DETERMINING THE RATIONAL POINTS ON A CURVE OF GENUS 2
AND MORDELL-WEIL RANK 1

MICHAEL STOLL

ABSTRACT. We explain how one can efficiently determine the (finite) set of rational
points on a curve of genus 2 over Q with Jacobian variety ], given a point P € J(Q)
generating a subgroup of finite index in J(Q).

1 Introduction

Let C be a (“nice”: smooth, projective and geometrically irreducible) algebraic curve of
genus 2 over Q. Concretely, C can be specified by a polynomial f € Z[x], squarefree and
of degree 5 or 6; then C is the smooth projective model of the affine plane curve given
by

y? = f(x).
We denote the Jacobian variety of C by J.

By Faltings’s Theorem [Fal83, Fal84], whose statement was first conjectured by Mordell
[Mor22], we know that the set C(Q) of Q-rational points on any nice algebraic curve C
over Q of genus at lest 2 is finite. (More generally, the corresponding result holds for
curves over any algebraic number field.) However, all known proofs (see [BG06, Chap-
ter 11] and [IV20] for two alternative proofs) of this theorem are infeffective: they do
not give us an algorithm (not even a terribly inefficient one) that would determine this
finite set in any concrete case. (It should be noted that there is a general algorithm that
would compute the set of rational points on a curve of higher genus, whose termination
is conditional on the Hodge, Tate and Fontaine-Mazur conjectures; see [AL24]. How-
ever, this algorithm is so complex that it is unlikely to finish for any concrete example
before the end of the universe.)

So it is an interesting problem to determine this set C(Q) explicitly and in reasonable
time. The setting of curves of genus 2 over Q is the simplest possible case; it is therefore
natural to consider it.

The purpose of this note is to explain how C(Q) can be computed if we know a point
P € J(Q) such that P generates a subgroup of finite index in J(Q). It is known (due
to Weil [Wei29]) that J(Q) is a finitely generated abelian group; the assumption above
then implies that its rank is at most 1. In particular, the rank of J(Q) is strictly less than
the genus of the curve. In this setting, Chabauty [Cha41] gave a proof of Mordell’s
Conjecture some forty years before Faltings proved it in general. Coleman [Col85]
showed how Chabauty’s approach can be used to obtain quite good explicit bounds on
the number of rational points. This approach can also be used to find the set of rational
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points. This was first done in [FPS97]; further expositions can be found in [MP12,
Sto06], and another concrete application, e.g., in [Sto08].

We note that a rational point P € J(Q) \ {0} can be specified by its Mumford representa-
tion; this is a pair of polynomials a,b € Q[x], with a monic of degree at most 2, such
that P is in the linear equivalence class of D — D, where D is cut out by a(x) = 0,
y = b(x) (when deg(a) < 2, one has to modify this slightly to include points at infinity)
and D, is the polar divisor of x.

Our main result in this note is the following.

Theorem 1.1. There is an algorithm that

(1) takes as input a polynomial f € Z[x] as above and (the Mumford representation of) a
point P € J(Q);

(2) terminates assuming that Conjectures 5.1 and 5.2 hold for C;

(3) upon termination returns a subset of C(Q) that is all of C(Q) when (J(Q) : (P)) < oo.

This algorithm has been implemented in the Magma computer algebra system [BCP97];
it is included in the package files shipped with Magma as of version 2.29. In practice,
it terminates within a few seconds on most inputs of reasonable size.

Here is a rough outline of the algorithm. We assume that (J(Q) : (P)) < oo.

1. Check whether C has points everywhere locally (i.e., over all completions of Q). If
not, then C(Q) = 0; Stop.

2. Determine the torsion subgroup J(Q)os of J(Q).

3. If P is of finite order, then J(Q) is torsion. We can determine C(Q) via its image
in J(Q) under Q — [Q — (Q)] (t: (x,y) — (x,—y) is the hyperelliptic involution);
Stop.

4. Check whether C has rational divisors of odd degree. If not, then C(Q) = (; Stop.

5. Use a rational divisor of odd degree to embed C into | and run a “Mordell-Weil sieve
+ Chabauty” computation. This will terminate in practice (and in theory subject to
Conjectures 5.1 and 5.2) and in this case return C(Q).

Before we go into details regarding the steps of the above algorithms, we give in Sec-
tion 2 a short summary of how we can obtain generators of a finite-index subgroup of
the Mordell-Weil group J(Q). This is essential in order to obtain the necessary input,
namely, to show that the rank r is at most 1 and that we have a point P that generates
a subgroup of rank r.

The computation in Step 1 is essentially standard. Section 3 discusses an efficient
implementation for hyperelliptic curves.

An algorithm for Step 2 is described in [Sto99, §11] and is available in Magma as
TorsionSubgroup(]).

Step 3 has been available in Magma for a while as Chabauty0(]).
Step 4 is new. See Section 4 below for a description.

The basic algorithm for Step 5 is described in [BS10]. What is new here is a complete
treatment of the case when the Jacobian splits. See Section 5 for details.
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2 Computing the Mordell-Weil group

Let C be a nice curve of genus g > 2 over a number field K, with Jacobian variety ]J.
By the (Mordell-)Weil Theorem [Wei29], the group J(K) of K-rational points on ] is a
finitely generated abelian group; it therefore has a finite torsion subgroup J(K)s, and
the quotient J(K)/J(K)wys is a free abelian group of some rank r € Z,, which is the
rank of J(K).

It is then an interesting problem and also an important step in the solution of var-
ious other problems related to the arithmetic of C to determine J(K)ys, the rank r,
and explicit points Py,...,P. € J(K) whose images are free generators of the quo-
tient J(K)/J(K)cors-

The usual approach is as follows.

1. Search for points in J(K) and check for relations between them. This will give a
lower bound on .

2. Compute a Selmer group (and use perhaps further methods) to obtain an upper
bound on r.

3. If both bounds agree, r is determined, and we know points that generate a subgroup
of finite index. If the bounds do not agree, go back and try to improve one or both
of the bounds.

4. Saturate the known finite-index subgroup to obtain generators of the full group.

For any n > 2, there is the n-Selmer group Sel,(]J/K) of | over K. It is a finite Z/nZ-
module sitting in an exact sequence

0 — J(K)/nJ(K) — Seln(J/K) — HI(J/K)[n] — 0,

where II1(]/K) is the Tate-Shafarevich group of | over K. When n = p is a prime, then
Sel,(J/K) is a finite-dimensional [F,-vector space, and we have

dimg, Sel, (J/K) = r + dimg, J(K)[p] + dimg, II(]J/K)[p],

so (assuming we can determine J(K)[p]) we obtain a bound on r from it. At least in
principle, Selmer groups are computable. In practice, we can usually compute the 2-
Selmer group of the Jacobian of a hyperelliptic curve C: y*> = f(x), when the number
fields generated by the roots of f over K are not “too large”. (The main bottleneck is
the computation of the class groups of these number fields. In practice, one frequently
works assuming GRH to speed up this part of the computation.) See [Cas83, CF96] for
the case of genus 2 and [PS97,Sch98,BPS16] for a more general setting. The algorithm
for the computation of 2-Selmer groups of hyperelliptic Jacobians is described in detail
in [Sto01] (and implemented in Magma).

