
THE GENERALIZED FERMAT EQUATION WITH EXPONENTS 2, 3, n

NUNO FREITAS, BARTOSZ NASKRĘCKI, AND MICHAEL STOLL

Abstract. We study the Generalized Fermat Equation x2 + y3 = zp, to be solved in
coprime integers, where p ≥ 7 is prime. Using modularity and level lowering techniques,
the problem can be reduced to the determination of the sets of rational points satisfying
certain 2-adic and 3-adic conditions on a finite set of twists of the modular curve X(p). We
use information on mod-p Galois representations over 2-adic and 3-adic fields to produce
the minimal list of such twists that are compatible with local information at 2 and 3; this
list depends on p mod 24. Using recent results on mod p representations with image in the
normalizer of a split Cartan subgroup, the list can be further reduced in some cases.

Our second main result is the complete solution of the equation when p = 11, which
was the smallest unresolved p. One relevant new ingredient is the use of the ‘Selmer group
Chabauty’ method introduced by the third author in a recent preprint, applied in an Elliptic
Curve Chabauty context, to determine relevant points onX0(11) defined over certain number
fields of degree 12. This result is conditional on GRH, which is needed to show correctness
of the computation of the class groups of five specific number fields of degree 36.

We also give some partial results for the case p = 13.

1. Introduction

This paper considers the Generalized Fermat Equation

(1.1) x2 + y3 = ±zn .

Here n ≥ 2 is an integer, and we are interested in non-trivial primitive integral solutions,
i.e., triples (a, b, c) of nonzero coprime integers such that a2 + b3 = ±cn. If n is odd, the sign
can be absorbed into the nth power, and there is only one equation to consider, whereas for
even n, the two sign choices lead to genuinely different equations.

It is known that for n ≤ 5 there are infinitely many primitive integral solutions, which come
in finitely many families parameterized by binary forms evaluated at pairs of coprime integers
satisfying some congruence conditions, see for example [Edw04] for details. It is also known
that for (fixed) n ≥ 6 there are only finitely many coprime integral solutions, see [DG95] for
n ≥ 7; the case n = 6 reduces to two elliptic curves of rank zero. Some solutions are known
for n ≥ 7, namely (up to sign changes)

132 + 73 = 29, 712 + (−17)3 = 27 210639282 + (−76271)3 = 177,

22134592 + 14143 = 657, 153122832 + 92623 = 1137,

300429072 + (−96222)3 = 438, 15490342 + (−15613)3 = −338,
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and for every n, there is the ‘Catalan solution’ 32 + (−2)3 = 1n. It appears likely (and is
in fact a special case of the ‘Generalized Fermat Conjecture’) that these are the only non-
trivial primitive integral solutions for all n ≥ 6. This has been verified for n = 7 [PSS07],
n = 8 [Bru99,Bru03], n = 9 [Bru05], n = 10 [Bro12, Sik13] and n = 15 [SS14]. Since any
integer n ≥ 6 is divisible by 6, 8, 9, 10, 15, 25 or a prime p ≥ 7, it suffices to deal with
n = 25 and with n = p ≥ 11 a prime, given these results. The case n = 25 is considered in
ongoing work by the authors of this paper; the results will be described elsewhere. So we
will from now on assume that n = p ≥ 7 (or ≥ 11) is a prime number.

Our approach follows and refines the arguments of [PSS07] by combining new ideas around
the modular method with recent methods to find rational points on curves. We note that the
existence of trivial solutions with c 6= 0 and of the Catalan solutions prevents a successful
application of the modular method alone. Nevertheless, in the first part of this paper we will
apply a refinement of it to obtain local information, valid for an arbitrary prime exponent p.
This information is then used as input for global methods in the second part when tackling
concrete exponents. We now give a more detailed description of these two parts.

In the first part, we reduce solving equation (1.1) to the problem of determining the sets
of rational points (satisfying some congruence conditions at 2 and 3) on a small number of
twists of the modular curve X(p). We first develop new criteria to decide if two elliptic curves
with certain type of potentially good reduction at 2 and 3 have symplectically isomorphic
p-torsion modules. Then we apply these criteria to reduce the list obtained in [PSS07] of
twists that have to be considered (in the case of irreducible p-torsion on the Frey elliptic
curve, which always holds for p 6= 7, 13). For this we also make use of fairly recent results
regarding elliptic curves over Q such that the image of the mod p Galois representation is
contained in the normalizer of a split Cartan subgroup. Our main result here is summarized
in Table 4, which says that, depending on the residue class of p mod 24, there are between
four and ten twists that have to be considered.

In the second part, we give a proof of the fact that the only non-trivial primitive solutions in
the case p = 11 are the Catalan solutions (a, b, c) = (±3,−2, 1), subject to the Generalized
Riemann Hypothesis (and the correctness of our computations, which we have done with
the help of the Magma computer algebra system [BCP97]). We use several ingredients
to obtain this result. One is the explicit description of the relevant twists of X(11) by
Fisher [Fis14]. These twists have genus 26 and are therefore not amenable to any direct
methods for determining the rational points. We can (and do) still use Fisher’s description
to obtain local information, in particular on the location in Q2 of the possible j-invariants
of the Frey curves. The second ingredient is the observation that any rational point on
a twist XE(11) maps to a point on the elliptic curve X0(11) that is defined over a certain
number fieldK of degree (at most) 12 that only depends on E and such that the image of this
point under the j-map is rational. This is the setting of ‘Elliptic Curve Chabauty’ [Bru03];
this approach was already taken in an earlier unsuccessful attempt by David Zureick-Brown.
To carry this out in the usual way, one needs to find generators of the group X0(11)(K)
(or at least of a subgroup of finite index), which proved to be infeasible in some of the
cases. We get around this problem by invoking the third ingredient, which is ‘Selmer Group
Chabauty’ as described in [Sto15], applied in the Elliptic Curve Chabauty setting. We note
that we need the Generalized Riemann Hypothesis to ensure the correctness of the class group
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computation for the number fields of degree 36 arising by adjoining to K the x-coordinate of
a point of order 2 on X0(11). In principle, the class group can be verified unconditionally by
a finite computation, which, however, would take too much time with the currently available
implementations.

We also give some partial results for p = 13, showing that the Frey curves cannot have
reducible 13-torsion and that the two CM curves in the list of Lemma 2.3 below can only
give rise to trivial solutions.
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Notation.

Let K be a field of characteristic zero or a finite field. We write GK for its absolute Galois
group. If E/K is an elliptic curve, we denote by ρE,p the Galois representation of GK arising
from the p-torsion on E. We write NE for the conductor of E. Let H8 denote the quaternion
group and Dic12 ' C3 o C4 the dicyclic group with 12 elements.

2. Irreducibility and level lowering

Suppose that (a, b, c) is a solution to the equation

(2.1) x2 + y3 = zp, with p ≥ 7 prime.

We will say (a, b, c) is trivial if abc = 0 and non-trivial otherwise. A non-trivial solution is
primitive if gcd(a, b, c) = 1 and non-primitive otherwise. Note that Equation (2.1) admits for
all p the trivial primitive solutions (±1, 1, 0), (±1, 0, 1), ±(0, 1, 1) and the pair of non-trivial
primitive solutions (±3, 2, 1), which we refer to as the Catalan solution(s).

As in [PSS07], we can consider a putative solution (a, b, c) of (2.1) and the associated Frey
elliptic curve

E(a,b,c) : y2 = x3 + 3bx− 2a of discriminant ∆ = −123cp.

This curve has invariants

(2.2) c4 = −122b, c6 = −123a, j =
123b3

cp
.

We begin with a generalization and refinement of Lemma 6.1 in [PSS07].

Lemma 2.3. Let p ≥ 7 and let (a, b, c) be coprime integers satisfying a2 + b3 = cp and c 6= 0.
Assume that the Galois representation on E(a,b,c)[p] is irreducible. Then there is a quadratic
twist E(d)

(a,b,c) of E(a,b,c) with d ∈ {±1,±2,±3,±6} such that E(d)
(a,b,c)[p] is isomorphic to E[p]

as a GQ-Galois module, where E is one of the following seven elliptic curves (specified by
their Cremona label):

27a1, 54a1, 96a1, 288a1, 864a1, 864b1, 864c1 .
3



Proof. By the proof of [PSS07, Lemma 4.6], a twist E(d)
(a,b,c) with d ∈ {±1,±2,±3,±6} of

the Frey curve has conductor dividing 123N ′, where N ′ is the product of the primes ≥ 5
dividing c. In fact, carrying out Tate’s algorithm for E(a,b,c) locally at 2 and 3 shows that
the conductor can be taken to be 2r3sN ′ with r ∈ {0, 1, 5} and s ∈ {1, 2, 3}. (This uses the
assumption that the solution is primitive.)

Using level lowering as in the proof of [PSS07, Lemma 6.1], we find that ρE,p ∼ ρE′,p where
E ′ is an elliptic curve of conductor 27, 54, 96, 288 or 864, or else ρE,p ∼ ρf,p, where f is
a newform of level 864 with field of coefficients Q(

√
13) and p | p in this field. Let f be

one of these newforms and write ρ = ρf,p|D3 for the restriction of the Galois representation
attached to f to a decomposition group at 3. We apply the Loeffler-Weinstein algorithm1

[LW12,LW15] to determine ρ and we obtain ρ(I3) ' S3. Since p does not divide 6 = #S3 we
also have ρ(I3) ' S3. On the other hand, it is well known that when ρE,p(I3) has order 6,
it must be cyclic (see [Kra90, page 354]). Thus we cannot have ρE,p ∼ ρf,p for any of these
newforms f .

We then check that each elliptic curve with conductor 27, 54, 96, 288 or 864 is isogenous
(via an isogeny of degree prime to p) to a quadratic twist (with d in the specified set) of one
of the seven curves mentioned in the statement of the lemma. �

The following proposition shows that the irreducibility assumption in the previous lemma is
automatically satisfied in most cases.

Proposition 2.4. Let (a, b, c) be a non-trivial primitive solution of (2.1) for p ≥ 11. Write
E = E(a,b,c) for the associated Frey curve. Then ρE,p is irreducible.

Proof. If p = 11 or p ≥ 17, then by Mazur’s results [Maz78], there is only a finite list of
j-invariants of elliptic curves over Q that have a reducible mod p Galois representation (see
also [Dah08, Theorem 22]). More precisely, either we have

(i) p = 11, 19, 43, 67, 163 and the corresponding curves have integral j-invariant, or
(ii) p = 17 and the j-invariant is −172 · 1013/2 or −17 · 3733/217.

Suppose that ρE,p is reducible, hence the Frey curve E(a,b,c) corresponds to one of the curves
in (i) or (ii). Note that gcd(a, b) = 1. Suppose we are in case (i). Since p ≥ 11 and the
j-invariant is integral, it follows that c = ±1, which implies that we either have one of
the trivial solutions (±1, 0, 1), ±(0, 1, 1) or the ‘Catalan solution’ (±3,−2, 1), since the only
integral points on the elliptic curves y2 = x3±1 (which both have finite Mordell-Weil group)
have x ∈ {0,−1, 2}. It remains to observe that the Frey curve associated to the Catalan
solution (which is, up to quadratic twist, 864b1) is the only curve in its isogeny class, so it
has irreducible mod p Galois representations for all p. If we are in case (ii), then then the
17-adic valuation of the j-invariant contradicts (2.2).

For p = 13 the claim is shown in Lemma 8.1 in Section 8 below. �

1This is implemented in Magma via the commands pi:=LocalComponent(ModularSymbols(f), 3);
WeilRepresentation(pi).
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We remark that the results of [PSS07] show that the statement of Proposition 2.4 is also
true for p = 7.

