivalent to m = m′ = 1 (or
m = m′ and w = w′ = 0, but then (m,w) = (m′, w′)).

Let λ(m,w),(m′,w′) denote the coefficient of e(m,w),(m′,w′) in (3.10). Then

λ(1,w),(2,0) =
1

2
for all w ≥ 0,

λ(1,0),(2,w′) ≥
2

3
for all w′ ≥ 1,

λ(2,0),(2,w′) ≥
1

3
for all w′ ≥ 1,

λ(2,0),(3,w′) ≥
1

6
for all w′ ≥ 0.

Using this in (3.10) we obtain
(3.11)
1

2
e(1,0),(2,0) +

1

2

∑
w≥1

e(1,w),(2,0) +
1

3

∑
w′≥1

e(2,0),(2,w′) +
1

6

∑
w′≥0

e(2,0),(3,w′) +
2

3

∑
w′≥1

e(1,0),(2,w′) ≤ 2(g−t) .

We now claim that

(3.12) 3
∑
w≥1

e(1,w),(2,0) + 2
∑
w′≥1

e(2,0),(2,w′) +
∑
w′≥0

e(2,0),(3,w′) ≥ e(1,0),(2,0) .
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Assuming this for a moment, we can use (3.12) in (3.11) to obtain

2

3

∑
w′≥0

e(1,0),(2,w′) ≤ 2(g − t) or equivalently,
∑
w′≥0

e(1,0),(2,w′) ≤ 3(g − t) .

The left hand side counts exactly the (−2)-curves of multiplicity 1 that meet a component of
multiplicity 2. Since we have seen that after possibly a local modification of the graph this
is an upper bound for the A1-components we want to count, this shows the last assertion in
Theorem 3.4.

It remains to prove (3.12). We first observe that contracting an edge between two (2, 0)-
vertices does not change the genus or the topological properties of G and also does not
affect (3.10). So we can assume without loss of generality that no such edges are present.
We now consider those (2, 0)-vertices that contribute to e(1,0),(2,0), i.e., that have an edge to a
(1, 0)-vertex. Let aj (1 ≤ j ≤ 3) denote the number of such vertices Γ such that the highest
multiplicity of a vertex connected to Γ is j. Since g ≥ 2, there cannot be a (2, 0)-vertex
connected only to (1, 0)-vertices, as this would give rise to a connected component of genus 1,
contradicting the fact that G is connected. This implies that a vertex counted by aj can
have at most (4 − j) edges to (1, 0)-vertices; it also has at least one egde to a vertex with
multiplicity j that is not a (1, 0)-vertex. So∑

w≥1

e(1,w),(2,0) ≥ a1,
∑
w′≥1

e(2,0),(2,w′) ≥ a2,
∑
w′≥0

e(2,0),(3,w′) ≥ a3

and therefore

e(1,0),(2,0) ≤ 3a1 + 2a2 + a3 ≤ 3
∑
w≥1

e(1,w),(2,0) + 2
∑
w′≥1

e(2,0),(2,w′) +
∑
w′≥0

e(2,0),(3,w′)

as claimed. �

In general, some of the components of Cs may not be defined over κ. If a chain contains a
component defined over κ, then either all components of the chain are defined over κ, or else
the chain contains an odd number of components of which only the middle one is defined
over κ (and the action of Frobenius reverses the orientation of the chain).

4. Partition into disks and annuli

We keep the notation introduced so far. Let P ∈ C(k) be a point. Then P reduces to a point
P̄ ∈ Csmooth

s (κ), and so P̄ is either on a component Γ with Γ ·W > 0 (and multiplicity 1),
or on an A1-component, or on a component belonging to a chain. We bound the number
of smooth κ-points occurring in the first two cases. Denoting by pg(Γ) the geometric genus
of the component Γ and writing Γ1, . . . ,ΓN ′ for the components occurring in the first case
(with N ′ ≤ N , since we only consider components defined over κ and with multiplicity 1),
we obtain the bound

N ′∑
j=1

(
q + 1 + 2pg(Γj)