There are two (not mutually exclusive) ways in which Step 3 above can fail: there
may be nontrivial p-torsion in I11(]J/K); then the upper bound will not be tight, or we
missed some generators in our search, because they are too large, so the lower bound
is not tight. We now assume that p = 2. We can determine what the parity of the
[F,-dimension of I11(J/K)[2] should be [PS99]; this will be correct assuming that the
2-primary part of III(]J/K) is finite. Note that it is generally conjectured that ITI(]J/K)
is finite. If the parity is odd, then we can subtract 1 from the upper bound. Then if
the upper bound is not tight, the difference with the lower bound must be at least 2,
so this can give an indication whether it is worth while trying to improve the upper
bound. There are various ways in which this can be attempted. One is to consider
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other abelian varieties A that are isogenous over K (by an isogeny of 2-power degree)
to J; then A and | have the same rank, but it is possible that the upper bound for
the rank of A that we obtain from its 2-Selmer group is smaller than that obtained
for J. The Magma implementation (for genus 2 Jacobians over Q) looks at all 2-power
isogenous Jacobians, products of elliptic curves and Weil restrictions of elliptic curves
over quadratic number fields for this purpose. Another possibility is to try to visualize
nontrivial elements of I1I(]J/K)[2] in another abelian variety that shares some part of the
2-torsion Galois module with J; see [CM00,BF06]. In our implementation we work with
quadratic twists of J. Finally, one can try to compute the Cassels-Tate pairing [Cas62,
Tat63] on the 2-Selmer group, for which there is a recent algorithm by Fisher and
Yan [FY23] (this algorithm is not yet part of the Magma distribution and so is not
currently used in our implementation).

To search for rational points on the (genus 2) Jacobian (over QQ), one can use the
j-points program written by the author of this note, which is included in Magma. It
uses a quadratic sieve to find rational points on the associated Kummer surface that lift
to the Jacobian. This approach has cubic complexity in the bound for the multiplicative
height of the points we want to find; it is therefore not of much use when we want to
find points of larger height. Instead, we can construct the 2-covering spaces associated
to the elements of the Selmer group that are not yet hit by the points we found and
search for rational points on them. The advantage of this approach is that the points
have smaller height on the covering spaces, but these spaces are geometrically more
complicated than the Kummer surface.

For the saturation step we first find a bound on the index of the subgroup G we have
found in J(Q). We then check for each prime p below this bound whether G is already
p-saturated, i.e., whether the natural map G/pG — J(Q)/pJ(Q) is an isomorphism.
This can be achieved by considering the image of G in J(F,) for various primes £ such
that p divides #]J(F;). Even when G is not p-saturated, this will give strong restrictions
on the elements of G that might be divisible by p in J(Q); we can then check enough of
these elements individually. Note that the input to the algorithm in Theorem 1.1 need
not be saturated. However, in the course of running the algorithm, we will need to
saturate the known subgroup at certain primes, and so we need a procedure that does
the p-saturation for a given prime p.

A function that uses the approach described here to try to determine generators of
the Mordell-Weil group J(Q) when ] is the Jacobian variety of a curve of genus 2
over QQ is available as MordellWeilGroupGenus?2 (or also as part of the more general
MordellWeilGroup function) in Magma.

3 Testing for local points

In this section we assume that C is a hyperelliptic curve of genus g over a number
field K with affine model of the form y? = f(x), where f is a squarefree polynomial with
coefficients in K and deg f € {2g + 1,2g + 2}. We assume that g > 2 in the following.

We do not claim that this section contains any original results; the material is certainly
well-known to the experts. We use the shorthand “ELS” for “everywhere locally solu-
ble”, i.e., the statement that C(K,) # () for all places v of K.

The algorithm has two parts:



(1) Determine a set S of places of K such that C(K,) # 0 for all v ¢ S can be shown
without computation at individual places, with S as small as possible.
(2) For each v € S, decide whether C(K,) = () or not.

We note that when deg(f) = 2g + 1 is odd, then there is a K-rational point at infinity,
and so in particular, the curve is ELS. So we will assume that deg(f) = 2g + 2.

We begin with the first part. Recall the following two well-known facts.

Lemma 3.1 (Lower Weil bound). If C is a nice curve of genus g over a finite field F, then
#C(Fq) > q—29\/q+ 1.

Lemma 3.2 (Hensel lifting). If C is a nice curve over a p-adic field K with residue class
field k and there is a smooth k-rational point P on the reduction of C, then C(K) contains
points reducing to P.

By scaling the variables x and y, we can always assume that our hyperelliptic curve is
given by a polynomial f with coefficients in the ring of integers O of the number field K.
We denote the completions of O and of K at the place corresponding to a prime ideal p
of O by O, and K,, respectively. We write F(x,z) = z?9"%f(x/z) for the homogenization
of f as an even degree binary form. Then a smooth projective model of C is given by
the weighted homogeneous equation

Y? =F(X, Z)

where X and Z have degree 1 and Y has degree g + 1; this model sits in a weighted
projective plane.

Proposition 3.3. Let p be a prime ideal of O of odd residue characteristic, write k = O/p,
and set q = #k. Assume that q > 4g®> — 2. Let f € O[x] be squarefree (as an element
of K[x]) of degree 2g + 2; then C: y* = f(x) defines a hyperelliptic curve of genus g > 1
over K. Write f € k[x] for the reduction mod p of f.

If f is not of the form ch(x)? with a polynomial h € k[x] and a non-square ¢ € k* (so in
particular, f # 0), then C(K,) # 0.

Proof. Let F be the reduction mod p of the homogenized version F of f. By assumption,
F # 0, so we can write F = H*U with nonzero binary forms H,U € k[X,Z] and U
squarefree. We first consider the case that U is not constant. Then the curve over k
given by Y2 = U(X, Z) is a nice curve of genus deg(U)/2 — 1. By Lemma 3.1, this curve
has at least q — (deg(U) — 2),/q + 1 points. At most 2deg(H) = 2g 4+ 2 — deg(U) of
these points satisfy H = 0 (there are at most deg(H) images (X : Z) on P' and each
corresponds to at most two points), so there are at least

q— (deg(U) —2)/q+1—(2g+2—deg(U)) >0

smooth k-points on the (usually singular) curve Y? = H(X, Z)?U(X, Z). By Lemma 3.2,
this gives us a point in C(K,). (The inequality above follows from deg(U) —2 < 2g <

(q—29+1)/(v/q—1))

If U = c is constant and ¢ € k* is a square, then every choice of (X : Z) € P'(k) gives
rise to k-points on Y? = cH(X, Z)?, and there are at least 2(q+1—deg(H)) = 2(q—g) > 0
such points that are smooth, so that we can conclude as before. So the only remaining
case is that U = c is a constant non-square. In this case, f = cH(x, 1), which is not true
by assumption. O



So we can restrict to

(i) infinite places,
(ii) “small” odd finite places (i.e., such that q < 4g* — 2),
(iii) even finite places,
(iv) odd finite places such that f = 0, and
(v) odd finite places such that f is a non-square constant times a nonzero square.

We discuss these sets of places in the following subsections.

A function that performs the check for local points over all completions on hyperelliptic
curves over Q is available as IsLocallySolvable in Magma.