Note that some of the seven curves in Lemma 2.3 are realized by twists of the Frey curve
evaluated at known solutions. Indeed,

E
(6)
(1,0,1) = 27a1, E(0,1,1) = 288a1, E

(2)
(0,−1,−1) = 288a2, E

(−2)
(3,−2,1) = 864b1

and 288a2 and 288a1 are related by a degree 2 isogeny. The solutions (±1, 1, 0) give rise to
singular Frey curves. Note also that E(−d)

(−a,b,c) = E
(d)
(a,b,c), so that (−1, 0, 1) and (−3,−2, 1) do

not lead to new curves.

3. Local conditions and representations of inertia

Let ` be a prime. We write Qunr
` for the maximal unramified extension of Q` and I` ⊂ GQ`

for the inertia subgroup. Let E be an elliptic curve over Q` with potentially good reduction.
Let p ≥ 3, p 6= ` and L = Qunr

` (E[p]) be the smallest extension of Qunr
` over which E

acquires good reduction. The extension L does not depend on p, see [Kra90]. For two
elliptic curves E and E ′ defined over Q with potentially good reduction at ` and such that
L = Qunr

` (E[p]) = Qunr
` (E ′[p]) = L′ we say that E and E ′ have the same inertial type at `.

We write L2,96 and L2,288 for the field L/Qunr
2 corresponding respectively to the elliptic curves

with Cremona labels 96a1 and 288a1. A direct computation shows that L2,96 6' L2,288.

Proposition 3.1. Let E/Q2 be an elliptic curve with potentially good reduction satisfying
Gal(L/Qunr

2 ) ' H8. Suppose further that E has conductor 25. Then L = L2,96 or L = L2,288.

Proof. There is a representation ρE : W2 → GL2(C) of conductor 25 attached to E, where
W2 ⊂ GQ2 is the Weil subgroup. The hypothesis implies that the inertia subgroup has finite
image and acts irreducibly, hence ρE is a supercuspidal representation. In particular, we
have

ρE = IndW2
WM

χ and ρE
∣∣
I2

= IndI2IM (χ
∣∣
I2

) ,

where M/Q2 is a ramified quadratic extension, χ : WM → C× is a character and IM ⊂ WM

are the inertia and Weil groups ofM . Furthermore, εMχ = ‖·‖−1 as characters of Q×2 , where
εM is the character associated to the quadratic extension M/Q2, ‖ · ‖ is the norm character
and we use local class field theory to identify characters of W2 with characters of Q×2 .

The conductor exponents of ρE and χ are related by cond(ρE) = cond(χ) + cond(εM). It
follows from [Pac13, Corollary 4.1] that M = Q2(d) where d =

√
−1 or d =

√
−5, hence

cond(εM) = 2 and cond(χ) = 5− 2 = 3.

Write p for the maximal ideal of M . Since cond(χ) = 3, we have that χ|IM factors via
(OM/p3)×, which has order 4 and is generated by 2 + d. The condition χ|Z×2 = εM implies
χ(−1) = −1, thus χ(2 + d) = ±i. We conclude there are only two possibilities for χ|I2 ,
which are related by conjugation, hence giving the same induction ρE|I2 . Thus, we find two
possible fields L, one for each choice of M . Finally, we note that the curves 96a1 and 288a1
satisfy the hypotheses of the proposition. �
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j a b d curves v2(NE)

1 a ≡ 1 mod 4 b ≡ 1 mod 2 1,−3 54a1 1

2 a ≡ 3 mod 4 b ≡ 1 mod 2 −1, 3 54a1 1

3 a ≡ 0 mod 4 b ≡ 1 mod 4 ±1,±3 288a1, 864a1, 864b1 5

4 a ≡ 0 mod 4 b ≡ 3 mod 4 ±2,±6 288a1, 864a1, 864b1 5

5 a ≡ 2 mod 4 b ≡ 1 mod 4 ±1,±3 96a1, 864c1 5

6 a ≡ 2 mod 4 b ≡ 3 mod 4 ±2,±6 96a1, 864c1 5

7 a ≡ 1 mod 4 b ≡ 0 mod 8 −2, 6 27a1 0

8 a ≡ 3 mod 4 b ≡ 0 mod 8 2,−6 27a1 0

9 a ≡ 1 mod 2 b ≡ 2 mod 8 ±2,±6 96a1, 864c1 5

10 a ≡ 1 mod 2 b ≡ 6 mod 8 ±2,±6 288a1, 864a1, 864b1 5

11 a ≡ 1 mod 2 b ≡ 4 mod 8 ±2,±6 impossible 0

Table 1. 2-adic conditions

We write L3,54 and L3,27 for the field L/Qunr
3 corresponding respectively to the elliptic curves

with Cremona labels 54a1 and 27a1. With similar arguments as in the proof of the previous
proposition one can show the following.

Proposition 3.2. Let E/Q3 be an elliptic curve with potentially good reduction satisfying
Gal(L/Qunr

2 ) ' Dic12. Suppose further that E has conductor 33. Then L = L3,54 or L = L3,27.

One can check that the curves 96a1 and 864c1 and the curves 288a1, 864a1 and 864b1 have
the same inertial type at 2; similarly, one checks that the curves 54a1 and 864a1 and the
curves 27a1, 864b1 and 864c1 have the same inertial type at 3.

Using Magma we reprove and refine Lemma 2.3 by determining the 2-adic and 3-adic con-
ditions on a, b and the twists d ∈ {±1,±2,±3,±6} such that the inertial types at 2 and 3

of E(d)
(a,b,c) match those of the seven curves in Lemma 2.3. The 2-adic information can be

found in Table 1. The last line is interesting: in this case, the twists of the Frey curve that
have good reduction at 2 have trace of Frobenius at 2 equal to ±2, so level lowering can never
lead to a curve of conductor 27 (which is the only possible odd conductor dividing 123), since
these curves all have trace of Frobenius equal to 0. The 3-adic conditions can be found in
Table 2. The first column in each table is just a line number; it will be useful as reference
in a later section. The remaining columns contain the indicated data.

Corollary 3.3. Let p ≥ 11 be a prime number. Let (a, b, c) ∈ Z3 be coprime and satisfy
a2 + b3 = cp. Then b 6≡ 4 mod 8, and if c 6= 0, then c is not divisible by 6.

Proof. Table 1 shows that b ≡ 4 mod 8 is impossible. If c 6= 0, then we have a twisted Frey
curve E(d)

(a,b,c), which if 6 | c would have to be p-congruent to 54a1 and to 96a1 at the same
time; this is impossible. �
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i a b d curves v3(NE)

1 a ≡ 1 mod 3 b ≡ −1 mod 3 −3, 6 96a1 1

2 a ≡ −1 mod 3 b ≡ −1 mod 3 3,−6 96a1 1

3 a ≡ 0 mod 9 b ≡ ±1 mod 3 ±1,±2,±3,±6 288a1 2

4 a ≡ ±3 mod 9 b ≡ 1 mod 3 ±1,±2,±3,±6 27a1, 864b1, 864c1 3

5 a ≡ ±3 mod 9 b ≡ −1 mod 3 ±1,±2,±3,±6 54a1, 864a1 3

6 a ≡ ±1 mod 3 b ≡ 0 mod 3 ±1,±2,±3,±6 27a1, 864b1, 864c1 3

7 a ≡ ±2 mod 9 b ≡ 1 mod 3 ±1,±2,±3,±6 288a1 2

8 a ≡ ±1,±4 mod 9 b ≡ 1 mod 3 ±1,±2,±3,±6 54a1, 864a1 3

Table 2. 3-adic conditions

j\i 1, 2 3, 7 4, 6 5, 8

1, 2 − − − 54a1

3, 4, 10 − 288a1 864b1 864a1

5, 6, 9 96a1 − 864c1 −
7, 8 − − 27a1 −

Table 3. Curves E determined by (a mod 36, b mod 24).

We observe that the residue classes of a mod 36 and b mod 24 determine the corresponding
curve in Lemma 2.3 uniquely, as given in Table 3. The line number j of Table 1 determines
the row and the line number i of Table 2, the column.

4. Symplectic and anti-symplectic isomorphisms of p-torsion

Let p be a prime. Let K be a field of characteristic zero or a finite field of characteristic 6= p.
Fix a primitive p-th root of unity ζp ∈ K̄. For E an elliptic curve defined over K we
write E[p] for its p-torsion GK-module, ρE,p : GK → Aut(E[p]) for the corresponding Galois
representation and eE,p for the Weil pairing on E[p]. We say that an Fp-basis (P,Q) of E[p]
is symplectic if eE,p(P,Q) = ζp.

Now let E/K and E ′/K be two elliptic curves over some field K and let φ : E[p]→ E ′[p] be
an isomorphism of GK-modules. Then there is an element r(φ) ∈ F×p such that

eE′,p(φ(P ), φ(Q)) = eE,p(P,Q)r(φ) for all P,Q ∈ E[p].

Note that for any a ∈ F×p we have r(aφ) = a2r(φ). We say that φ is a symplectic isomorphism
if r(φ) = 1 or, more generally, r(φ) is a square in F×p . Fix a non-square rp ∈ F×p . We say that
φ is a anti-symplectic isomorphism if r(φ) = rp or, more generally, r(φ) is a non-square in F×p .
Finally, we say that E[p] and E ′[p] are symplectically (or anti-symplectically) isomorphic, if
there exists a symplectic (or anti-symplectic) isomorphism of GK-modules between them.
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Note that it is possible that E[p] and E ′[p] are both symplectically and anti-symplectically
isomorphic; this will be the case if and only if E[p] admits an anti-symplectic automorphism.

Note that an isogeny φ : E → E ′ of degree n not divisible by p restricts to an isomorphism
φ : E[p]→ E ′[p] such that r(φ) = n. This can be seen from the following computation, where
φ̂ is the dual isogeny, and where we use that fact that φ and φ̂ are adjoint with respect to
the Weil pairing.

eE′,p(φ(P ), φ(Q)) = eE,p(P, φ̂φ(Q)) = eE,p(P, nQ) = eE,p(P,Q)n.

In particular, φ induces a symplectic isomorphism on p-torsion if (n/p) = 1 and an anti-
symplectic isomorphism if (n/p) = −1.

For an elliptic curve E/Q there are two modular curves X+
E (p) = XE(p) and X−E (p) defined

over Q that parameterize pairs (E ′, φ) consisting of an elliptic curve E ′ and a symplectic
(respectively, anti-symplectic) isomorphism E ′[p]→ E[p] (in the strict sense, i.e., such that
r(φ) = 1 or r(φ) = rp). These two curves are twists of the standard modular curve X(p)
that classifies pairs (E ′, φ) such that φ : E ′[p] → M is a symplectic isomorphism, with
M = µp × Z/pZ and a certain symplectic pairing on M , compare [PSS07]. As explained
there, the existence of a non-trivial primitive solution (a, b, c) of (2.1) implies that some
twisted Frey curve E(d)

(a,b,c) gives rise to a rational point on one of the modular curves XE(p)

or X−E (p) where E is one of the seven elliptic curves in Lemma 2.3. Thus the solution of
Equation (2.1) for any particular p ≥ 11 is reduced to the determination of the sets of
rational points on 14 modular curves XE(p) and X−E (p).

We remark that taking quadratic twists by d of the pairs (E ′, φ) induces canonical isomor-
phisms XE(d)(p) ' XE(p) and X−

E(d)(p) ' X−E (p). Also note that each twist XE(p) has a
‘canonical rational point’ representing (E, idE[p]). On the other hand, it is possible that the
twist X−E (p) does not have any rational point. If E ′ is isogenous to E by an isogeny φ of
degree n, then (E ′, φ|E′[p]) gives rise to a rational point on XE(p) when (n/p) = +1 and
on X−E (p) when (n/p) = −1.

In this section we will study carefully when isomorphisms of the torsion modules of elliptic
curves preserve the Weil pairing. This will allow us to discard some of these 14 modular
curves by local considerations. Of course, from the last paragraph of section 2 it follows that
it is impossible to discard X27a1(p), X288a1(p) or X864b1(p), since they have rational points
arising from the known solutions. Moreover, if (2/p) = −1 we also have a rational point on
X−288a1(p) ' X288a2(p).