√
q
)
≤ (2g − 2)(q + 1) + 2a

√
q

for the number of smooth κ-points on components having positive intersection with W . Here
a denotes the abelian rank of the special fiber of the Néron model of the Jacobian of C. For
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the number of smooth κ-points on A1-components, we have the bound 3uq, since each A1-
component defined over κ has q smooth κ-points. Fixing a + u = g − t, the sum of these
bounds is maximal when a = 0, leading to a bound of

(2g − 2)(q + 1) + 3(g − t)q = (5g − 2)q − 3tq + 2g − 2

for the number of smooth κ-points outside components belonging to chains. Each such
point P gives rise to a residue disk, which is the subset of C(k) of points reducing to P ;
these subsets are analytically isomorphic to open p-adic disks in k.

Now consider a chain in the special fiber Cs. Its two ends each meet some other component
of multiplicity 1 transversally. Contracting the components in the chain, we obtain another
model C ′ of C such that the image of the chain in C ′s is a simple double point Q. (We
consider only chains containing a component defined over κ. If the action of Frobenius
reverses the orientation of the chain, we replace k by its unramified extension of degree 2,
so that the Frobenius action is trivial. Since the bound we will obtain for the number of
relevant points in the residue annulus of Q does not depend on q and so is valid even for
kunr-points, we do not lose anything in this way.) By [BL85, Proposition 2.3], the preimage
of Q in C(k) under the reduction map is analytically isomorphic to an open annulus of the
form {x : α < |x| < 1} with α = |ξ| for some ξ ∈ k. The number of such annuli equals the
number of chains (defined over κ) and so is bounded according to Theorem 3.4 by 2g−3 + t.

Summarizing the discussion above, we have shown:

Proposition 4.1. Let C be a smooth projective geometrically integral curve over k of genus g.
Then there is a number 0 ≤ t ≤ g such that C(k) can be written as a disjoint union of at
most (5g − 2)q − 3tq + 2g − 2 open (residue) disks and at most 2g − 3 + t open (residue)
annuli.

Let CD(k) be the union of the disks and CA(k) the union of the annuli in this partition.

5. The pull-back of an abelian logarithm to an annulus

We fix a basepoint P0 ∈ C(k); this gives rise to the k-defined embedding i : C → J , P 7→
[P − P0]. Let ω be a regular differential on C and denote by ωJ the corresponding regular
and invariant 1-form on J (so that ω = i∗ωJ). We write for P ∈ C(k)

λω(P ) =

∮ P

P0

ω =

∮ [P−P0]

O

ωJ = 〈ωJ , log[P − P0]〉 .

Let D0 = {ξ : |ξ| < 1} be the unit disk. If ϕ : D0 → C parametrizes a residue disk, then

ϕ∗ω = w(z) dz

with a power series w(z) converging on D0. Let ` be a power series whose derivative is w.
Then it is well-known that for ξ0, ξ1 ∈ D0(k) we have∮ ϕ(ξ1)

ϕ(ξ0)

ω =

∫ ξ1

ξ0

w(z) dz = `(ξ1)− `(ξ0) .

Using Newton polygons, one then shows (see for example [Sto06, Section 6]) that the number
of zeros of λω on ϕ(D0(k)) (or even ϕ(D0(kunr))) is bounded by 1 plus the number n of zeros

9



of ω (counted with multiplicity) on ϕ(D0) plus a term (denoted by δ(v, n) in [Sto06]) that
depends only on n, p and the ramification index e of k. We write ∆k(s, r) for what is
denoted ∆v(s, r) in [Sto06], namely

∆k(s, r) = max
{ s∑
j=1

δ(v,mj) : mj ≥ 0,
s∑
j=1

mj ≤ r
}
.

Then we have the following bound.

Lemma 5.1. Let V 6= 0 be a linear subspace of the space of regular differentials on C of
codimension r and let ND denote the number of residue disks whose union is CD(k). Then
the functions λω for ω ∈ V have at most

ND + 2r + ∆k(ND, 2r)

common zeros in CD(k). If p > e+ 1, then we can take the bound to be

ND + 2r + e
⌊ 2r

p− e− 1

⌋
≤ (5g − 2)q − 3tq + 2g − 2 + 2r + e

⌊ 2r

p− e− 1

⌋
.