3.1 Infinite places

The infinite places are easy to deal with: we always have points at complex places, and
for a real embedding o: K — R, we have C(K,) = ( if and only if f° has no real roots
and the constant term of f° is negative (here f° € R[x] denotes the polynomial obtained
by applying o to the coefficients of f).

3.2 Small odd finite places

For the small odd finite places, we use the following procedure (which works for any
odd finite place, but can be inefficient when ¢ is large). The case of even residue
characteristic is more involved; see below.

Algorithm 3.4 (Local integral points; odd). Let f € O[x] be squarefree (as an element
of K[x]), and let p be a prime ideal of O of odd residue characteristic with uniformizer
m e O. Let k = O/p denote the residue class field; as before, f denotes the image of f
in k[x].

This algorithm decides whether the equation y? = f(x) has solutions in O,.

0. Set X — 0 c O[x].
1. For & € k, do the following.

a. If f(&) is a nonzero square, then return true.

b. If f(&) = 0 and f'(&) # 0, then return true.

c. If f(&) = f'(&£) =0, then lift £ to a € O;

if f(a) is divisible by 7%, then set X «+ X U {m2f(a + mx)}.
2. For each h € X, call this procedure recursively.
If one of these calls returns true, then return true.

3. Return false.

To see that Algorithm 3.4 is correct, note that when the conditions in Steps 1a or 1b are
satisfied, then there is a smooth point with x-coordinate & on the reduced curve over k,
so by Lemma 3.2, this point lifts to O,-solutions. If in Step 1c the polynomial f(a) is
not divisible by 7%, then the p-adic valuation of f(a + 7tb) is equal to 1 for all b € O,,
and so the k-point considered cannot lift. Otherwise, any lift of (&,0) must lead to a
solution of y? = 7w %f(a + mx) in O,.

To see that the algorithm terminates, assume the contrary. This implies that we have an
infinite recursion. So there is a sequence (a,),>o of elements of O such that for all n,
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the polynomial
fo(x) = T ™ (ag + may + az + ... + T anog + %)

has the property that f,(a,) is divisible by 7* and f/(a,) is divisible by . Let a =
Y 2 sma, € O,. Then, by taking limits, we see that f(a) = f’(a) = 0, which contra-
dicts the assumption that f is squarefee.

Algorithm 3.5 (Small odd prime). Let f € O[x] be squarefree (as an element of K[x])
and of degree 2g + 2, and let p be a prime ideal of O of odd residue characteristic. We
keep the notations 7, k, and f from Algorithm 3.4. Recall that F denotes the homoge-
nization of f as a binary form of even degree.

This algorithm decides whether the smooth projective curve C associated to y? = f(x)
has points in K.

1. If deg(f) = 2g + 2 and the leading coefficient of f is a square, then return true.
2. If deg(f) = 2g + 1, then return true.
3. If F(1,0) is divisible by 7 in O,, then call Algorithm 3.4 on 7w 2F(1, 7x).
If the result is true, then return true.
4. Call Algorithm 3.4 on f.
If the result is true, then return true.
5. Return false.

To see that Algorithm 3.5 is correct, note first that a K,-point on the curve C either
has x-coordinate in O, or the inverse of the x-coordinate is in 7O, (this includes the
case that the point is at infinity). The existence of a point with p-adically integral x-
coordinate is decided in Step 4. The first two steps check whether there is a smooth
k-rational point at infinity; if this is the case, then we can lift it to a K,-rational point at
infinity. Otherwise, Step 3 checks whether K,-rational points can reduce to the k-point
at infinity, and if so, call the previous algorithm to decide whether there really are such
points. The test is analogous to Step 1c in Algorithm 3.4.

3.3 Even places

The main difference compared to odd places when considering an even place is that
in characteristic 2, the y-derivative of an equation y> = f(x) is always zero, which is
related to the fact that a nonzero square in the residue class field does not necessarily
lift to a square in O,. This means that we need to work with a more general form of
the curve equation. The affine case is dealt with in the following algorithm.

Algorithm 3.6 (Local integral points; even). Let ¢ € O and f € O[x] be such that
4f(x) + c? is squarefree as an element of K[x], and let p be a prime ideal of O of residue
characteristic 2 with uniformizer t € O. Let k = O/p denote the residue class field; as
before, f denotes the image of f in k[x].

This algorithm decides whether the equation y* + cy = f(x) has solutions in O,.

0. Set X — 0 Cc O x O[x].
1. If ¢ # 0, then for & € k, do the following.
a. If the equation y? 4 ¢y = f(&) has solutions in k, then return true.
Return false.
2. (Now ¢ = 0.) For & € k, do the following.
a. If f/(&) # 0, then return true.



b. Let ) € k be the square root of f(&). Lift &,1 to a,b € O.
If 2 divides f(a) — b? — c¢b, then set
X — XU {(m'(2b+c),m?(f(a+7mx) —b%—cb)) }.
2. For each pair (¢’, h) € X, call this procedure recursively.
If one of these calls returns true, then return true.
3. Return false.

To see that Algorithm 3.6 is correct, note that when ¢ # 0, every k-point on the curve
y?+¢y = f(x) is smooth since the y-derivative is always ¢ # 0. The x-derivative is f'(£),
so the point is also smooth when that does not vanish. In both cases, Lemma 3.2 shows
that there are solutions in O,. When the k-points with x-coordinate & are not smooth
and f(a) — b% — cb is not divisible by 7%, then b% 4 cb — f(a) will have p-adic valuation 1
for all lifts a, b to O, of &, so no lift will give a solution. Otherwise, we can make the
indicated substition; each solution in O, of the original equation will give a solution to
the new equation.

Termination is seen in a similar way as for Algorithm 3.4. If the algorithm generates
an infinite recursion, then we obtain sequences (a,) and (b,) in O such that with
a=Yy>,a,m™ € Oyand b = Y 2 b" € O, we find that b> + cb = f(a) and
2b + ¢ = f’(a) = 0, which implies that 4f(x) + c? is divisible by (x — a)?, contradicting
the assumption on f and c.

To decide if there is a K,-point on the projective curve, we again separate integral and
non-integral x-coordinates.

Algorithm 3.7 (Even prime). Let f € O[x] be squarefree (as an element of K[x]) and
of degree 2g + 2, and let p be a prime ideal of O of residue characteristic 2. We keep
the notations 7, k, and f from Algorithm 3.6. Recall that F denotes the homogenization
of f as a binary form of even degree.

This algorithm decides whether the smooth projective curve C associated to y* = f(x)
has points in K.

1. Call Algorithm 3.6 on (0, f).

If the result is true, then return true.
2. Call Algorithm 3.6 on (0, F(1,7tx)).

If the result is true, then return true.
3. Return false.

3.4 0dd places where f reduces to zero

To find the (odd) primes p such that f = 0, we need to factor the content of f, i.e.,
the ideal generated by all the coefficients. This will typically be fairly small, so the
factorization step should not be a problem.

Now assume that p is such a prime and let 1 € O be a uniformizer for p. Let m be
the minimal p-adic valuation of a coefficient of f; then m > 0. If m is even, then
we can divide f by the square ™ to get a polynomial with nonzero reduction mod p.
Otherwise, let f; = 7t ™f; then f is a square times 7tf;. If ¢ € k is such that f;(§) # 0,
then f(a) will have odd p-adic valuation m for all a € O reducing to &; so we do not
obtain points in C(K,) with such x-coordinates. Similarly, if deg(f;) = 2g+2, then there
are no points in C(K,) with non-integral x-coordinate. So we can restrict to the & € k
such that f;(£) = 0 (and & = oo € P'(k) when deg(f;) < 2g + 2). Fix such a & and lift

8



it to a € O. Then we run Algorithm 3.4 on 7t 'f;(a + 7x) (respectively, on 7w 'F; (1, 7x)
when & = c0).