Let E and E ′ be elliptic curves over Q with isomorphic p-torsion. In [HK02] the authors give
criteria for deciding under certain hypotheses if E[p] and E ′[p] are symplectically isomorphic.
We recall one such criterion, which will be of use later.

Theorem 4.1 ([HK02, Proposition A.1]). Let E, E ′ be elliptic curves over Q with minimal
discriminants ∆, ∆′. Let p be a prime such that ρE,p ' ρE′,p. Suppose that E and E ′ have
multiplicative reduction at a prime ` 6= p and that p - v`(∆). Then p - v`(∆′), and the
representations ρE,p and ρE′,p are symplectically isomorphic if and only if v`(∆)/v`(∆

′) is a
square mod p.
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The objective of this section is to deduce similar results for certain types of additive reduction
at ` (see also [HK02, Proposition A.2]), which we will then apply to our Diophantine problem
in Theorem 5.1.

We will need the following simple criterion.

Lemma 4.2. Let E and E ′ be two elliptic curves defined over a field K with isomorphic
p-torsion. Fix symplectic bases for E[p] and E ′[p]. Let φ : E[p] → E ′[p] be an isomorphism
of GK-modules and write Mφ for the matrix representing φ with respect to the fixed bases.

Then φ is a symplectic isomorphism if and only if det(Mφ) is a square mod p; otherwise φ
is anti-symplectic.

Moreover, if ρE,p(GK) is a non-abelian subgroup of GL2(Fp), then E[p] and E ′[p] cannot be
simultaneously symplectically and anti-symplectically isomorphic.

Proof. Let P,Q ∈ E[p] and P ′, Q′ ∈ E ′[p] be the fixed symplectic bases. We have that

eE′,p(φ(P ), φ(Q)) = eE′,p(P
′, Q′)det(Mφ) = ζp

det(Mφ) = eE,p(P,Q)det(Mφ),

so r(φ) = det(Mφ). This implies the first assertion.

We now prove the second statement. Let β : E[p] → E ′[p] be another isomorphism of GK-
modules. Then β−1φ = λ is in the centralizer of ρE,p(GK). Since ρE,p(GK) is non-abelian, λ
is represented by a scalar matrix, see [HK02, Lemme A.3]. Therefore det(Mβ) and det(Mφ)
are in the same square class mod p. �

4.1. A little group theory.

Recall that H8 denotes the quaternion group and Dic12 ' C3 o C4 is the dicyclic group of
12 elements. Write Dn for the dihedral group with 2n elements and Sn for the symmetric
group on n letters. We write C(G) for the center of a group G. If H is a subgroup of G,
then we write NG(H) for its normalizer and CG(H) for its centralizer in G.

Lemma 4.3. Let p ≥ 3 and G = GL2(Fp). Let H ⊂ G be a subgroup isomorphic to H8.
Then the group Aut(H) of automorphisms of H satisfies

NG(H)/C(G) ' Aut(H) ' S4.

Moreover,

(a) if (2/p) = 1, then all the matrices in NG(H) have square determinant;
(b) if (2/p) = −1, then the matrices in NG(H) with square determinant correspond to the

subgroup of Aut(H) isomorphic to A4.

Proof. There is only one faithful two-dimensional representation of H8 over Fp (H8 has
exactly one irreducible two-dimensional representation and any direct sum of one-dimensional
representations factors over the maximal abelian quotient), so all subgroups H as in the
statement are conjugate. We can therefore assume that H is the subgroup generated by

g1 =

(
0 −1
1 0

)
and g2 =

(
α β
β −α

)
,
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where α, β ∈ F×p satisfy α2 + β2 = −1. It is easy to see that the elements of H span the
Fp-vector space of 2× 2 matrices, which implies that CG(H) = C(G).

Now the action by conjugation induces a canonical group homomorphism NG(H)→ Aut(H)
with kernel CG(H) = C(G), leading to an injection NG(H)/C(G) → Aut(H). To see
that this map is also surjective (and hence an isomorphism), note that NG(H) contains the
matrices

n1 =

(
1 −1
1 1

)
and n2 =

(
α β − 1

β + 1 −α

)
and that the subgroup of NG(H)/C(G) generated by the images of H and of these matrices
has order 24. Since it can be easily checked that Aut(H8) ' S4, the first claim follows.

Note that A4 is the unique subgroup of S4 of index 2. The determinant induces a homomor-
phism S4 ' NG(H)/C(G)→ F×p /F×2

p whose kernel is either S4 or A4. SinceH ⊂ SL2(Fp) and
all matrices in C(G) have square determinant, it remains to compute det(n1) and det(n2).
But det(n1) = 2 and

det(n2) = −α2 − (β − 1)(β + 1) = −α2 − β2 + 1 = 2

as well. The result is now clear. �

Lemma 4.4. Let p ≥ 5 and G = GL2(Fp). Let H ⊂ G be a subgroup isomorphic to Dic12.
Then the group of automorphisms of H satisfies

NG(H)/C(G) ' Aut(H) ' D6.

Moreover,

(a) if (3/p) = 1, then all the matrices in NG(H) have square determinant;
(b) if (3/p) = −1, then the matrices in NG(H) with square determinant correspond to the

subgroup of inner automorphisms in Aut(H).

Proof. The proof is similar to that of Lemma 4.3. Again, there is a unique conjugacy class
of subgroups isomorphic to Dic12 in G, so we can take H to be the subgroup generated by

g1 =

(
α β
β 1− α

)
and g2 =

(
0 −1
1 0

)
,

where α, β ∈ Fp satisfy β2 = −α2+α−1 with β 6= 0. As before, one sees that CG(H) = C(G),
so we again have an injective group homomorphism NG(H)/C(G)→ Aut(H) ' D6.

The normalizer NG(H) contains the matrix

M =

(
2α− 1 2β

2β 1− 2α

)
and the images of H and M generate a subgroup of order 12 of NG(H)/C(G), which shows
that the homomorphism is also surjective.

Since H ⊂ SL2(Fp), the determinant of any element of NG(H) that induces an inner auto-
morphism of H is a square. Also, the inner automorphism group of H has order 6, so the
homomorphism D6 ' NG(H)/C(G)→ F×p /F×2

p induced by the determinant is either trivial
10



or has kernel equal to the group of inner automorphisms. This depends on whether the
determinant of M ,

det(M) = −4α2 + 4α− 1− 4β2 = 3,

is a square in Fp or not. �

4.2. Criteria for symplecticity.

Let E, E ′ be elliptic curves over Q` with potentially good reduction and set L = Qunr
` (E[p])

and L′ = Qunr
` (E ′[p]), where Qunr

` denotes the maximal unramified extension of Q`. Suppose
that E[p] and E ′[p] are isomorphic as GQ`-modules. Then in particular they have the same
inertial type, thus L = L′. Write I = Gal(L/Qunr

` ) and I` = GQunr
`

. If I is not abelian, then
it follows from Lemma 4.2 and its proof that E[p] and E ′[p] are symplectically isomorphic
as GQ`-modules if and only if they are symplectically isomorphic as I`-modules. Moreover,
they cannot be both symplectically and anti-symplectically isomorphic. In Theorem 4.6 we
provide a criterion to decide between the two possibilities when ` = 2 and I ' H8. In
Theorem 4.7 we do the same for ` = 3 and I ' Dic12.

We now introduce notation and recall facts from [ST68, Section 2] and [HK02, Appendice A].
Let p and ` be primes such that p ≥ 3 and ` 6= p. Let E/Q`, L and I be as above.
Write E for the elliptic curve over F` obtained by reduction of a minimal model of E/L
and ϕ : E[p] → E[p] for the reduction morphism, which is a symplectic isomorphism of
(trivial) GL-modules. Let Aut(E) be the automorphism group of E over F` and write
ψ : Aut(E) → GL(E[p]) for the natural injective morphism. The action of I on L induces
an injective morphism γE : I → Aut(E). Moreover, for σ ∈ I we have

(4.5) ϕ ◦ ρE,p(σ) = ψ(γE(σ)) ◦ ϕ.

Theorem 4.6. Let p ≥ 3 be a prime. Let E and E ′ be elliptic curves over Q2 with potentially
good reduction. Suppose they have the same inertial type and that I ' H8. Then E[p] and
E ′[p] are isomorphic as I2-modules. Moreover,

(1) if (2/p) = 1, then E[p] and E ′[p] are symplectically isomorphic I2-modules;
(2) if (2/p) = −1, then E[p] and E ′[p] are symplectically isomorphic I2-modules if and only

if E[3] and E ′[3] are symplectically isomorphic I2-modules.

Proof. Note that L = Qunr
2 (E[p]) is the smallest extension of Qunr

2 over which E acquires
good reduction and that the reduction map ϕ is an isomorphism between the Fp-vector
spaces E[p](L) and E[p](F2). By hypothesis E ′ also has good reduction over L and ϕ′ is
an isomorphism. Applying equation (4.5) to both E and E ′ we see that E[p] and E ′[p] are
isomorphic I2-modules, if we can show that ψ◦γE and ψ◦γE′ are isomorphic as representations
into GL(E[p]) and GL(E

′
[p]), respectively.

We have that j(E) = j(E
′
) = 0 (see the proof of [DD15, Theorem 3.2]), thus E and E ′ are

isomorphic over F2. So we can fix minimal models of E/L and E ′/L both reducing to the same
E. Note that Aut(E) ' SL2(F3) (see [Sil09, Thm.III.10.1]) and that there is only one (hence
normal) subgroup H of SL2(F3) isomorphic to H8. Therefore ψ(γE(I)) = ψ(γE′(I)) = ψ(H)
in GL(E[p]), and there must be an automorphism α ∈ Aut(ψ(H)) such that ψ ◦ γE =
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α ◦ ψ ◦ γE′ . The first statement of Lemma 4.3 shows that there is g ∈ GL(E[p]) such that
α(x) = gxg−1 for all x ∈ ψ(H); thus ψ ◦ γE and ψ ◦ γE′ are isomorphic representations.

Fix a symplectic basis of E[p], thus identifying GL(E[p]) with GL2(Fp). Let Mg denote
the matrix representing g and observe that Mg ∈ NGL2(Fp)(ψ(H)). Lift the fixed basis to
bases of E[p] and E ′[p] via the corresponding reduction maps ϕ and ϕ′. The lifted bases
are symplectic. The matrices representing ϕ and ϕ′ with respect to these bases are the
identity. From (4.5) it follows that ρE,p(σ) = MgρE′,p(σ)M−1

g for all σ ∈ I. Moreover, Mg

represents some I2-module isomorphism φ : E[p]→ E ′[p], and from Lemma 4.2 we have that
E[p] and E ′[p] are symplectically isomorphic if and only if det(Mg) is a square mod p.

Part (1) then follows from Lemma 4.3 (a).

We now prove (2). From Lemma 4.3 (b) we see that E[p] and E ′[p] are symplectically
isomorphic if and only if α is an automorphism in A4 ⊂ Aut(ψ(H)) ' S4. Note that these
are precisely the inner automorphisms or automorphisms of order 3. Note also that all the
elements in S4 \A4 are not inner and have order 2 or 4. For each p the map αp = ψ−1 ◦α ◦ψ
defines an automorphisms of γE(I) = H ⊂ Aut(E) satisfying αp ◦ γE′ = γE.