Proof. This is essentially [Sto06, Theorem 6.6]. The bound for ∆k is [Sto06, Lemma 6.2],
and the bound for ND comes from Proposition 4.1. �

Now we consider the situation for an annulus A = {ξ : ρ1 < v(ξ) < ρ2} parametrizing the
preimage under reduction of a chain in Cs. Let ϕ : A → C be the parametrization. Pulling
back ω, we obtain, using z as the coordinate on A,

ϕ∗ω = w(z) dz = d`(z) + c(ω)
dz

z

for Laurent series w and ` converging on A and some constant c(ω) ∈ k. Let Log0 denote
the branch of the p-adic logarithm that takes the value 0 at p. Then, given this choice, there
is a unique global integral on A that in our is case given by∫ ξ1

ξ0

ϕ∗ω =
(
`(ξ1) + c(ω) Log0(ξ1)

)
−
(
`(ξ0) + c(ω) Log0(ξ0)

)
.

We want to compare this with ∮ ϕ(ξ1)

ϕ(ξ0)

ω .

Perhaps surprisingly, these two integrals can differ.

The following result is crucial. It was first suggested by numerical computations and appears
to be new. When we asked Amnon Besser about this, we learned that a related result also
is part of current work of his with Sarah Zerbes. To make this paper independent of (so far)
unpublished work, a (different) proof is presented here.

Proposition 5.2. Let ω, A and ϕ : A→ C be as above, and write

ϕ∗ω = d`(z) + c(ω)
dz

z
.

10



Then there is a constant a(ω) depending linearly on ω such that for ξ0, ξ1 ∈ A(k) we have∮ ϕ(ξ1)

ϕ(ξ0)

ω =
(
`(ξ1) + c(ω) Log0(ξ1) + a(ω)v(ξ1)

)
−
(
`(ξ0) + c(ω) Log0(ξ0) + a(ω)v(ξ0)

)
=

∫ ξ1

ξ0

ϕ∗ω + a(ω)
(
v(ξ1)− v(ξ0)

)
.

Proof. We assume without loss of generality that 1 ∈ A. Let i : C → J be the embedding
sending ϕ(1) to O.

According to [BL84, Proposition 6.3], the analytic map i◦ϕ : A→ J can be written uniquely
as

i(ϕ(ξ)) = ψ1(j(ξ)) + ψ2(ξ)

where j : A→ Gm is the natural inclusion, ψ1 : Gm → J is an analytic group homomorphism
and ψ2 : A → U is an analytic map, where U denotes the formal fiber of the origin on J
(so that U(k) is the subgroup of points reducing to the origin). We write ωJ for the 1-form
on J such that i∗ωJ = ω; ωJ is translation invariant. On U , ωJ is exact, so ωJ = dλ for
some analytic function λ on U ; we can assume λ(0) = 0. The pull-back ψ∗1ωJ is a translation
invariant differential on Gm, so it has the form c dz/z for some c ∈ k. The pull-back ψ∗2ωJ is
ψ∗2dλ = d(λ ◦ ψ2). Since

ϕ∗ω = ϕ∗i∗ωJ = ψ∗1ωJ + ψ∗2ωJ = c
dz

z
+ dλ

(
ψ2(z)

)
,

we see that `(z) = λ(ψ2(z)) (up to a constant) and c = c(ω). Fix ξ ∈ A(k). We obtain on
the one side that∮ ϕ(ξ)

ϕ(1)

ω =

∮ i(ϕ(ξ))

O

ωJ =

∮ ψ1(ξ)+ψ2(ξ)

O

ωJ =

∮ ψ1(ξ)

O

ωJ +

∮ ψ2(ξ)

O

dλ =

∮ ψ1(ξ)

O

ωJ + λ
(
ψ2(ξ)

)
and on the other side that∫ ξ

1

ϕ∗ω =

∫ ξ

1

(
d`(z) + c

dz

z

)
= `(ξ)− `(1) + cLog0(ξ) = λ

(
ψ2(ξ)

)
+ cLog0(ξ) .