3.5 0dd places where f reduces to a non-square constant times a square

We first need to find these primes. We can run Algorithm 3.5 for all primes dividing both
the coefficient of x?9*2 (which by assumption is nonzero) and the coefficient of x?9*
of f. In this way, we reduce to finding all the primes p that do not divide the leading
coefficient ¢ of f and have the property that f is a constant times a square (we look at
whether the constant is a square or not later).

To do this, we determine the unique monic polynomial q € K[x] of degree g+1 such that
deg(r) < g, where r = f—cq? and c is the leading coefficient of f. The coefficients of the
polynomial q can be determined recursively from the top down to the constant term,;
this involves divisions by 2 and by c, so g, € O[(2c) ', x]. We factor the (numerator of
the) fractional ideal of O generated by the coefficients of r; the prime ideals dividing
it are the ones we are looking for: if f = ¢G? for some monic polynomial § € k[x] and
p 1 2c, then necessarily § = q and therefore ¥ = 0.

We then check for each of the resulting prime ideals p whether ¢ reduces to a (nonzero)
square mod p. If it does, then (recall that p does not divide the leading coefficient of f)
there are smooth points at infinity on the reduced curve, which via Lemma 3.2 implies
that C(K,) # 0. Otherwise, the only way we can obtain a local point is that the x-

coordinate reduces to a root of g. So for each root & € k of (q), we do the following.
Let a € O be a lift of &. If n* does not divide f(a + 7x), then no point in C(K,) can
have x-coordinate reducing to &. Otherwise, we apply Algorithm 3.5 to 7w 2f(a + 7mx).
If it returns true, we return true, otherwise we consider the next &. If no root & leads
to success, we return false.

4 Rational divisors of odd degree

In this section we restrict to curves of genus 2 over Q. We explain how one can de-
termine whether the curve C has rational divisors of odd degree. This can be done
whenever we know generators of a finite index subgroup G, of J(Q). In the application
that is the focus of this paper, G, is generated by the torsion subgroup J(Q)s together
with the point P.

Note that when C has rational points, there are also rational divisors of odd degree:
every rational point gives such a divisor. So if we can show that C has no rational
divisors of odd degree, then we have shown that C has no rational points.

First we saturate (see Section 2) the known subgroup G, at 2. This gives us a subgroup
G C J(Q) of finite odd index; in particular G/2G — J(Q)/2J(Q) is an isomorphism.
Next observe that a rational divisor D of odd degree on C gives a rational point on Pic1C
(by taking its class and subtracting a suitable multiple of the canonical class K, which
has degree 2 and is defined over Q). A rational point on Pic; does not necessarily arise
from a rational divisor, but if one of them does, then all of them do. This is because the
difference of any two rational points on Pic;- is a point in J(Q), and all rational points
on | are represented by rational divisors (this is true more generally for hyperelliptic
curves of even genus).



Then note that Pic;- is a 2-covering of | (the 2-covering map is given by Q — 2Q — K),
so if it has rational points, then the set of their images in J(Q) is a coset of 2](Q). By the
isomorphism above, we can determine a set of representatives of these cosets from G.
We then test each representative if it is in the image of Pic}((@), and if so, whether it can
be represented by a rational divisor (and in this case, we actually find such a divisor).
If a rational divisor of odd degree is found, we are done. Otherwise, we have shown
that no rational divisor of odd degree exists (in particular, we do not need to consider
further cosets).

To check if a point in J(Q) lifts to a rational divisor of odd degree, we use the following
diagram.

Pict —— |

L

K 2o K

Here K denotes the Kummer surface J/{#1} of | and K" is the dual Kummer surface,
which is the quotient of Pic- by the involution induced by the hyperelliptic involution
on C. The covering map Pici. — ] descends to a twist & of the duplication map on
the Kummer surface. Everything in the second row of the diagram is completely ex-
plicit. So we can take a coset representative Q € J(Q), map it to K and then check if
it lifts to a rational point on K" under § by solving a system of polynomial equations
(whose solution set is a zero-dimensional scheme, so this is reasonably efficient). If a
rational lift R to £V is found, we then check if R comes from a rational divisor of odd
degree. This can be done completely analogously to the situation for genus 3 hyperel-
liptic curves as described in [Sto17, §4]. Essentially, we check if some expression is a
nonzero square to see whether the point lifts to Picé(@), and then we have to decide
if the conic parameterizing the effective degree 3 divisors corresponding to the point
on Pi(:1C has rational points (and find one if it does).

This functionality is available as HasOddDegreeDivisor in Magma.

5 Mordell-Weil-Sieve + Chabauty

The basic algorithm is described in [BS10, § 3, § 4.4]. It uses the following ingredients.
First of all, we fix an embedding i: C — ] defined over Q (which for a curve of genus 2
is given in terms of a rational point on C or an effective rational divisor of degree 3
on C).

We begin with the “Mordell-Weil sieve” part. The idea originally goes back to Scha-
raschkin [Sch99] and was further developed by Flynn [Fly04]; it is as follows. We pick
a finite set S of primes of good reduction for C and a (smooth) positive integer N.
Consider the following commutative diagram, where the vertical maps are given by

10



reduction mod p for all p € S.

/—\
C(Q) : J(Q)/NJ(Q)

T ;

ITpes C(Fp) —— I Tpes J(Fp) — [ Tpes J(Fp) /N (Fy)
v
P

We then clearly have

(5.1) ¢(C(Q) o7 (im(w)) .

The set on the right is a set of cosets of NJ(Q), which can be computed explicitly if
we know that J(Q)s + Z - P is saturated at all primes dividing N. See [BS10, § 3]
for a discussion how this computation can be done efficiently (including a good choice
for N). We can check the saturation condition for every prime divisor q of N and, if
necessary, replace P by some point P’ such that P = qP’ + T with some T € J(Q)ors-

Now the hope is that we can use this approach to determine C(Q). One necessary
ingrendient for this is that C satisfies the following conjecture. This is a variant of
Conjecture 21 in [Sto11], which a version of Poonen’s Heuristic, restricted to cosets
in J(Q) (the original version assumes that C(Q) is empty; see [Poo06]). It is also
related to the Main Conjecture in [Sto07].

Conjecture 5.1. For N sufficiently divisible and S sufficiently large depending on N, the
inclusion in (5.1) is an equality, i.e.,

¢(C(Q) =o' (im(Y)) .

Note that once the statement of the conjecture holds for some N and S, it will stay
valid for any set S’ containing S. (It may become invalid when we replace N by a
multiple N’: a coset modulo NJ(Q) that contains the image of a rational point will split
into a number of cosets modulo N'J(Q) that can be in p~' (im(1)) but do not necessarily
all contain images of rational points.)