We note that the unique automorphism of SL2(F3) which is the identity on the order 8
subgroup is the identity. Since γE, γE′ are independent of p, it follows that αp is the same for
all p. Since α and αp have the same order and are simultaneously inner or not it follows that
this property is independent of the prime p satisfying (2/p) = −1. This shows that E[p] and
E ′[p] are symplectically isomorphic I2-modules if and only if E[`] and E ′[`] are symplectically
isomorphic I2-modules for one (hence all) ` satisfying (2/`) = −1. In particular, we can take
` = 3, and the result follows. �

Theorem 4.7. Let p ≥ 5 be a prime. Let E and E ′ be elliptic curves over Q3 with potentially
good reduction. Suppose they have the same inertial type and I ' Dic12. Then E[p] and E ′[p]
are isomorphic as I3-modules. Moreover,

(1) if (3/p) = 1, then E[p] and E ′[p] are symplectically isomorphic I3-modules;
(2) if (3/p) = −1, then E[p] and E ′[p] are symplectically isomorphic I3-modules if and only

if E[5] and E ′[5] are symplectically isomorphic I3-modules.

Proof. This proof is analogous to the proof of Theorem 4.6, with 3 and 5 taking over the
roles of 2 and 3, respectively.

In this case Aut(E) ' Dic12 [Sil09, Thm.III.10.1], so ψ(γE(I)) = ψ(γE′(I)) = ψ(Aut(E)).
We use Lemma 4.4 instead of Lemma 4.3 to conclude that α is given by a matrix Mg.
Lemma 4.4 (a) concludes the proof of (1) and Lemma 4.4 (b) the proof of (2). �

5. Application to the Frey curves

Using the results in the previous section we will now show that one can discard some of the
14 twists of X(p), depending on the residue class of p mod 24.

Theorem 5.1. Let p ≥ 11 be prime and let (a, b, c) be a non-trivial primitive solution (a, b, c)

of x2 + y3 = zp. Then the associated Frey curve E(d)
(a,b,c) gives rise to a rational point on one

of the following twists of X(p).
12



• If p ≡ 1 mod 24:

X27a1(p), X54a1(p), X96a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p) .

• If p ≡ 5 mod 24:

X27a1(p), X54a2(p), X96a1(p), X288a1(p), X288a2(p),

X864a1(p), X−864a1(p), X864b1(p), X−864b1(p), X864c1(p), X−864c1(p) .

• If p ≡ 7 mod 24:

X27a1(p), X54a2(p), X96a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p) .

• If p ≡ 11 mod 24:

X27a1(p), X54a1(p), X96a1(p), X288a1(p), X288a2(p), X864a1(p), X864b1(p), X864c1(p) .

• If p ≡ 13 mod 24:

X27a1(p), X96a2(p), X288a1(p), X288a2(p), X864a1(p), X864b1(p), X864c1(p) .

• If p ≡ 17 mod 24:

X27a1(p), X54a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p) .

• If p ≡ 19 mod 24:

X27a1(p), X54a1(p), X96a2(p), X288a1(p), X288a2(p),

X864a1(p), X−864a1(p), X864b1(p), X−864b1(p), X864c1(p), X−864c1(p) .

• If p ≡ 23 mod 24:

X27a1(p), X288a1(p), X864a1(p), X864b1(p), X864c1(p) .

Proof. Note that among the seven elliptic curves in Lemma 2.3, 27a1 and 288a1 have complex
multiplication by Z[ω] and Z[i], respectively, where ω is a primitive cube root of unity. We
note also that the isogeny classes of the first four curves in the list of Lemma 2.3 have the
following structure (the edges are labeled by the degree of the isogeny):

27a2
3

27a1
3

27a3
3

27a4 54a2
3

54a1
3

54a3

96a2 2

96a1
2

96a4 288a1
2

288a2

96a3 2

whereas the isogeny classes of the last three curves are trivial (see [Cre97, Table 1]). We
also note that 27a3 is the quadratic twist by −3 of 27a1, so that X27a1(p) ' X27a3(p). If
(3/p) = −1, then the 3-isogeny between these curves induces an anti-symplectic isomorphism
of the mod p Galois representations, and we have that X27a1(p) ' X27a3(p) ' X−27a1(p). So
when p ≡ 5, 7, 17, 19 mod 24, we only have one twist of X(p) coming from 27a1. (For the
other CM curve, 288a1, this argument does not apply, since it is its own −1-twist.)

For the twists associated to the curves 54a1 and 96a1 we apply Theorem 4.1. From Table 1
we see that the Frey curve E(d)

(a,b,c) has multiplicative reduction at ` = 2 if and only if c is
even and d = ±1,±3, in which case its minimal discriminant is ∆ = 2−633d6cp (compare
the proof of [PSS07, Lemma 4.6]); in particular, v2(∆) ≡ −6 mod p. Then the Frey curve
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must be p-congruent to E = 54a1 (which is the only curve in our list that has multiplicative
reduction at 2). On the other hand, ∆E = −2339, so that the isomorphism between E(d)

(a,b,c)[p]

and E[p] is symplectic if and only if (−2/p) = 1. So for p ≡ 1, 11, 17, 19 mod 24, we get
rational points at most on X54a1(p), whereas for p ≡ 5, 7, 13, 23 mod 24, we get rational
points at most on X−54a1(p) (which is X54a2(p) when (3/p) = −1). Similarly, Table 2 shows
that the Frey curve has multiplicative reduction at ` = 3 if and only if c is divisible by 3.
In this case d = ±3,±6 and the minimal discriminant is ∆ = 263−3cp (see again the proof
of [PSS07, Lemma 4.6]), so v3(∆) ≡ −3 mod p. Since E = 96a1 is the only curve in our
list that has multiplicative reduction at 3, the Frey curve must be p-congruent to it. Since
∆E = 2632, we find that the isomorphism between E

(d)
(a,b,c)[p] and E[p] is symplectic if and

only if (−6/p) = 1. So for p ≡ 1, 5, 7, 11 mod 24 we get rational points at most on X96a1(p),
whereas for p ≡ 13, 17, 19, 23 mod 24, we get rational points at most on X−96a1(p) (which is
X96a2 when (2/p) = −1).

Now we consider the curves E with conductor at 2 equal to 25; these are 96a1, 288a1, 864a1,
864b1 and 864c1. They all have potentially good reduction at 2 and I = Gal(L/Qunr

2 ) ' H8.
Since H8 is non-abelian, by the proof of Lemma 4.2 the isomorphism of mod p Galois
representations is symplectic if and only if it is symplectic on the level of inertia groups.
It follows from Theorem 4.6 (1) that when (2/p) = 1 the isomorphism E

(d)
(a,b,c)[p] ' E[p] can

only be symplectic. So for p ≡ 1, 7, 17, 23 mod 24, we can exclude the ‘minus’ twists X−E (p)
for E ∈ {96a1, 288a1, 864a1, 864b1, 864c1}.
We can use a similar argument over Q3 for the curves E in our list whose conductor at 3
is 33, namely 27a1, 54a1, 864a1, 864b1 and 864c1. They all have potentially good reduction
and I ' Dic12. By Theorem 4.7 (1) we conclude that the isomorphism E

(d)
(a,b,c)[p] ' E[p]

must be symplectic when (3/p) = 1. Thus we can exclude the twists X−E (p) for E in the set
{27a1, 54a1, 864a1, 864b1, 864c1} when p ≡ 1, 11, 13, 23 mod 24.

Finally, from the isogeny diagrams we see thatX96a2(p) ' X−96a1(p) andX288a2(p) ' X−288a1(p)
when (2/p) = −1; and also X54a2(p) ' X−54a1(p) when (3/p) = −1. This concludes the
proof. �

We have already observed that XE(p) for E ∈ {27a1, 288a1, 288a2, 864b1} always has a
rational point coming from a primitive solution of (2.1), so these twists cannot be excluded.
In a similar way, we see that we cannot exclude XE(p) by local arguments over Q` with
` = 2 or 3, if E can be obtained as a Frey curve coming from an `-adically primitive solution
of (2.1). Note that any `-adic unit is a p-th power in Q` (for ` ∈ {2, 3} and p ≥ 5). For ` = 2,
we have the following triples (a, b, E) (such that a, b ∈ Z2 are coprime and a2 + b3 ∈ Z×2 ).

(253,−40, 27a2), (10,−7, 96a1), (46,−13, 96a2), (1, 2, 864c1).

For ` = 3, we only obtain (13, 7, 54a1) and (3,−1, 864a1). The remaining combinations
(E, `), namely

(27a2, 3), (54a1, 2), (54a2, 2), (54a2, 3), (54a3, 2), (54a3, 3), (96a1, 3),

(96a2, 3), (96a3, 2), (96a3, 3), (96a4, 2), (96a4, 3), (864a1, 2), (864c1, 3),

do not arise in this way. This can be verified by checking whether there is d ∈ Q×` such that
a = c6(E)d3 and b = −c4(E)d2 are coprime `-adic integers such that a2 + b3 is an `-adic unit.

14



In the remainder of this section we will show that there are nevertheless always 2-adic and
3-adic points corresponding to primitive solutions on the twists X±E (p) listed in Theorem 5.1.

Lemma 5.2. Let p ≥ 7 be a prime such that (2/p) = −1. Then the p-torsion GQ2-modules
of the following curves admit exclusively the following isomorphism types:

96a1
+' 864c1, 288a1

+' 864b1, 288a1
−' 864a1, 864b1

−' 864a1,

where + means symplectic and − anti-symplectic. Moreover, let a, b be coprime integers
satisfying the congruences in line j of Table 1 and write E = E

(d)
(a,b,c)/Q2, where d is any of

the possible values in the same line. Then, up to quadratic twist, the p-torsion GQ2-modules
of the following curves admit exclusively the following isomorphism types:

j = 3, 10: E
+' 288a1, E

+' 864b1, E
−' 864a1

j = 4: E
−' 288a1, E

−' 864b1, E
+' 864a1

j = 5, 9: E
+' 96a1, E

+' 864c1

j = 6: E
−' 96a1, E

−' 864c1

Furthermore, if instead p ≥ 3 satisfies (2/p) = 1, then all the previous isomorphisms are
symplectic.

Proof. Let E and E ′ be any choice of curves that are being compared in the statement.
From Theorem 4.6 we know there is an isomorphism of I2-modules φ : E[p] → E ′[p]. More-
over, from part (2) we know that E[p] and E ′[p] are (exclusively) symplectically or anti-
symplectically isomorphic if and only if E[3] and E ′[3] are. We computed (for p = 3) the
matrix Mφ in Lemma 4.2 using Magma to conclude that the results in the statement hold
at the level of inertia. To finish the proof we will show that the I2-module isomorphism
between E[p] and E ′[p] extends to the whole of GQ2 up to unramified quadratic twist.

Write L = Qunr
2 (E[n]) and I = Gal(L/Qunr

2 ) as usual (recall that L is independent of n ≥ 3).
Write also Ln = Q2(E[n]) for the field fixed by the representation on the n-torsion. Let Un
be the maximal unramified extension inside Ln. The group I can be naturally identified
with the subgroup of Gn = Gal(Ln/Q2) that fixes Un. In what follows we implicitly use this
identification. In particular, ρE,n|I ' ρE′,n|I .

Note that all the curves in the statement obtain good reduction over L3 and that they all
have the trace of Frobenius aL3 = −4. Thus ρE,n|GL3

' ρE′,n|GL3
.

Since all the curves involved have conductor 25, their discriminants are cubes in Q2. Thus,
by [DD08, Table 1] we conclude that G3 = Gal(L3/Q2) is isomorphic to the semi-dihedral
group with 16 elements, hence H8 ' I ⊂ G3 with index 2, thus [U3 : Q2] = 2. (Note that
explicit Magma computations can also prove these statements, since we only have to consider
a finite list of curves).

The field L3p = Up·L3 satisfies [L3p : Lp] ≤ 2 with equality holding if and only if Up∩U3 = Q2.
Moreover, the groups N = Gal(L3p/L3) and I = Gal(L3p/U3p) generate GU3 := Gal(L3p/U3).