So the difference is

δ(ξ) =

∮ ϕ(ξ)

ϕ(1)

ω −
∫ ξ

1

ϕ∗ω =

∮ ψ1(ξ)

O

ωJ − cLog0(ξ) .

Since ψ1 is a group homomorphism, the first term in the last difference is a homomorphism
k× → k; the same is true for the second term. Both terms agree on the residue disk U1

of 1, since they are given by the same formal integral on U1. Since O×/U1 is torsion and
the target group k is torsion-free, we have δ = 0 on O×. This implies that δ(ξ) is a linear
function of the valuation v(ξ), so there is a = a(ω) ∈ k such that δ(ξ) = av(ξ). This gives
the claim for (ξ0, ξ1) = (1, ξ); by taking differences the more general statement follows.

That a(ω) is linear in ω is clear, since ` (if we set `0 = 0), c(ω) and the left-hand side are. �

Remark 5.3. The numerical example mentioned above shows that it is possible to have
a(ω) 6= 0 and c(ω) = 0, so that the appearance of a(ω) cannot in all cases be avoided by
choosing a suitable branch of the p-adic logarithm.
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In this situation we have ψ∗1ωJ = 0 and the difference term above is given by
∮ ψ1(ξ)

O
ωJ . Even

though the pull-back of ωJ along ψ1 vanishes, it does not follow that the abelian integral
vanishes on the image of ψ1. Consider for example ξ = p and P = ψ1(p) ∈ J(k). There is a
positive integer n such that nP ∈ U ; then∮ ψ1(p)

O

ωJ =
1

n

∮ nP

O

ωJ =
1

n
λ(nP ) .

There is no reason to assume that logJ(nP ) is parallel to the derivative of ψ1 at 1, so ψ∗1ωJ = 0
does not in general imply that λ(nP ) vanishes.

We say that ω is good for the subset of C(k) parametrized by A if both c(ω) and a(ω) in
Proposition 5.2 vanish. This is a linear condition on ω of codimension at most two.

Recall that we fix some P0 ∈ C(k) and set

λω : C(k) −→ k, P 7−→
∮ P

P0

ω .

Proposition 5.4. In the situation of Proposition 5.2 assume that V 6= 0 is a linear subspace
of the space of regular differentials on C of codimension r ≥ 1 and such that all elements of V
are good. Assume further that C is hyperelliptic and that p is odd. Then the number of zeros
of λω on ϕ(A(kunr)) is bounded by a number BA(p, e, r) that depends only on r, p and the
ramification index e of k. If p > e+ 1, then we can take BA(p, e, r) = 2r+ eb2r/(p− e− 1)c.

Proof. We first indicate how to show the claim under the following additional assumption.
Write ϕ∗ω = w(z) dz, which by assumption has no z−1 term. Then w(z) = u(z)h(z) with
a Laurent polynomial u and a Laurent series h such that |h(ξ) − 1| < 1 for all ξ ∈ A. We
assume that for some 0 6= ω ∈ V the terms in u have exponents between n1 and n2 such
that n1 < −1 < n2 and n2−n1 ≤ 2r. Given this, the proof can be carried out using Newton
polygons in essentially the same way as for power series.

Now one can check by an explicit computation that this condition is satisfied when C is a
hyperelliptic curve and p is odd. A proof is given in Lemma 8.1 below (where m = g−r). �

Corollary 5.5. Let V be a linear subspace of the space of regular differentials on C of
codimension r ≤ g− 3, where C is as in Proposition 5.4. Then the number of common zeros
of all λω for ω ∈ V in CA(k) is bounded by

(2g − 3 + t)BA(p, e, r + 2) ,

which for p > e+ 1 is at most

(2g − 3 + t)
(
2(r + 2) + e

⌊ 2(r + 2)

p− e− 1

⌋)
.

Proof. For each annulus A occurring in CA(k), we let VA be the subspace of V consisting
of differentials that are good for A. Then VA has codimension at most r + 2 < g, and by
Proposition 5.4 the number of common zeros of λω on A for ω ∈ VA is at most BA(p, e, r+2).
We multiply by the bound 2g−3+ t for the number of annuli from Proposition 4.1 to obtain
the result. �
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6. Bounding the number of points mapping into a subgroup of small rank

In this section we state and prove our main result.