We also note that we can certify that the statement of Conjecture 5.1 holds for a given
N and S: for each coset in p~'(im(1)) we exhibit a rational point on C whose image
under ¢ is this coset. Conjecture 5.1 ensures that we will eventually be able to do that,
by successively increasing N and S until we are successful. In this case, we know that
all rational points map into a given subset of J(Q)/NJ(Q), but it is still possible that
some of the fibers of ¢ contain more than one point.

Since we know that C(Q) is finite and C(Q) injects (via i) into J(Q), which is a finitely
generated abelian group, it follows that for N sufficiently divisible, ¢ must be injective.
If this holds for N, then our algorithm will have determined C(Q). The problem we
have in practice is that we need an explicit criterion that allows us to verify that ¢ is
injective for a given N.

This is where the “Chabauty” part comes in. It is based on the following fact. Let p be a
prime, which we assume to be of good reduction for C for simplicity. There is a pairing
(see [Col85,MP12, Sto06])

P

J(@) x Qg — @y, (Pw) — jo w = w(logP),
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where log: J(Q,) — ToJ(Qp) is the p-adic abelian logarithm and w is identified with
an element of the cotangent space T;J(Q,). Since J(Q) has rank 1 by assumption and
o} /o, 18 a 2-dimensional vector space over , there must be a non-zero differential
wp € Q} /0, that annihilates J(Q) under this pairing. We call such an w, an annihilating
differential. There is a canonical isomorphism between the spaces of regular 1-forms
on | and on C, so we can consider an annihilating differential w, as a regular differen-
tial on Cg,. It then follows that for all pairs Q, Q" € C(Q) of rational points,

Ql
J wp =0.
Q

When Q and Q' reduce to the same point in C(IF,,), this integral can be computed by
evaluating the formal integral of a power series representing w,. We can scale w,
such that its reduction @, mod p makes sense and is nonzero. By [Sto06, Prop. 6.3],
the number of rational points on C that reduce to Q € C(F,) is at most 1 plus the
order of vanishing of @, at Q (unless p is very small). In particular, there can be
at most one rational point reducing to Q when @, does not vanish at Q and p > 2
(by [Sto06, Lemma 6.1], we have 6(p,0) = 0 for p > 2). This shows that when p > 2
and @, does not vanish at any point in C(F,), then the reduction map C(Q) — C(IF,) is
injective. This implies that the map ¢ is injective when N is a multiple of the exponent
of (the image of J(Q) in) J(F,). (Note that @, vanishes at the points with a certain
x-coordinate & € IF,; the condition is that their y-coordinates are not in [y, i.e., f(&) is
a non-square in [F,,.)

So we want to pick N in such a way that it is a multiple of the exponent of J(F,) for
a good prime p > 2 such that @, does not vanish on C(FF,). This means that we have
to find at least one such prime. The following conjecture says that we will easily find
such primes unless there is a good reason why this is impossible. Such a good reason
is provided by the geometry of J: if | splits, which means that it is isogenous over Q
to the product of two elliptic curves E and E’, then one of the elliptic curves, say E,
must have rank 1 and the other one must have rank 0. The pull-back w of a nonzero
regular differential on E’ then vanishes along the image of E in | (obtained via Picard

functoriality from the dominant morphism C -5 ] — E x E/ — E) and will therefore be
an annihilating differential for all (good) primes p.

Conjecture 5.2. The set of primes p of good reduction for C such that the reduction mod p,
Wy, of a suitably scaled annihilating differential w, does not vanish on C(IF,) has positive
density, unless | splits and the associated global annihilating differential w vanishes at a
rational point of C.

This is a strengthening of Conjecture 4.2 in [BS10] in the case when C has genus 2,
taking into account the heuristic computation of the density, which for hyperelliptic
curves (and “rank defect” g — r = 1) predicts density 1/2. The conjecture in loc. cit.
makes a statement for simple, so non-split, Jacobians. If in the split case, w does not
vanish at a rational point, then it vanishes at a pair of points with x-coordinate & € Q
such that f(&) is a non-square in Q (or & = oo and the leading coefficient of f is a
non-square). There is then a set of primes of density 1/2 such that f(&) is a non-square
mod p; for such p, @, = @ will not vanish on C(F,).

So, assuming the conjecture, we are in good shape unless | splits and w vanishes at a
rational point. In this case, the curve C has morphisms of some degree d (which we can
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assume to be minimal) to the elliptic curves E and E’, with E(Q) of rank 1 and E’(Q)
finite. If we can determine the morphism C — E’ explicitly, the we can solve our
problem by first determining the finitely many points in E’(Q) and then determining
the rational points on C in each fiber above one of these points.

There are fairly simple concrete criteria for when such a splitting of ] exists with d = 2
or d = 3, and in this case there are formulas for the elliptic curves and the morphisms.
This is implemented via the functions Degree2Subcovers and Degree3Subcovers in
Magma. However, larger degrees d do occur, as the following examples show.

Examples 5.3. Here are some examples of genus 2 curves C that have maps to elliptic
curves of minimal degree d > 3.

(4) y? = 6x° + 28x> + 54x with d = 4.

(5) y? = 64x° + 180x> + 125 with d = 5.

(6) y2—192x + 420x* + 504%3 4+ 177x* + 66x + 9 with d = 6.

(7) y? = 4x® —12x° + 81x* — 22x3 + 181x? + 808x + 304 with d = 7.
(8) y? = x® — 6x° + 23x* — 32x3 + 71x* + 126x + 213 with d = 8.

These were found among a set of about 6 million curves in a list compiled by Drew
Sutherland; they caused the previous version of the Chabauty procedure in Magma to
get stuck.

Remark 5.4. The two elliptic curves in the product isogenous to a split genus 2 Ja-
cobian have isomorphic d-torsion Galois modules; such elliptic curves are said to be
d-congruent. Conversely, from a pair of d-congruent elliptic curves (such that the iso-
morphism of d-torsion modules is not induced by an isomorphism of the curves), one
obtains a split genus 2 Jacobian. There are split genus 2 Jacobians for which the de-
gree d is even larger than in the examples above. See work of Fisher [Fis14, Fis15,
Fis18, Fis19, Fis21] on congruent elliptic curves. Fisher [Fis21] gives two examples
with d = 17 and conjectures (Conjecture 1.1 in loc. cit.) that for primes d > 17, apart
from examples coming from isogenies, these are the only examples up to quadratic
twist, whereas [Fis19] gives an infinite family of pairs of 13-congruent elliptic curves.
Fisher’s conjecture is a strong form of the Frey-Mazur Conjecture, which states that for
all sufficiently large primes p, all p-congruences of elliptic curves come from isogenies.
(Note that an isogeny E — E’ of degree prime to p induces an isomorphism E[p] = E'[p]
of Galois modules.)

Luckily, it turns out that it is not actually necessary to find the morphism C — E’
explicitly. Recall that we always assume that the rank of J(Q) is 1.

Lemma 5.5. Assume that there is a non-constant morphism C — E with an elliptic
curve E. Let Q € C(Q) be such that the global annihilating differential w € QF(Q)
vanishes at Q. Let p > 3 be a prime of good reduction for C. Assume that either Q is a
Weierstrass point or that the reduction Q € C (IFp) is not a Weierstrass point. Then the
map C(Q) — C(IF,) is injective.