We apply [Cen15, Theorem 2] to find that there is a basis in which ρE,p(Frob2) is the scalar
matrix −2 · Id2. Thus the same is true in all bases; therefore ρE,p(Frob2) commutes with all
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matrices in ρE,p(I). Since the same is true for E ′, the isomorphism between ρE,p and ρE′,p
on the subgroups I and N extends to GU3 .

Since the representations ρE,p and ρE′,p are irreducible and [U3 : Q2] = 2, they differ at most
by the quadratic character fixing U3.

Since U3 ⊂ L3, we have that Gal(U3/Q2) is a quotient of G3. Thus if the 3-torsion repre-
sentations are already isomorphic, we do not need to take the quadratic twist. The explicit
computations show that this is what happens when comparing the curves 96a1, 288a1, 864a1,
864b1, 864c1 among themselves, but that this is not always the case when comparing them
against E(d)

(a,b,c).

The last statement follows from Theorem 4.6 (1). �

Since the isomorphism class ofXE(p) (orX−E (p)) depends only on the symplectic Galois mod-
ule E[p], the lemma implies that over Q2, X±96a1(p) ' X±864c1(p) and X±288a1(p) ' X±864b1(p)
(writing X+

E (p) = XE(p)), and also that X±288a1(p) ' X±864a1(p) when (2/p) = 1, whereas
X±288a1(p) ' X∓864a1(p) when (2/p) = −1. Furthermore, in the latter case, we obtain ‘primi-
tive’ 2-adic points on X−E (p) for E ∈ {96a1, 288a1, 864a1, 864b1, 964c1}.

Lemma 5.3. Let p ≥ 7 be a prime such that (3/p) = −1. Then the p-torsion GQ3-modules
of the following curves admit exclusively the following isomorphism types:

27a1
+' 864c1, 27a1

−' 864b1, 864b1
−' 864c1, 54a1

−' 864a1,

where + means symplectic and − anti-symplectic. Moreover, let a, b be coprime integers
satisfying the congruences in line i of Table 2 and write E = E

(d)
(a,b,c)/Q3. Then the p-torsion

GQ3-modules of the following curves admit exclusively the following isomorphism types:

i = 4, 6, d = ±1,±2: E
−' 27a1, E

+' 864b1, E
−' 864c1

i = 4, 6, d = ±3,±6: E
+∼ 27a1, E

−∼ 864b1, E
−∼ 864c1

i = 5, 8, d = ±1,±2: E
−∼ 54a1, E

+∼ 864a1

i = 5, 8, d = ±3,±6: E
+∼ 54a1, E

−∼ 864a1

Furthermore, if instead p ≥ 7 satisfies (3/p) = 1, then all the previous isomorphisms are
symplectic.

Proof. This is similar to the previous lemma, where we replace 2 and 3 by 3 and 5 respectively.
Arguing as above, we see that I = Gal(L5p/U5p) and N = Gal(L5p/L5) generate GU5 :=
Gal(L5p/U5). Moreover, since all the curves in the statement acquire good reduction over L5

and have trace of Frobenius aL5 = −18, we conclude in the same way as before that ρE,p
and ρE′,p are isomorphic when restricted to GU5 . Since [U5 : Q3] = 4, it could be possible
that the representations differ by a quartic twist, but explicit computations show that we
can always make the representations on the 5-torsion isomorphic after a quadratic twist. �

The statements of this lemma can be translated in terms of isomorphisms over Q3 and
‘primitive’ Q3-points in the same way as for the previous lemma.

These results already show that all the curves X±E (p) listed in Theorem 5.1 have ‘primitive’ 2-
adic and 3-adic points (and therefore cannot be ruled out by local considerations at 2 and 3),
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with the possible exception of 2-adic points on X±54a1(p) and 3-adic points on X±96a1(p). The
next proposition and corollary show that these curves also have these local ‘primitive’ points.
This then implies that the information in Theorem 5.1 is optimal in the sense that we cannot
exclude more of the twists using purely local arguments.

Proposition 5.4. Let ` 6= p be primes with p ≥ 3. Let E1 and E2 be Tate curves over Q`

with parameters q1 and q2. Assume that qr11 = qr22 s
p with s ∈ Q` and r1, r2 ∈ Z with p - ri.

Write e1 = v`(∆E1) and e2 = v`(∆E2) for the `-adic valuations of the minimal discriminants.
Suppose that p - e1e2. Then the I`-modules E1[p] and E2[p] are isomorphic. If in addition
` = 2 or 3, then E1[p] and E2[p] are even isomorphic as GQ`-modules.

Proof. Since p - e1e2, we can find coprime integers n and m satisfying e2 = ne1 + pm.

Let γ1, γ2 ∈ Q`, α ∈ Qunr
` satisfy γp1 = q1, αp = q2/q

n
1 `
mp and γ2 = γn1 `

mα (hence γp2 = q2).

Fix a primitive p-th root of unity ζ. The theory of the Tate curve implies that we can use
ζqZ1 , γ1q

Z
1 and ζqZ2 , γ2q

Z
2 as Fp-bases for the p-torsion of E1 and E2, respectively. In terms of

these bases we have

ρEi,p =

(
χp hi
0 1

)
,

where χp is the mod p cyclotomic character and hi : GQ` → Fp becomes a non-trivial group
homomorphism when restricted to I`.

Write Kp for the p-torsion field of E1; the relation between q1 and q2 implies that Kp is
also the p-torsion field of E2, that is, ρE1,p and ρE2,p have the same kernel. In particular,
the inertia subgroup of Gal(Kp/Q`) is cyclic of order p and is generated by the element σ
such that σ(ζ) = ζ and σ(γ1) = ζγ1; thus σ(γ2) = ζnγ2. We can directly check that
MbρE1,p(σ) = ρE2,p(σ)Mb, where

ρE1,p(σ) =

(
1 1
0 1

)
, ρE2,p(σ) =

(
1 n
0 1

)
, Mb =

(
n b
0 1

)
for any b ∈ Fp.

The first statement follows.

We will now prove the second statement. Write τ for a Frobenius element at `. Let nα ∈ F×p
be defined by τ(α)/α = ζnα . We have that τ(ζ) = ζ`, τ(γ1) = ζh1(τ)γ1 and

τ(γ2) = τ(γn1 `
mα) = `mτ(α)ζh1(τ)nγn1 =

τ(α)

α
ζh1(τ)nγn1 `

mα = ζnα+h1(τ)nγ2

We have to show that MbρE1,p(τ) = ρE2,p(τ)Mb for some choice of b ∈ Fp, where

ρE1,p(τ) =

(
` h1(τ)
0 1

)
, ρE2,p(τ) =

(
` h1(τ)n+ nα
0 1

)
.

The condition MbρE1,p(τ) = ρE2,p(τ)Mb translates to the condition that b ∈ Fp satisfies
b(1− `) = nα, which is always possible if we can invert 1− ` in Fp. For odd p and ` = 2, 3
this is the case. �

Corollary 5.5. There are primitive 2-adic points on X±54a1(p) for p ≥ 3. There are primitive
3-adic points on X±96a1(p) for p ≥ 5. The signs ± here are as given by the entries in Table 4
(which for the curves considered here summarizes Theorem 5.1).
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Proof. Let W denote the curve 54a1. From Table 1 we see that for the Frey curve E = Ea,b,c
to be p-congruent to W we must have v2(c) > 0 and v2(a) = υ2(b) = 0. Note that we can
always find a, b, c ∈ Q2 satisfying the previous conditions and a2 + b3 = cp.

Up to unramified quadratic twist the curvesW/Q2 and E/Q2 are Tate curves with parameters
qW and qE respectively. We have v2(qW ) = v2(∆W ) = 3 and v2(qE) = −v2(jE) = −6+pv2(c).

We want to find r1, r2 ∈ Z not divisible by p such that qr1E /q
r2
W = sp, s ∈ Q2. Since every unit

in Q2 is a p-th power, we only have to find ri such that v2(qr1E /q
r2
W ) is a multiple of p. This

is always possible. From the previous proposition we conclude that (up to quadratic twist)
E[p] and W [p] are isomorphic GQ2-modules. Therefore we get 2-adic points on X+

54a1(p)
or X−54a1(p) according to the signs in Table 4.

For the curve 96a1 we argue in the same way, but over Q3 instead of Q2. �

6. Ruling out twists coming from CM curves

In [BPR13, Corollary 1.2] it is shown that for p ≥ 11, p 6= 13, the image of the mod p
Galois representation of any elliptic curve E over Q is never contained in the normalizer of
a split Cartan subgroup unless E has complex multiplication. This allows us to deduce the
following.

Lemma 6.1. Let p ≥ 17 be a prime number.

(1) If p ≡ 1 mod 3, then the only primitive solutions of (2.1) coming from rational points
on X±27a1(p) are the trivial solutions (±1)2 + 03 = 1p.

(2) If p ≡ 1 mod 4, then the only primitive solutions of (2.1) coming from rational points
on X±288a1(p) are the trivial solutions 02 + (±1)3 = (±1)p (with the same sign on both
sides).

Proof. If a primitive solution (a, b, c) gives rise to a Frey curve E ′ such that E ′[p] ∼= E[p] for
E = 27a1, then the image of Galois in GL(E ′[p]) ∼= GL(E[p]) is contained in the normalizer
of a split Cartan subgroup, since E has complex multiplication by Z[ω] and p splits in this
ring when p ≡ 1 mod 3. It follows that E ′ also has complex multiplication, which implies
that c = ±1. Since the Frey curve of the Catalan solution does not have CM, the solution
must be trivial, and then only the given solution corresponds to the right curve E. The
other case is similar, using the fact that 288a1 has CM by Z[i]. �

A separate computation for the case p = 13, see Lemma 8.2 below, shows that Lemma 6.1
remains valid in that case, even though the result of [BPR13] does not apply.

We can therefore further reduce the list of twists of X(p) that have to be considered. This
results in Table 4, where an entry ‘+’ (resp., ‘−’) indicates that the twist XE(p) (resp.,
X−E (p)) cannot (so far) be ruled out to have rational points giving rise to a non-trivial
primitive solution of (2.1).

Unfortunately, there is no similar result on mod p Galois representations whose image is
contained in the normalizer of a non-split Cartan subgroup. Such a result would allow us to
eliminate the curves 27a1 and 288a1 also in the remaining cases.
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p mod 24 27a1 54a1 96a1 288a1 864a1 864b1 864c1

1 + + + + +
5 + − + +− +− +−
7 − + + + + +

11 + + + +− + + +
13 − + + +
17 + + + + +
19 + − +− +− +− +−
23 + + + + +

Table 4. Twists of X(p) remaining after local considerations and using in-
formation on X+

split(p), according to p mod 24. This table is valid for p ≥ 11.

In Section 7.1 below we show how one can deal with the non-split case when p = 11, by
considering the twists X(−1)

ns (p) and X
(−3)
ns (p) of the double cover Xns(p) → X+

ns(p), where
Xns(p) classifies elliptic curves such that the image of the mod p Galois representation is
contained in a non-split Cartan subgroup and X+

ns(p) does the same for the normalizer
of a non-split Cartan subgroup. It turns out that for p = 11 the two curves X(−1)

ns (11)

and X
(−3)
ns (11) are not directly amenable to a Chabauty argument; instead one can use

suitable coverings and Elliptic Curve Chabauty. The following argument shows that the
failure of the Chabauty condition is a general phenomenon.

By a result of Chen [Che98] (see also [dSE00]) the Jacobian variety J0(p2) of X0(p2) is
isogenous to the product Jac(Xns(p)) × Jac(X0(p))2. On the other hand, a theorem of
Shimura [Shi71, Thm. 7.14] implies that J0(p2) is isogenous to the product

∏
f A

mf
f , where f

runs over a system of representatives of the Galois orbits of newforms of levelMf dividing p2

and weight 2, Af is the abelian variety over Q associated to f defined by Shimura, and
p3−mf = Mf . It follows that Jac(Xns(p)) is isogenous to the product of the Af such that f
is a newform in S2(Γ0(p2)). Similarly, the Jacobian of X+

ns(p) corresponds to the product of
the Af for the subset of f invariant under the Atkin-Lehner involution W at level p2.