Theorem 6.1. Let k be a p-adic field with p odd and write e for the ramification index of k
and q for the size of its residue field. Let g ≥ 3 and 0 ≤ r ≤ g − 3. Then there is a bound
N(k, g, r) depending only on k, g and r such that the following holds.

Let C : y2 = f(x) be a hyperelliptic curve of genus g over k. We denote by J the Jacobian
variety of C. Let Γ ⊂ J(k) be a subgroup of rank r. Let i : C → J be an embedding given by
choosing some basepoint P0 ∈ C(k). Then

#{P ∈ C(k) : i(P ) ∈ Γ} ≤ N(k, g, r) .

If p > e+ 1, then we can take

N(k, g, r) = (5g − 2)q + 2g − 2 + 2r + e
⌊ 2r

p− e− 1

⌋
+ (2g − 3)

(
2r + 4 + e

⌊ 2(r + 2)

p− e− 1

⌋)
+ gmax

{
0, 2r + 4 + e

⌊ 2(r + 2)

p− e− 1

⌋
− 3q

}
� g

(
q + e(r + 1)

)
.

Proof. The rank condition implies that there is a k-vector space V of regular differentials
on C of codimension ≤ r ≤ g − 3 and such that each ω ∈ V annihilates Γ under the
Chabauty-Coleman pairing. This means that (taking P0 to be the basepoint for λω) the set
of points in question is contained in the common zero set of all λω for ω ∈ V . We can then
use Lemma 5.1 and Corollary 5.5 to bound the number of points in CD(k) and in CA(k),
respectively, that map to Γ. Adding these bounds and maximizing over 0 ≤ t ≤ g gives the
result. �

Remark 6.2. It is conceivable that a more careful analysis of the functions λω on annuli
will result in a bound for the number of zeros that applies to differentials ω that do not
necessarily satisfy the conditions that c(ω) and/or a(ω) (in the notation of Proposition 5.2)
vanish. If this is indeed the case, then the condition r ≤ g − 3 can be relaxed to r ≤ g − 2
or even r ≤ g − 1. This will be the subject of future work.

7. A uniform bound on the number of rational points

We can apply the result of the previous section to obtain bounds for the number of rational
points on hyperelliptic curves with small Mordell-Weil rank relative to the genus.

Theorem 7.1. Let g ≥ 3, d ≥ 1 and 0 ≤ r ≤ g − 3. Then there is a bound R(d, g, r)
depending only on d, g and r such that for any hyperelliptic curve C of genus g over a
number field K of degree at most d such that the Mordell-Weil rank of its Jacobian is r, we
have #C(K) ≤ R(d, g, r).

For d = 1 (hence K = Q), we can take

R(1, g, r) = 8(r + 4)(g − 1) + max{1, 4r} · g .
13



Proof. Fix some odd prime p. Then there are only finitely many possible completions k at
places above p of number fields of degree ≤ d. We take R(d, g, r) to be the maximum of the
bounds N(k, g, r) of Theorem 6.1 over all these k.

Let C be a curve as in the statement. If C(K) = ∅, there is nothing to prove. So we
can assume that there is some P0 ∈ C(K), which we use as basepoint for an embedding
i : C → J . We can then apply Theorem 6.1 to C base-changed to a completion k of K at a
place above p and to Γ = J(K) ⊂ J(k).

To obtain the bound for d = 1, we take k = Q3 (with p = 3 > 2 = e+ 1 and q = p = 3). �

Remark 7.2. Using the bound in Theorem 6.1 when p > e+ 1, we obtain the estimate

R(d, g, r)� g
(
pd + d(r + 1)

)
� g

(
(2d)d + d(r + 1)

)
where p is the smallest prime > d + 1. (The worst case is when K is totally ramified at all
primes ≤ d+ 1 and inert at all reasonably small primes > d+ 1.)

Taking r = 0, we obtain the following.