Proof. We already know that the fibers of C(Q) — C(F,) have at most one element
above points in C(IF,) at which @ does not vanish. It remains to show that the fiber
above the reduction Q of Q mod p consists of the single point Q. (The same argument
will work for the other rational point ((Q) on which w vanishes, when Q is not a
Weierstrass point.)
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By the definition of an annihilating differential, for any point Q' € C(Q) such that
Q’ = Q the p-adic integral
Q/
J w
Q

vanishes. This integral can be computed by formally integrating a power series and
evaluating at a suitable parameter (it is a “tiny integral”).

First assume that Q is not a Weierstrass point and its reduction Q € C(F,) is also not
a Weierstrass point (i.e., the numerator of the y-coordinate of Q is not divisible by p).
Then t = x — x(Q) when x(Q) € Z, or t = x' —x(Q)~' when x(Q)™' € Z, is a local
parameter at Q reducing to a local parameter at Q. Since w vanishes at Q, we have
(after possibly scaling w)

w = tw(t) dt

with a power series w(t) = 1+ a;t + a,t? + ... with coefficients in Z,, and the integral
from Q to Q’ (in the same p-adic residue disk) is

Q’ Q") 1 a @
J w :J (t4+ at? +...)dt = =t(Q)? + =-t(Q")* + =2t (Q)* +...;
Q 0 2 3 4

this has a double zero at Q and (since p > 3) no further zeros on the residue disk.

If Q is a Weierstrass point, then t =y when Q # oo or t = y/x> when Q = co is again a
local parameter at Q reducing to a local parameter at Q. Since w in this case vanishes
to order 2 at Q, we have (again after scaling)

w = t*w(t) dt

with an even power series w(t) = 1+ a,t* + a4t* + ..., and

Q’ t(Q’) 5 1 W
J ‘”:J (t + et +...) dt = 2t(Q) + = t(Q)V +...;

this has a triple zero at Q and (again since p > 3, note the increase by 2 of the degree)
no further zeros on the residue disk. 0

Note that when w vanishes at a non-Weierstrass point Q that reduces mod p to a Weier-
strass point Q, then the fiber of the reduction map above Q contains (at least) the two
rational points Q and ((Q) (where « denotes the hyperelliptic involution), so the con-
clusion cannot hold in this case. But in any case, we see that the reduction map will be
injective for all but finitely many primes, with an explicit set of possible exceptions.

So if we seem unable to find a good odd prime p such that @, does not vanish on C(F,),
we try to first show that ] splits (and if so, determine the degree d). This can be done
numerically by computing a period matrix (Magma contains functionality for analytic
Jacobians of hyperelliptic curves; see [CMSV19]). The result we obtain is not rigorous,
but it will be certified by the next step. This uses the following observation.

Lemma 5.6. Let C — E be a morphism of degree d and let E C | be the image of E under
the induced morphism E — ]. Let K be the Kummer surface of ] and denote by Y the image
of E on K. Then £ — Y is a double cover ramified in four points, so Y is a smooth rational
curve of degree d in P3. Also, Y is contained in a surface of degree [d/2] that does not
contain K.
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Proof. Since E — ] is a homomorphism of abelian varieties and ] — K identifies points
with their negatives, the morphism E — ] descends to a morphism P' — K (where
E — P' is the x-coordinate map); in particular, Y is a rational curve. The degree of E
with respect to the theta divisor on | is d; this implies that the degree of Y is also d.
We have that J[2] N E= E[Z], which is of size 4; as J[2] is the set of ramification points
of | — K, this shows that E — Y is ramified in four points (this also follows from
Riemann-Hurwitz).

The morphism P' — Y C K C P3 is given by a quadruple of binary forms of degree d.

There is a (“;3) -dimensional space of degree n forms in four variables containing an

(“;W—dimensional subspace of multiples of the defining quartic equation of K. So there
will be a degree n form vanishing on Y that is not a multiple of the defining equation

of K whenever ]
miy2= (“;3> . <“; ) S>dn+1,

where dn + 1 is the dimension of the space of binary forms of degree dn. This is the
case forn > [d/2]. O

The idea now is to find Y by interpolating points. Note that £ will contain a point of the
form P’ =nP+ T for somen > 1 and T € nJ(Q)rs, where n divides the least common
multiple of d and the exponent of J(Q)s. Since E is an abelian subvariety, it will then
contain all multiples of P/, so Y will contain all their images on K.

Forn = 1, n = d, n = lem(d, exp(J(Q)wrs)) and in each case for all possibilities of
T € nJ(Q)ors, we therefore compute enough of the multiples of P’ = nP 4+ T and find
all hypersurfaces of degree m = [d/2] that pass through these points. If there are
any such hypersurfaces, we then check for whether their intersection with the Kummer
surface has dimension 1 and contains a curve of degree d and genus 0 passing through
exactly four points of order 2 and containing the image of P’. If this is the case for some
choice of n and T as above, then we have shown that | splits and we have found the
image Y of E on the Kummer surface. We can then obtain the x-coordinate of the points
on which the annihilating differential vanishes from the tangent line of Y at the origin.
It remains to verify that there are rational points on C with that x-coordinate. If this is
the case, then we can apply Lemma 5.5 above.

Magma’s Chabauty function carries out the Mordell-Weil Sieve + Chabauty computa-
tion explained in this section. It includes the check for rational divisors of odd degree.
More precisely, it first searches for rational points on the curve (unless a rational point
on C is given as an optional argument; then that is used to embed C into ]), and if it
does not find one up to some height bound, then it runs HasOddDegreeDivisor. The
search for rational points is done using ratpoints [Sto22]; this code is part of Magma.

6 Concluding remarks.

The functionality described here (except the part that is summarized in Section 2, which
was contributed in 2019/2020) forms part of what the new (as of version 2.29) Magma
function RationalPointsGenus?2 is doing. Its purpose is to try to provably determine
the full set of rational points on a curve C of genus 2 over Q. It essentially performs the
following steps.

1. Search for small rational points.
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2. If no point was found, then test whether C has points everywhere locally (see Sec-

tion 3). If C fails to have points over some completion of Q, then C(Q) = ; Stop.

. Search again for rational points up to a larger bound.

. If no point was found, then compute the (fake) 2-Selmer set of C; see [BS09]. If this

is empty, then C(Q) = (; Stop.

5. Check if C admits morphisms of degree 2 or 3 to elliptic curves. If so, and one of
the elliptic curves, say E, has finite group of rational points, then determine C(Q) by
finding the rational points in the fibers above the rational points of E; Stop.

6. Attempt to determine the rank r of J(Q) (see Section 2). If not successful, then
report Failure; Stop.

7. If r =0, then determine C(Q) by pulling back the finitely many torsion points in J(Q)
under C — J, P — [P — ((P)]; Stop.

8. Now r > 1. If no rational point was found so far, then test whether C has rational
divisors of odd degree (see Section 4). If this is not the case, then C(Q) = (); Stop.

9. If r = 1, then run the Mordell-Weil Sieve + Chabauty computation (see Section 5). If
this terminates, it will have determined C(Q); Stop. (In the actual implementation
the computation will be aborted and Failure is reported when certain bounds are
reached.)

10. Now r > 2. If no rational point was found so far, use the rational divisor of odd
degree that was found earlier to obtain an embedding C — | and run a Mordell-
Weil Sieve computation as in [BS10]. If this proves that C(Q) = (), then return (),
otherwise report Failure; Stop.