If p ≡ −1 mod 4, we need to exclude rational points on the twists X±288a1(p); solutions
associated to this curve will give rise to rational points on the (−1)-twist X(−1)

ns (p) of the
double cover Xns(p) → X+

ns(p). Similarly, for p ≡ −1 mod 3, we need to exclude rational
points on the twist X27a1(p), and solutions associated to that curve will give rise to rational
points on X(−3)

ns (p). To be able to use Chabauty’s method, we would need to have a factor of
the Jacobian J (d)

ns (p) (for d = −1 and/or d = −3) of Mordell-Weil rank strictly less than its
dimension. Since all these factors have real multiplication (defined over Q), the Mordell-Weil
rank is always a multiple of the dimension, so we actually need a factor of rank zero.

By the above, we know that J (d)
ns (p) splits up to isogeny as the product of the twists A(d)

f

for newforms f such that f |W = −f and the untwisted Af for f such that f |W = f . The
L-series of A(d)

f is the product of L(σfχ, s), where σf runs through the newforms in the Galois
orbit and χ is the quadratic character associated to d, see [Shi71, Section 7.5]. By a theorem
of Weil [Wei67, Satz 1] all these L-series have root number −1 when f |W = −f and d < 0 is
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squarefree (note that C = 1 from f |W = −f , ε is trivial, χ is real, so g(χ) = g(χ̄), and A = p2,
so that χ(−A) = χ(−1) = −1), so L(A

(d)
f , s) vanishes at least to order dimA

(d)
f at s = 1.

For the f that are invariant under W we also have that the root number of L(σf, s) is −1, so
L(Af , s) also vanishes to order at least dimAf . Assuming the Birch and Swinnerton-Dyer
conjecture, it follows that all factors of J (d)

ns (p) have positive rank.

To conclude this section, we mention that when p = 13, we are in the split case for both CM
curves, but we have the problem that there is no proof so far that the set of rational points
on X+

sp(13) consists of cusps and CM points, although this is almost certainly the case. (The
curve is of genus 3 and its Jacobian has Mordell-Weil rank 3, see [Bar14] and [BPS16].) We
tried an approach similar to that used in Section 7.1 below, but did not succeed. However,
a different approach using twists of X1(13) is successful; see Lemma 8.2 below.

7. The Generalized Fermat Equation with exponents 2, 3, 11

We now consider the case p = 11. In this section we will prove the following theorem.

Theorem 7.1. Assume the Generalized Riemann Hypothesis. Then the only primitive in-
tegral solutions of the equation x2 + y3 = z11 are the trivial solutions (±1, 0, 1), ±(0, 1, 1),
(±1,−1, 0) and the Catalan solutions (±3,−2, 1).

We note at this point that the Generalized Riemann Hypothesis is only used to verify the
correctness of the computation of the class groups of five specific number fields of degree 36.

In the following we will say that j ∈ Q is good if it is the j-invariant of a Frey curve
associated to a primitive integral solution of x2 + y3 = z11, which means that j = (12b)3/c11

and 123 − j = 123a2/c11 with coprime integers a, b, c. In a similar way, we say that j ∈ Q2

is 2-adically good if it has this form for coprime 2-adic integers a, b, c.

By Theorem 5.1, it suffices to find the rational points on the twisted modular curves XE(11)
for the elliptic curves E ∈ E ′, where

E ′ = {27a1, 54a1, 96a1, 288a1, 288a2, 864a1, 864b1, 864c1} ,
such that their image on the j-line is good.

7.1. The CM curves.

In the case p = 11, we can deal with the CM curves E ∈ {27a1, 288a1, 288a2} in the
following way. Note that since (−1/11) = (−3/11) = −1, the images of both relevant Galois
representations are contained in the normalizer of a non-split Cartan subgroup of GL(2,F11).
Elliptic curves with this property are parameterized by the modular curve X+

ns(11), which is
the elliptic curve 121b1 of rank 1. It has as a double cover the curve Xns(11) parameterizing
elliptic curves E such that the image of the mod 11 Galois representation is contained in a
non-split Cartan subgroup. Elliptic curves whose mod 11 representation is isomorphic to that
of 288a1 (or 288a2) or 27a1 will give rise to rational points on the quadratic twists X(−1)

ns (11)

and X(−3)
ns (11) of this double cover. These curves are of genus 4; the Jacobian of Xns(11) is

isogenous to the product of the four elliptic curves 121a1, 121b1, 121c1 and 121d1, so that
the Jacobian of the twist X(d)

ns (11) splits into the four elliptic curves 121b1, 121a1(d), 121c1(d)
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and 121d1(d). Unfortunately, for d = −1 and d = −3 all of these curves have rank 1, so the
obvious approach does not work. However, we can use a covering collection combined with
the Elliptic Curve Chabauty method [Bru03], as follows. An equation for X+

ns(11) is

y2 = 4x3 − 4x2 − 28x+ 41

and the double cover Xns(11)→ X+
ns(11) is given by

t2 = −(4x3 + 7x2 − 6x+ 19)

(this is an equation for 121c1), see [DFGS14, Proposition 1]. Therefore our twists are given
by

X(−1)
ns (11) :

{
y2 = 4x3 − 4x2 − 28x+ 41

t2 = 4x3 + 7x2 − 6x+ 19

and

X(−3)
ns (11) :

{
y2 = 4x3 − 4x2 − 28x+ 41

t2 = 3(4x3 + 7x2 − 6x+ 19) .

Let α be a root of f1(x) = 4x3−4x2−28x+41 and set K = Q(α). Write f1(x) = (x−α)g1(x)
in K[x]. Since E1 = 121b1 has Mordell-Weil group E1(Q) isomorphic to Z, with generator
P = (4, 11), it follows that each rational point on E1 gives rise to a K-rational point with
rational x-coordinate on one of the two curves{

y2
1 = x− α
y2

2 = g1(x)
and

{
y2

1 = (4− α)(x− α)

y2
2 = (4− α)g1(x) .

(Here we use that the map E1(Q)→ K×/K×2 that associates to a point P the square class
of x(P ) − α is a homomorphism.) So a rational point on X

(d)
ns (11) will give a K-rational

point with rational x-coordinate on

u2 = −d(x− α)(4x3 + 7x2 − 6x+ 19) or u2 = −d(4− α)(x− α)(4x3 + 7x2 − 6x+ 19) .

These are elliptic curves over K, which turn out to both have Mordell-Weil rank 1 for d = −1
and rank 2 for d = −3. Since the rank is strictly smaller than the degree of K in all cases,
Elliptic Curve Chabauty applies, and we find that the x-coordinates of the rational points on
X

(−1)
ns (11) and X(−3)

ns (11) are ∞, 5/4, 4,−2, corresponding to O, ±3P , ±P and ±4P on E1.
(These computations have been done using Magma [BCP97].) We compute the j-invariants
of the elliptic curves represented by these points using the formula in [DFGS14] and find
that only the curves corresponding to 3P and to 4P give rise to solutions of (2.1); they are
the trivial solutions with a = 0 or b = 0.

7.2. Dealing with the remaining curves.

We now set E = {54a1, 96a1, 864a1, 864b1, 864c1}; this is the set of curves E such that we
still have to consider XE(11).

We will denote any of the canonical morphisms

X(11)→ X(1) ' P1 , XE(11) 'Q̄ X(11)→ X(1) ' P1 and X0(11)→ X(1) ' P1

by j and we will also use j to denote the corresponding coordinate on P1.
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Recall that X0(11) is an elliptic curve. Let P ∈ XE(11)(Q) be a rational point; then under
the composition XE(11) ' X(11) → X0(11) (where the isomorphism is defined over Q̄) P
will be mapped to a point P ′ on X0(11) whose image j(P ′) = j(P ) on the j-line is rational.
Since the j-map fromX0(11) has degree 12, it follows that P ′ is defined over a number fieldK
of degree at most 12. More precisely, the points in the fiber above j(P ′) = j(P ) in X0(11)
correspond to the twelve possible cyclic subgroups of order 11 in E[11], so the Galois action
on the fiber depends only on E and is the same as the Galois action on the fiber above
the image j(E) on the j-line of the canonical point of XE(11). In particular, we can easily
determine the isomorphism type of this fiber. It turns out that for our five curves E, the
fiber is irreducible, given by a field K = KE of degree 12. The problem can therefore be
reduced to the determination of the set of KE-points P ′ on X0(11) such that j(P ′) ∈ Q
and is good. This kind of problem is the setting for the Elliptic Curve Chabauty method as
introduced in [Bru03] that we have already used in Section 7.1 above. To apply the method,
we need explicit generators of a finite-index subgroup of the groupX0(11)(KE). This requires
knowing the rank of this group, for which we can obtain an upper bound by computing a
suitable Selmer group. We use the 2-Selmer group, whose computation requires class and unit
group information for the cubic extension LE of KE obtained by adjoining the x-coordinate
of a point of order 2 on X0(11) (no field KE has a non-trivial subfield, so no point of order 2
on X0(11) becomes rational overKE). To make the relevant computation feasible, we assume
the Generalized Riemann Hypothesis. With this assumption the computation of the 2-Selmer
groups is done by Magma in reasonable time (up to a few hours). However, we now have the
problem that we do not find sufficiently many independent points in X0(11)(KE) to reach
the upper bound. This is where an earlier attempt in 2006 along similar lines by David
Zureick-Brown got stuck. We get around this stumbling block by making use of ‘Selmer
Group Chabauty’ as described in [Sto15]. This method allows us to work with the Selmer
group information without having to find sufficiently many points in X0(11)(KE).

The idea of the Selmer Group Chabauty method (when applied with the 2-Selmer group) is
to combine the global information from the Selmer group with local, here specifically 2-adic,
information. So we first study our situation over Q2. Away from the branch points 0, 123

and ∞ of j : X0(11) → P1
j , the Q2-isomorphism type of the fiber is locally constant in the

2-adic topology. In a suitable neighborhood of a branch point, the isomorphism type of
the fiber will only depend on the class of the value of a suitable uniformizer on P1

j at the
branch point modulo cubes (for 0), squares (for 123) or eleventh powers (for∞). We use the
standard model given by

y2 + y = x3 − x2 − 10x− 20

for the elliptic curve X0(11), with j-invariant map given by j = (a(x) + b(x)y)/(x − 16)11,
where

a(x) = 743x11 + 21559874x10 + 19162005343x9 + 2536749758583x8

+ 82165362766027x7 + 576036867160006x6 − 1895608370650736x5

− 14545268641576841x4 + 420015065507429x3 + 74593328129816300x2

+ 108160113602504237x− 39176677684144739

22



and

b(x) = (x5 + 4518x4 + 1304157x3 + 65058492x2 + 271927184x− 707351591)

· (x5 + 192189x4 + 3626752x3 − 3406817x2 − 37789861x− 37315543) .

Lemma 7.2. The set D below is a partition of the subset of P1(Q2) consisting of 2-adically
good j-invariants into pairwise disjoint subsets D such that the isomorphism type over Q2 of
the fiber of j : X0(11)→ P1 is constant on D \ {0, 123,∞}.

D =
{

7 · 26 + 211Z2, 15 · 26 + 211Z2, −9 · 26 + 211Z2, −26 + 211Z2,

29 + 211Z2, −29 + 211Z2, 212 + 213Z2, {215t3 : t ∈ Z2}, {2−5t−11 : t ∈ Z2}
{123 − 3 · 210t2 : t ∈ Z2}, {123 − 210t2 : t ∈ Z2},
{123 + 210t2 : t ∈ Z2}, {123 + 3 · 210t2 : t ∈ Z2}

}
Proof. We eliminate y from the equation of X0(11) and the relation between j and x, y. This
results in

(x4 − 52820x3 + 1333262x2 + 4971236x+ 9789217)3

+ (1486x11 + 43119747x10 + 38323813979x9 + 5072626276355x8

+ 164063633585170x7 + 1134855511654843x6 − 4074814667347831x5

− 29669709666741936x4 + 6839041777752481x3 + 159480622275659333x2

+ 199736619430410535x− 104748564078368391)j

− (x− 16)11j2 = 0 .