Corollary 7.3. Let C be a hyperelliptic curve of genus g ≥ 3 over Q. Then any torsion
packet on C can contain at most 33g − 32 rational points.

If we write T (g) for the maximal number of rational points in a torsion packet on a hyper-
elliptic curve of genus g over Q, then this gives

2 ≤ lim inf
g→∞

T (g)

g
≤ lim sup

g→∞

T (g)

g
≤ 33

(the leftmost inequality is obtained by considering curves with all 2g + 2 Weierstrass points
rational). So we know that the growth rate of T (g) is linear!

8. Explicit results for hyperelliptic curves

In this section, we show that the assumption we needed for the proof of Proposition 5.4 holds
in the case of hyperelliptic curves over a p-adic field with p odd.

Lemma 8.1. Let k be a p-adic field with p odd, and let C be a hyperelliptic curve over k
of genus g. Consider a maximal chain in the special fiber of the minimal regular model C
of C over O. Then there is a k-defined annulus A = {ξ : ρ1 < |ξ| < ρ2} and an analytic
embedding ϕ : A → C (possibly defined over the unramified quadratic extension of k) such
that the following holds.

Let V ⊂ Ω1
C be a linear subspace of dimension m ≥ 1 of the space of regular differentials

on C such that c(ω) = a(ω) = 0 for all ω ∈ V in the notation of Proposition 5.2. Then
there is some 0 6= ω ∈ V such that ϕ∗ω = u(z)h(z) dz with a Laurent series h satisfying
|h(ξ) − 1| < 1 on A and a Laurent polynomial u with the property that all its terms have
exponents between n1 and n2 where n1 < −1 < n2 and n2 − n1 ≤ max{2(g −m), 2}.

Proof. We write π : C → P1 for the hyperelliptic double cover. We already know that there
is a k-defined annulus A parametrizing the preimage of the chain under reduction. We want
to give an explicit construction of A and the map ϕ. To this end, we consider the action
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of the hyperelliptic involution ι of C on A and on the corresponding chain in Cs. There are
three possibilities:

a) The odd case. ι fixes the chain component-wise. Then ι acts on A preserving the valuation
(which is determined by the component of the chain the point under consideration maps
to). Then the image A′ = π(ϕ(A)) in P1 is an annulus not containing any branch points
of π; this annulus separates the set of branch points into two subsets of odd cardinality
≥ 3.

b) The even case. ι interchanges the chain with another (disjoint) chain. Then the image
A′ = π(ϕ(A)) in P1 is an annulus isomorphic to A that does not contain any branch
points of π and separates the branch points into two subsets of even cardinality ≥ 4.

c) The Weierstrass case. ι fixes the chain but reverses its orientation. Then ι acts on A
interchanging the ‘inner’ and ‘outer’ boundaries. The image A′ = π(ϕ(A)) in P1 is a disk
containing exactly two branch points of π.

Note that if one of the subsets of branch points in the odd or even cases would have at most
one element, then the annulus in P1 would be contained in a k-defined disk containing at
most one branch point, which would give rise to either one (Weierstrass) point (odd case) or a
pair of points (even case) in Csmooth

s (κ), contradicting the assumption that the annulus comes
from a chain. In the even case with two branch points in the ‘interior’ of A′ (say), ‘filling in’
the annulus A′ would result in a disk containing two branch points. This would correspond
to a chain of type c) containing the chain considered, contradicting its maximality.

We write Θ ⊂ P1 for the set of branch points. In the odd and even cases, we can assume
without loss of generality that 0,∞ /∈ A′ and ∞ /∈ Θ. Then

A′ = {ξ : ρ′1 < |ξ| < ρ′2} ⊂ A1 ⊂ P1 .

We write Θ0 and Θ∞ for the two subsets of Θ defined by A′, where Θ0 contains the branch
points in the ‘interior’ of A′ (i.e., such that |θ| ≤ ρ′1) and Θ∞ those in the ‘exterior’ of A′

(such that |θ| ≥ ρ′2).

We assume that C is given by the affine equation y2 = f(x) (with f ∈ k[x] squqarefree of
degree 2g + 2, since ∞ /∈ Θ). Let c be the leading coefficient of f , so that

f(x) = c
∏
θ∈Θ

(x− θ) .