11. Report Failure; Stop.

AW

Assuming Conjectures 5.1 and 5.2, this algorithm will succed in determining C(Q)
whenever one of the following conditions holds.

(1) The 2-Selmer set of C is empty (this includes the case that C fails to have points
over all completions of QQ).

(2) There is an elliptic subcover E of degree 2 or 3, for which it can be determined that
the rank is zero.

(3) The rank r of J(Q) can be determined and one of the following holds.
(a) There is no rational divisor of odd degree on C.
(b) r< 1.
() C(Q) =0.

Note that Conjecture 5.1 implies that the Mordell-Weil Sieve computation will detect
that C(Q) = () whenever this is the case.

Drew Sutherland has constructed a database of more than 6 million curves of genus 2
over Q of conductor up to 2%° [Sut25], which extends the database [BSS*16] currently
available in the LMFDB [LMFDB]. RationalPointsGenus2 successfully determines the
set of rational points on about 92% of these curves (assuming GRH for the rank com-
putation). This high success rate is probably explained to a large part by the fact that
most curves do not have rational points: heuristically, one would expect only a fraction
of < N72 curves y? = f(x) with integral coefficients bounded by N in absolute value
to have rational points. (In the data set, 2528 131 of 6216959 curves have a known
rational point.) Experimentally, a fairly large proportion of genus 2 curves without ra-
tional points have an empty 2-Selmer set (see [BS09, Section 10]), so in these cases
the algorithm will be successful even without attempting to determine the rank of J(Q).
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Among the curves for which the rank can be determined, we expect a large majority to
have rank 0 or 1, in which cases the algorithm will also be successful.

We remark that there is currently no generally applicable (and practical) algorithm
available that can determine C(Q) when r > 2 and C(Q) # (). However, there are some
restricted cases when this is possible. One such case is when | has Néron-Severi rank p
strictly larger than 1; this occurs when | has real multiplication or is split. When (for
a general curve of genus g) r < g — 1 + p, then Quadratic Chabauty [BD18,BDM"19,
BD21,BBBM21,EL23] can determine C(Q). There are also recent steps [Dog25,Dog24]
in the direction of making the full second level of the Chabauty-Kim approach effective
and feasible; this would lead to an algorithm that can determine C(Q) when r < g°.

Another observation is that every rational point on C lifts to one of finitely many 2-
covering curves D; of genus 17, where & runs through the elements of the 2-Selmer
set of C. These curves D¢ each have 15 maps to elliptic curves that are in general not
defined over Q, however; the Galois action on them corresponds to the Galois action
on the points of order 2 on |, which in turn correspond to the factorizations of f into a
quadric and a quartic (up to scaling). If, for each &, there is one such map D; — Eg,
which is defined over a number field K; of degree d and such that the rank of E;(K;)
is strictly less than d, then a variant of Chabauty’s method, known as Elliptic Curve
Chabauty can be used; see [Bru03]. In practice, this requires the degrees d to be
reasonably small (say, d < 5 or so); otherwise, the determination of E¢(K;) is likely
infeasible. This means that the Galois group of f has to be quite small. So this approach
is practical only in fairly limited situations. In any case, implementing a version of this
and including it in RationalPointsGenus?2 is a project for the not-too-distant future.

Acknowledgments

This work was supported by a grant from the Simons Foundation International [SFI-
MPS-Infrastructure-00008651, AVS] that provided funding for a visit of the author to
MIT in March 2025, during which a major part of the work described in this paper was
done.

References

[AL24] Levent Alpoge and Brian Lawrence, Conditional algorithmic Mordell, August 21, 2024.
https://arxiv.org/abs/2408.11653. T1
[BBBM21] Jennifer S. Balakrishnan, Amnon Besser, Francesca Bianchi, and J. Steffen Miiller, Explicit
quadratic Chabauty over number fields, Israel J. Math. 243 (2021), no. 1, 185-232, DOI
10.1007/511856-021-2158-5. MR4299146 T6
[BD18] Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points, I: p-adic
heights, Duke Math. J. 167 (2018), no. 11, 1981-2038, DOI 10.1215/00127094-2018-0013.
With an appendix by J. Steffen Miiller. MR3843370 T6
, Quadratic Chabauty and rational points II: Generalised height functions on Selmer
varieties, Int. Math. Res. Not. IMRN 15 (2021), 11923-12008, DOI 10.1093/imrn/rnz362.
MR4294137 T6
[BDM*19] Jennifer Balakrishnan, Netan Dogra, J. Steffen Miiller, Jan Tuitman, and Jan Vonk, Explicit
Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019),
no. 3, 885-944, DOI 10.4007/annals.2019.189.3.6. MR3961086 76
[BGO6] Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical
Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR2216774 T1

[BD21]

17


https://arxiv.org/abs/2408.11653

[BSST16] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki,
A database of genus-2 curves over the rational numbers, LMS J. Comput. Math. 19 (2016),
235-254, DOI 10.1112/5146115701600019X. MR3540958 T6
[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, DOI 10.1006/jsc0.1996.0125.
Computational algebra and number theory (London, 1993). MR1484478 T1
[Bru03] Nils Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27-49,
DOI 10.1515/¢crll.2003.076. MR2011330 T6
[BFO6] N. Bruin and E. V. Flynn, Exhibiting SHA[2] on hyperelliptic Jacobians, J. Number Theory 118
(2006), no. 2, 266-291, DOI 10.1016/j.jnt.2005.10.007. MR2225283 12
[BPS16] Nils Bruin, Bjorn Poonen, and Michael Stoll, Generalized explicit descent and its application to
curves of genus 3, Forum Math. Sigma 4 (2016), Paper No. e6, 80, DOI 10.1017/fms.2016.1.
MR3482281 T2
[BS09] Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, Math. Comp. 78
(2009), no. 268, 2347-2370, DOI 10.1090/50025-5718-09-02255-8. MR2521292 T4, 6
, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS J.
Comput. Math. 13 (2010), 272-306, DOI 10.1112/51461157009000187. MR2685127 T1,
5,5,5,10
[Cas62] J. W. S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine
Angew. Math. 211 (1962), 95-112, DOI 10.1515/¢rll.1962.211.95. MR0163915 72
, The Mordell-Weil group of curves of genus 2, Arithmetic and geometry, Vol. I, Progr.
Math., vol. 35, Birkhduser, Boston, MA, 1983, pp. 27-60. MR0717589 T2
[CF96] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus
2, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press,
Cambridge, 1996. MR1406090 T2
[Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur a lunité,
Comptes Rendus Hebdomadaires des Séances de ’Académie des Sciences, Paris 212 (1941),
882-885 (French).Zbl 0025.24902 T1
[Col85] Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765-770, DOI
10.1215/S0012-7094-85-05240-8. MR0808103 T1, 5
[CMSV19] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight, Rigorous computation of
the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), no. 317, 1303-1339, DOI
10.1090/mcom/3373. MR3904148 75
[CMO0O0] John E. Cremona and Barry Mazur, Visualizing elements in the Shafarevich-Tate group, Exper-
iment. Math. 9 (2000), no. 1, 13-28. MR1758797 T2
[Dog25] Netan Dogra, 2-descent for Bloch—Kato Selmer groups and rational points on hyperelliptic curves
I, August 13, 2025. https://arxiv.org/abs/2312.04996. T6
, 2-descent for Bloch—Kato Selmer groups and rational points on hyperelliptic curves II,
March 12, 2024. https://arxiv.org/abs/2403.07476. T6
[EL23] Bas Edixhoven and Guido Lido, Geometric quadratic Chabauty, J. Inst. Math. Jussieu 22
(2023), no. 1, 279-333, DOI 10.1017/51474748021000244. MR4556934 T6
[Fal83] G. Faltings, Endlichkeitssdtze fiir abelsche Varietdten iiber Zahlkérpern, Invent. Math. 73
(1983), no. 3, 349-366, DOI 10.1007/BF01388432 (German). MR0718935 T1
, Erratum: “Finiteness theorems for abelian varieties over number fields”, Invent. Math.
75 (1984), no. 2, 381, DOI 10.1007/BF01388572 (German). MR0732554 T1
[Fis14] Tom Fisher, On families of 7- and 11-congruent elliptic curves, LMS J. Comput. Math. 17
(2014), no. 1, 536-564, DOI 10.1112/5S1461157014000059. MR3356045 75.4
, On families of 9-congruent elliptic curves, Acta Arith. 171 (2015), no. 4, 371-387,
DOI 10.4064/aal71-4-5. MR3430770 7T5.4
, Explicit moduli spaces for congruences of elliptic curves, April 26, 2018. https://
arxiv.org/abs/1804.10195. 75.4
, On families of 13-congruent elliptic curves, December 23, 2019. https://arxiv.org/
abs/1912.10777. 75.4
, On pairs of 17-congruent elliptic curves, June 3, 2021. https://arxiv.org/abs/
2106.02033. T5.4
[FY23] Tom Fisher and Jiali Yan, Computing the Cassels-Tate pairing on the 2-Selmer group of a genus
2 Jacobian, June 9, 2023. https://arxiv.org/abs/2306.06011. T2