The y-coordinate is then uniquely determined by x and j (at least when b(x) 6= 0, but
b(x) = 0 never occurs when j ∈ Q2), so we can use this relation between x and j to determine
the isomorphism type of the fiber. First consider j0 ∈ P1(Q2) \ {0, 123,∞}. Using a variant
of Krasner’s Lemma or similar arguments, we can find an explicit 2-adic disk D(j0) centered
at j0 such that the isomorphism type of the fiber of j is constant on D(j0). Working with
Puiseux series in j, j−123, or j−1, we obtain in a similar way setsD of the form {αt3 : t ∈ Z2},
{123 +αt2 : t ∈ Z2}, or {αt−11 : t ∈ Z2} with the property that the isomorphism type of the
fiber of j is constant on D except for the branch point. Combining these results, we obtain
an explicit partition of P1

j(Q2) \ {0, 123,∞} into sets above which the isomorphism type of
the fiber is constant. Comparing the isomorphism types (or working with the 11-division
polynomial instead of with the above relation, which corresponds to working on X1(11)
instead of X0(11)), we can collapse some of the disks into one disk. We then remove from
this partition the subsets on which j is not 2-adically good (for each subset D, this condition
is either satisfied for all j ∈ D or for no j ∈ D). Note that the condition means explicitly
that either v2(j) ≥ 6, v2(j) is divisible by 3 and v2(123 − j) is even, or else v2(j) is strictly
negative and v2(j) ≡ 6 mod 11. This results in the set D as given in the statement. �
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Lemma 7.3. Let E ∈ E and let P ∈ XE(11)(Q2) such that j(P ) is 2-adically good. Then
j(P ) is in one of the following sets D ∈ D.

54a1: {2−5t−11 : t ∈ Z2} .
96a1: 15 · 26 + 211Z2, −26 + 211Z2, −29 + 211Z2 .

864a1: {123 − 3 · 216t2 : t ∈ Z2}, {123 + 216t2 : t ∈ Z2} .
864b1: {123 − 216t2 : t ∈ Z2}, {123 + 3 · 216t2 : t ∈ Z2}, 29 + 211Z2 .

864c1: 15 · 26 + 211Z2, −26 + 211Z2, −29 + 211Z2 .

Note that this result is consistent with the fact that the only pair of curves in E that are
symplectically 11-congruent over Q2 is (96a1, 864c1); compare Lemma 5.2.

Proof. We use the explicit description of XE(11) together with the map to the j-line provided
by Fisher [Fis14]. This gives a model of XE(11) as a smooth projective curve in P4, which
we can use to obtain a partition of XE(11)(Q2) into 2-adic disks, on which we evaluate the
j-map to find out which of the sets in D contain the image of a point P as in the statement.
For E = 54a1 (where this procedure results in a large number of disks in XE(11)(Q2)), this
can be simplified by observing that the given D ∈ D is the only set in D such that the
isomorphism type of the fiber is that above j(E) (which is SpecQ2 q SpecQ2(21/11)). �

The next step is the computation of the 2-Selmer groups of X0(11) over the fields KE, where
E runs through the curves in E . This is where we assume GRH. Table 5 lists defining
polynomials for the fields KE and gives the F2-dimension of the Selmer group.

E polynomial defining KE dimF2 Sel2 /KE

54a1 x12 − 6x10 + 6x9 − 6x8 − 126x7 + 104x6 + 468x5 4
+ 258x4 − 456x3 − 1062x2 − 774x− 380

96a1 x12 − 4x11 − 264x7 + 66x6 − 132x5 5
− 2112x4 − 1320x3 − 660x2 − 6240x− 8007

864a1 x12 − 6x11 + 110x9 − 132x8 − 528x7 + 1100x6 + 330x5 5
− 2508x4 + 2134x3 − 594x2 + 456x− 371

864b1 x12 − 6x11 + 22x9 + 99x8 − 396x7 + 440x6 − 132x5 3
− 6501x4 + 33506x3 − 23760x2 − 92418x+ 193081

864c1 x12 − 44x9 − 264x8 − 264x7 − 2266x6 − 4488x5 3
− 264x4 − 17644x3 − 7128x2 + 144x− 15191

Table 5. Fields KE and dimensions of Selmer groups, for E ∈ E .

Recall that θ denotes the x-coordinate of a point of order 2 on X0(11), so θ is a root of the
2-division polynomial

4x3 − 4x2 − 40x− 79

of X0(11). We denote the 2-adic valuation on Q̄2 by v2, normalized so that v2(2) = 1. Then
v2(θ) = −2/3.
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Lemma 7.4. Let K be a finite extension of Q2 such that X0(11)(K)[2] = 0 and set L = K(θ).
Let D ∈ D, but D 6= {2−5t−11 : t ∈ Z2}. Let φ : D → X0(11)(K) be an analytic section of j.
Then the square class of x(φ(z))− θ ∈ L× is constant for z ∈ D.

Proof. By Lemma 7.2 the Q2-isomorphism type of the fiber of j above D is constant, say
given by the disjoint union of SpecKj for certain 2-adic fields Kj. Then the power series
defining φ will have coefficients in someKj. We now use the fact that ξ−θ and ξ′−θ are in the
same class modulo squares when v2(ξ−ξ′) > 2+v2(ξ−θ), compare [Sto01, Lemma 6.3]. Note
that this condition is independent of the field considered, so we can assume that K = Kj.
(We note that all Kj coming up in this way have the property that X0(11)(Kj)[2] = 0, since
the ramification indices are not divisible by 3.) We obtain Kj as one of the completions of
the field KE at a place above 2, where E is an elliptic curve with j(E) equal to the ‘center’
(or any other rational point if the center is a branch point) of D. We obtain a ‘generic’ φ by
solving the relation between x and j for x as a power series in t with coefficients inKE, with j
replaced by j(E)+atb, where a and b are taken from the descriptionD = {j(E)+atb : t ∈ Z2}.
This series is unique up to an automorphism of KE. We then check that the 2-adic valuations
of all coefficients of powers tn with n ≥ 1 in all completions Kj are > 4/3. Since x(t) is
always 2-adically integral when t ∈ Z2 (since D ⊂ Z2 and the relation is monic in x), we
then have v2(x(0) − x(t)) > 4/3 = 2 − 2/3 = 2 + v2(x(0) − θ) for all t ∈ Z2, which implies
the claim. �

We now use the information coming from the Selmer group together with the preceding
lemma to rule out most of the disks listed in Lemma 7.3.

Lemma 7.5. Let E ∈ E and let P ∈ XE(11)(Q) such that j(P ) is 2-adically good. Then
j(P ) is in one of the following sets D ∈ D.

54a1: {2−5t−11 : t ∈ Z2} .
96a1: 15 · 26 + 211Z2, −26 + 211Z2 .

864a1: none .

864b1: 29 + 211Z2 .

864c1: −29 + 211Z2 .

Note that the curve 864a1 can already be ruled out at this stage.

Proof. In view of Lemma 7.3, there is nothing to prove when E = 54a1. So we let E be
one of the other four curves. Any rational point on XE(11) whose image on the j-line is
good will map to a point in X0(11)(KE) with the same j-invariant, and so will give rise to
a point in X0(11)(KE ⊗Q Q2) whose j-invariant is in one of the sets D listed in Lemma 7.3,
depending on E. Recall that LE = KE(θ). We write KE,2 = KE⊗QQ2 and LE,2 = LE⊗QQ2;
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KE,2 and LE,2 are étale algebras over Q2. Then we have the commutative diagram

X0(11)(KE) //

��

Sel2(X0(11)/KE) �
� //

��

L×E
L×2
E

��

X0(11)(KE,2) // X0(11)(KE,2)

2X0(11)(KE,2)
� � //

L×E,2

L×2
E,2

.

The composition of the two horizontal maps in the bottom row sends a point (ξ, η) to the
square class of ξ − θ in L×E,2. By Lemma 7.4, the set of square classes we obtain for points
in X0(11)(KE,2) mapping into D does not depend on the image point in D. It therefore
suffices to compute the square class for the points above some representative point (for
example, the ‘center’ if it is not a branch point) of D. Doing this, we find that the square
classes we obtain are not in the image of the Selmer group except for the sets given in the
statement. Since by the diagram above a point in X0(11)(KE) has to map into the image of
the Selmer group, this allows us to exclude these D. �

It remains to deal with the remaining five disks D. All but one of them do actually contain
the image of a point in X0(11)(KE), so we have to use a more sophisticated approach. The
idea for the following statement comes from [Sto15].

Lemma 7.6. Let E ∈ E and let D ∈ D be one of the sets associated to E in Lemma 7.5.
Assume that there is a point P ∈ X0(11)(KE) with the following property.

(*) For any point Q ∈ X0(11)(KE,2) with Q 6= P and j(Q) ∈ D, there is n ≥ 0 such that
Q = P + 2nQ′ with Q′ ∈ X0(11)(KE,2) such that the image of Q′ in L×E,2/L

×2
E,2 is not

in the image of the Selmer group.

Then if j(P ) ∈ D, P is the only point Q ∈ X0(11)(KE) with j(Q) ∈ D, and if j(P ) /∈ D,
then there is no such point.

Proof. For each E ∈ E , we verify that the middle vertical map in the diagram in the proof of
Lemma 7.5 is injective, by checking that the rightmost vertical map is injective on the image
of the Selmer group. Note that the Selmer group is actually computed as a subgroup of the
upper right group. Since X0(11)(KE)/2X0(11)(KE) maps injectively into the Selmer group,
this means that a KE-rational point that is divisible by 2 in X0(11)(KE,2) is already divisible
by 2 in X0(11)(KE). Since X0(11) has no KE-rational points of exact order 2 (none of the
fields KE has non-trivial subfields, so θ /∈ KE, since [Q(θ) : Q] = 3), there is a unique ‘half’
of a point, if there is any. So if P 6= Q ∈ X0(11)(KE) has j-invariant in D, then the point Q′
in the relation in property (*) is also KE-rational. But then its image in L×E,2/L

×2
E,2 must be

in the image of the Selmer group, which gives a contradiction to (*). The only remaining
possibility for a point Q ∈ X0(11)(KE) with j(Q) ∈ D is then P , and this possibility only
exists when j(P ) ∈ D. �

It remains to exhibit a suitable point P for the remaining pairs (E,D) and to show that
it has property (*). We first have a look at the 2-adic elliptic logarithm on X0(11). Let
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K ⊂ X0(11)(Q̄2) denote the kernel of reduction. We take τ = x/y to be a uniformizer at the
point at infinity on X0(11) and write Kν = {P ∈ K : v2(τ(P )) > ν}.
Lemma 7.7. The 2-adic elliptic logarithm log : K → Q̄2 induces a group isomorphism be-
tween K1/3 and the additive group D1/3 = {λ ∈ Q̄2 : v2(λ) > 1/3}.
In particular, if K is a 2-adic field and P ∈ K4/3 ∩ X0(11)(K), then P is divisible by 2
in X0(11)(K).

Proof. Note that the points T of order 2 on X0(11) satisfy v2(τ(T )) = 1/3 (the x-coordinate
has valuation −2/3 and the y-coordinate is −1/2). We also note that X0(11) is supersingular
at 2, so X0(11)(F̄2) consists of points of odd order. This implies that the kernel of log on K
consists exactly of the points of order a power of 2. There are no such points with v2(τ) > 1/3,
so log is injective on this set. Explicitly, we find that for P ∈ K with τ(P ) = τ ,

logP = τ − 1

3
τ 3 − 1

2
τ 4 − 19

5
τ 5 + τ 6 +

5

7
τ 7 +

27

2
τ 8 + . . . ;

for v2(τ) > 1/3 the first term is dominant, so the image is D1/3 as claimed.