We can then write

f(x) = c
∏
θ∈Θ∞

(x− θ)
∏
θ∈Θ0

(x− θ)

= c
∏
θ∈Θ∞

(−θ) · x#Θ0

∏
θ∈Θ∞

(
1− x

θ

) ∏
θ∈Θ0

(
1− θ

x

)
.

Each factor 1−θ/x or 1−x/θ can be written as the square of a Laurent series that converges
on A′, so that

f(x) = γx#Θ0h̃(x)2

for some Laurent series h̃ converging on A′, where γ = c
∏

θ∈Θ∞
(−θ) ∈ k× and |h̃(ξ)−1| < 1

for all ξ ∈ A′.
15



a) In the odd case with #Θ0 = 2ν + 1, say (with 1 ≤ ν ≤ g − 1), we can take

A = {τ : γτ 2 ∈ A′} ;

and

ϕ : A −→ C, τ 7−→
(
γτ 2, γν+1τ 2ν+1h̃(γτ 2)

)
;

note that ϕ is equivariant with respect to τ 7→ −τ on the left and ι on the right.

b) In the even case we write #Θ0 = 2ν (with 2 ≤ ν ≤ g − 1) and we let α ∈ k× denote a
suitable square root of γ. (Note that γ must be a square in this case.) Taking A = A′,
we have

ϕ : A −→ C, τ 7−→
(
τ, ατ ν h̃(τ)

)
.

c) In the Weierstrass case, write A′∩Θ = {θ1, θ2}. Without loss of generality, we can assume
that A′ = {ξ : |ξ| < 1}. In a similar way as above, we can write

f(x) = γh̃(x)2(x− θ1)(x− θ2)

with a power series h̃ converging on A′ such that |h̃(ξ) − 1| < 1 for ξ ∈ A′. We can in
addition assume that θ2 = −θ1, so that (x− θ1)(x− θ2) = x2 − a for some a ∈ k×. One
can check that the valuation of γ must be even if the situation comes from a chain in Cs
(otherwise the relevant part of Cs consists of a sequence of (−2)-curves of multiplicity 2,
with two A1-components attached to the last of these). Let k′ = k(

√
γ) and let α ∈ k′

be a square root of γ; then k′ is a (possibly trivial) unramified extension of k. Setting

y = αh̃(x)ỹ, the equation of C becomes ỹ2 = x2−a. This can be parametrized by setting
t = x+ ỹ, so that

x =
1

2

(
t+

a

t

)
and ỹ =

1

2

(
t− a

t

)
, so y =

α

2

(
t− a

t

)
h̃
(1

2

(
t+

a

t

))
.

Taking A = {τ : |a| < |τ | < 1} (this is an annulus defined over k), the map τ 7→ 1
2
(τ+a/τ)

gives a double cover A → A′ branched at θ1 and θ2. This implies that h̃
(

1
2
(t + a/t)

)
converges on A with values close to 1; we obtain an analytic embedding ϕ : A → C. We
note that t 7→ a/t fixes x and changes the sign of y, so it corresponds to the hyperelliptic
involution on the image of ϕ.

Now we consider a regular differential ω on C. It can be written in the form

ω = ũ(x)
dx

2y

with a polynomial ũ of degree at most g− 1. This leads to ϕ∗ω = u(t)h(t) dt with a Laurent
series h(t) such that |h(τ)− 1| < 1 on A and a Laurent polynomial u given by

a)
ũ(γt2)

(γt2)ν
, b)

ũ(t)

2αtν
, or c)

ũ(t+ at−1)

2αt
.

Since we are free to impose up to m− 1 linear conditions on ω, we can arrange for the terms
in ũ to have exponents in any interval of length g −m containing ν in cases a) and b), or
in the interval [0, g −m] in case c). Writing ν1 and ν2 for the minimal and maximal degree
of a term in u, we can therefore arrange in all cases to have ν1 ≥ n1, ν2 ≤ n2 such that
n2 − n1 = max{2(g −m), 2} and n1 < −1 < n2. This proves the claim. �
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