[BS10]

[Cas83]

[Dog24]

[Fal84]

[Fis15]

[Fis18]

[Fis19]

[Fis21]

18


https://arxiv.org/abs/2312.04996
https://arxiv.org/abs/2403.07476
https://arxiv.org/abs/1804.10195
https://arxiv.org/abs/1804.10195
https://arxiv.org/abs/1912.10777
https://arxiv.org/abs/1912.10777
https://arxiv.org/abs/2106.02033
https://arxiv.org/abs/2106.02033
https://arxiv.org/abs/2306.06011

[Fly04] E. V. Flynn, The Hasse principle and the Brauer-Manin obstruction for curves, Manuscripta
Math. 115 (2004), no. 4, 437-466, DOI 10.1007/s00229-004-0502-9. MR2103661 15
[FPS97] E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer, Cycles of quadratic polynomials and ratio-
nal points on a genus-2 curve, Duke Math. J. 90 (1997), no. 3, 435-463, DOI 10.1215/S0012-
7094-97-09011-6. MR1480542 71
[LV20] Brian Lawrence and Akshay Venkatesh, Diophantine problems and p-adic period mappings,
Invent. Math. 221 (2020), no. 3, 893-999, DOI 10.1007/s00222-020-00966-7. MR4132959
11
[LMFDB] The LMFDB Collaboration, The L-functions and modular forms database, genus 2 curves
over Q, 2025. https://www.1lmfdb.org/Genus2Curve/Q/ [accessed 2025-09-28]. T6
[MP12] William McCallum and Bjorn Poonen, The method of Chabauty and Coleman, Explicit methods
in number theory, Panor. Synthéses, vol. 36, Soc. Math. France, Paris, 2012, pp. 99-117
(English, with English and French summaries). MR3098132 T1, 5
[Mor22] L. J. Mordell, On the rational solutions of the indeterminate equations of the third and
fourth degrees., Proceedings of the Cambridge Philosophical Society 21 (1922), 179-192.JFM
48.1156.03 T1
[Poo06] Bjorn Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15
(2006), no. 4, 415-420. MR2293593 T5
[PS97] Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the
projective line, J. Reine Angew. Math. 488 (1997), 141-188, DOI 10.1515/crll.1997.488.141.
MR1465369 72
[PS99] Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann.
of Math. (2) 150 (1999), no. 3, 1109-1149, DOI 10.2307/121064. MR1740984 T2
[Sch98] Edward F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve,
Math. Ann. 310 (1998), no. 3, 447-471, DOI 10.1007/s002080050156. MR1612262 T2
[Sch99] Victor Scharaschkin, Local-global problems and the Brauer-Manin obstruction, ProQuest LLC,
Ann Arbor, MI, 1999. Thesis (Ph.D.)-University of Michigan. MR2700328 75
[Sto99] Michael Stoll, On the height constant for curves of genus two, Acta Arith. 90 (1999), no. 2,
183-201. MR1709054 T1

[Sto01] __ | Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001),
no. 3, 245-277, DOI 10.4064/aa98-3-4. MR1829626 T2
[Sto06] |, Independence of rational points on twists of a given curve, Compos. Math. 142 (2006),

no. 5, 1201-1214, DOI 10.1112/S0010437X06002168. MR2264661 T1, 5

, Finite descent obstructions and rational points on curves, Algebra Number Theory 1

(2007), no. 4, 349-391, DOI 10.2140/ant.2007.1.349. MR2368954 T5

, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11

(2008), 367-380, DOI 10.1112/51461157000000644. MR2465796 T1

, Rational points on curves, J. Théor. Nombres Bordeaux 23 (2011), no. 1, 257-277

(English, with English and French summaries). MR2780629 T5

, An explicit theory of heights for hyperelliptic Jacobians of genus three, Algorithmic

and experimental methods in algebra, geometry, and number theory, Springer, Cham, 2017,

pp. 665-715. MR3792747 T4

, Documentation for the ratpoints program, January 8, 2022. https://arxiv.org/
abs/0803.3165. T5

[Sut25] Andrew Sutherland, Genus 2 curves over QQ, 2025. https://math.mit.edu/~drew/newg2c_
provisional.txt. T6

[Tat63] John Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congt.
Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295.
MRO0175892 12

[Wei29] A. Weil, L’arithmétique sur les courbes algébriques., Acta Mathematica 52 (1929), 281-315,
DOI 10.1007/BF02592688, available at https://eudml.org/doc/192777 (French).JFM
55.0713.01 711, 2

[Sto07]

[Sto08]

[Stol1]

[Sto17]

[Sto22]

MATHEMATISCHES INSTITUT, UNIVERSITAT BAYREUTH, 95440 BAYREUTH, GERMANY
Email address: Michael.Stoll@uni-bayreuth.de
URL: http://www.mathe2.uni-bayreuth.de/stoll/

19


https://www.lmfdb.org/Genus2Curve/Q/
https://arxiv.org/abs/0803.3165
https://arxiv.org/abs/0803.3165
https://math.mit.edu/~drew/newg2c_provisional.txt
https://math.mit.edu/~drew/newg2c_provisional.txt
https://eudml.org/doc/192777
http://www.mathe2.uni-bayreuth.de/stoll/

	Introduction
	Computing the Mordell-Weil group
	Testing for local points
	Infinite places
	Small odd finite places
	Even places
	Odd places where f reduces to zero
	Odd places where f reduces to a non-square constant times a square

	Rational divisors of odd degree
	Mordell-Weil-Sieve + Chabauty
	Concluding remarks.