Now let P ∈ K4/3 ∩X0(11)(K). Note that restricting log gives us an isomorphism between
K1/3 ∩X0(11)(K) and D1/3 ∩K. Since v2(τ) > 4/3, the image of P in D1/3 ∩K is divisible
by 2 in D1/3 ∩K, so P must be divisible by 2 in X0(11)(K). �

Lemma 7.8. Let φ : 2Z2 → K∩X0(11)(K) be an analytic map with φ(0) the point at infinity,
where K is some 2-adic field. If P1 = φ(2) ∈ X0(11)(K) is not divisible by 2 and

log φ(t) = a1t+ a2t
2 + a3t

3 + . . .

with aj ∈ K such that v2(aj) > 1/3 − j for all j ≥ 1, then for every t ∈ 2Z2, we can write
φ(P ) = 2v2(t)−1P ′ with P ′ ∈ X0(11)(K) such that P ′ − P1 is divisible by 2 in X0(11)(K).

Proof. Write t = 2ν+1u with u ∈ Z×2 and ν ≥ 0. Then

log φ(t) = 2ν
(
a1 · 2u+ a2 · 2ν+2u2 + a3 · 22ν+3u3 + . . .

)
,

which has 2-adic valuation> ν+1/3 and so φ(t) is divisible by 2ν inX0(11)(K) by Lemma 7.7.
We write φ(t) = 2νP ′; then

log(P ′ − P1) = 2−ν log φ(t)− log φ(2) = 2(u− 1)
(
a1 + 2(u+ 1)a2 + 4(u2 + u+ 1)a3 + . . .

)
.

Since v2(u − 1) ≥ 1, the 2-adic valuation of this is > 4/3, so P ′ − P1 is divisible by 2
in X0(11)(K) by Lemma 7.7 again. �

Lemma 7.9. Let E ∈ E and let D ∈ D be one of the sets associated to E in Lemma 7.5.
Then the point P given in the table below satisfies (*) for E and D. Here can(E) stands for
the image on X0(11) of the canonical point on XE(11).

E D P j(P ) ∈ D \ {0, 123,∞}
54a1 {2−5t−11 : t ∈ Z2} (16, 60) no
96a1 15 · 26 + 211Z2 − can(96a2) no
96a1 −26 + 211Z2 can(96a1) yes
864b1 29 + 211Z2 can(864b1) yes
864c1 −29 + 211Z2 can(864c1) yes
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Proof. The points P given in the table have the property that their image in G = L×E,1/L
×2
E,2

agrees with the image of those points in j−1(D)∩X0(11)(KE,2) whose image is in the image
of the Selmer group. This means that for any point Q in one of the 2-adic disks above D
such that Q maps into the image of the Selmer group, we have that P −Q is divisible by 2
in X0(11)(KE,2).

We first consider the last three cases. In the last two cases only one (out of sixteen) of the
disks above D maps into the image of the Selmer group; this must be the disk containing
the image of the canonical point. For 96a1 we find that there is only one residue disk
in X96a1(11)(Q2) that maps to D. Its image in X0(11)(K96a1,2) must be one of the disks
above D and this disk contains the image of the canonical point; the other disks above D can
be excluded. So in each of these three cases the only disk above D that we have to consider
is the disk D′ containing the image of the canonical point. We parameterize this disk, taking
the image of the canonical point as the center; this results in a pair of power series with
coefficients in KE giving the x- and y-coordinates. We write ψ : 2Z2 → X0(11)(KE,2) for this
parameterization. We know from Lemma 7.4 that all differences Q− can(E) for Q ∈ D′ are
divisible by 2 in X0(11)(KE,2). This gives us an analytic map φ : 2Z2 → K ∩X0(11)(KE,2)
such that 2φ(t) = ψ(t) − can(E). For E = 96a1, the points ψ(t) − can(E) are actually
divisible by 4, so here we take φ such that 4φ(t) = ψ(t)− can(E). We now consider log φ(t)
and verify that this power series satisfies the conditions in Lemma 7.8 for each component
of KE,2. We also check that P1 = φ(2) does not map into the image of the Selmer group.
This, together with the conclusion of Lemma 7.8, verifies (*).

Next we consider the other disk D for E = 96a1. There are four disks D′ above D such
that the image of D′ in G is in the image of the Selmer group; this image is the same as
that of P . Taking the difference with P and halving, we find that on three of the remaining
disks the image in G of the resulting points is not in the image of the Selmer group. On the
fourth disk, the image is zero, so the points are again divisible by 2. After halving again, we
find that the resulting points have image in G not in the image of the Selmer group. This
verifies (*) for this case (with n ≤ 2).

Finally, we look at E = 54a1. There is one unramified branch above j = ∞ with the
point at infinity of X0(11) sitting in the center of the disk, and there is one point (with
coordinates (16, 60)) with ramification index 11. We can parameterize the disk relevant to
us by setting j = 26t−11 and solving for the x and y-coordinates in Q( 11

√
2)((t)). We find that

the series giving the logarithm of this point minus (16, 60) satisfies the valuation conditions
of Lemma 7.8, and we can also check that for t = 2 we obtain a point whose image in G is
not in the image of the Selmer group, so (*) is verified in this case, too. Note that it suffices
to look only at the component over Q2( 11

√
2); the other component always gives a point that

is quite a bit more often divisible by 2, so the image in the corresponding component of G
is always zero. �

To conclude the proof of Theorem 7.1, it now only remains to observe that the j-invariants
21952/9 of 96a1 and 1536 of 864c1 are not good (the condition on the 3-adic valuation is
violated), so the only remaining point in X96a1(11)(Q) and in X864c1(11)(Q) does not lead to
a primitive integral solution of our Generalized Fermat Equation. The only remaining point
in X864b1(11)(Q) is the canonical point; it corresponds to the Catalan solutions.
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8. The Generalized Fermat Equation with exponents 2, 3, 13

In this section, we collect some partial results for the case p = 13. More precisely, we show
that the Frey curve associated to any putative solution must have irreducible 13-torsion
Galois module and that only trivial solutions can be associated to the two CM curves in the
list of Lemma 2.3.

8.1. Eliminating reducible 13-torsion.

The case p = 13 is special in the sense that it is a priori possible to have Frey curves with
reducible 13-torsion Galois modules. In this respect, it is similar to p = 7, compare [PSS07].
To deal with this possibility, we note that such a Frey curve E will have a Galois-stable
subgroup C of order 13 and so gives rise to a rational point PE on X0(13), which is a curve
of genus 0. The Galois action on C is via some character χ : GQ → F×13, which can be ramified
at most at 2, 3 and 13. Associated to χ is a twist Xχ(13) of X1(13) that classifies elliptic
curves with a cyclic subgroup of order 13 on which the Galois group acts via χ; the Frey
curve E corresponds to a rational point on Xχ(13) that maps to PE under the canonical
covering map Xχ(13) → X0(13). The covering X1(13) → X0(13) is Galois of degree 6 with
Galois group naturally isomorphic to F×13/{±1}; the coverings Xχ(13)→ X0(13) are twisted
forms of it, corresponding to the composition

GQ
χ−→ F×13 −→ F×13/{±1} ' Z/6Z ,

which is an element of H1(Q,Z/6Z; {2, 3, 13}) (where H1(K,M ;S) denotes the subgroup
of H1(K,M) of cocycle classes unramified outside S). We can describe this group in the
form

H1(Q,Z/6Z; {2, 3, 13}) = H1(Q,Z/2Z; {2, 3, 13})⊕H1(Q,Z/3Z; {2, 3, 13})
' 〈−1, 2, 3, 13〉Q×/Q×2 ⊕ 〈ω, 4+ω

3−ω 〉Q(ω)×/Q(ω)×3 ,

where ω is a primitive cube root of unity. One can check that a model of X1(13) is given by

y2 = (v + 2)2 + 4 , z3 − vz2 − (v + 3)z − 1 = 0 ;

the map to X0(13) ' P1 is given by the v-coordinate. The second equation can be written
in the form ( z − ω

z − ω2

)3

=
v − 3ω

v − 3ω2
,

which shows that the second equation gives a cyclic covering of P1
v by P1

z. If d is a square-
free integer representing an element in 〈−1, 2, 3, 13〉Q×/Q×2 and γ represents an element
of 〈ω, 4+ω

3−ω 〉Q(ω)×/Q(ω)×3 , then the corresponding twist is

Xχ(13) : dy2 = (v + 2)2 + 4 , γ
( z − ω
z − ω2

)3

=
v − 3ω

v − 3ω2
.

We note that the first equation defines a conic that has no real points when d < 0 and has
no 3-adic points when 3 | d. This restricts us to d ∈ {1, 2, 13, 26}. We find hyperelliptic
equations for the 36 remaining curves (recall that X1(13) has genus 2), It turns out that only
eight of them have `-adic points for ` ∈ {2, 3, 13}. We list them in Table 6. In the table we
give d and δ, where γ = δ/δ̄ and the bar denotes the non-trivial automorphism of Q(ω).
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no. d δ f

1 1 1 x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1

2 2 ω 16x6 + 24x5 + 18x4 + 76x3 + 138x2 + 72x+ 16

3 2 ω + 4 208x6 − 312x5 + 234x4 − 988x3 + 1794x2 − 936x+ 208

4 2 −3ω − 4 16x6 − 24x5 + 106x4 − 252x3 + 226x2 − 72x+ 16

5 13 3ω − 1 x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1

6 26 ω + 4 16x6 − 24x5 + 18x4 − 76x3 + 138x2 − 72x+ 16

7 26 ω 208x6 + 312x5 + 234x4 + 988x3 + 1794x2 + 936x+ 208

8 26 −3ω − 4 16x6 − 24x5 + 106x4 − 252x3 + 226x2 − 72x+ 16

Table 6. Curves Xχ(13) with local points, given as y2 = f(x).

We see that the last four curves are isomorphic to the first four. This is because of the
canonical isomorphism X1(13) ' Xµ(13), where the latter classifies elliptic curves with a
subgroup isomorphic to µ13. On the level of X0(13), this comes from the Atkin-Lehner
involution, which in terms of our coordinate v is given by v 7→ (v + 12)/(v − 1).

The first curve is X1(13); it is known that its Jacobian has Mordell-Weil rank zero and that
the only rational points on X1(13) are six cusps (there are no elliptic curves over Q with
a rational point of order 13). For the other three curves, a 2-descent on the Jacobian as
in [Sto01] gives an upper bound of 2 for the rank. The second and the fourth curve each
have six more or less obvious rational points; their differences generate a subgroup of rank 2
of the Mordell-Weil group, so their Jacobians indeed have rank 2. On the third curve one
does not find small rational points, and indeed it turns out that its 2-Selmer set is empty,
which proves that it has no rational points. See [BS09] for how to compute the 2-Selmer set.
It remains to consider the second and the fourth curves.

We note that the j-invariant map on P1
v ' X0(13) is given by

j =
(v2 + 3v + 9)(v4 + 3v3 + 5v2 − 4v − 4)3

v − 1
.

The obvious orbits of points on the curves no. 1, 2, 4, 5, 6, 8 then give points with v = ∞,
0, −4, 1, −12, −8/5 and j-invariants

∞ , 123/3 , −123 · 134

5
, ∞ , −123 · 40793

3
, −123 · (17 · 29)3 · 13

513
,

respectively. None of these correspond to primitive solutions of x2 +y3 = z13, except j =∞,
which is related to the trivial solutions (±1,−1, 0). So to rule out solutions whose Frey
curves have reducible 13-torsion, it will suffice to show that there are no rational points on
curves no. 2 and 4 other than the orbit of six points containing the points at infinity.

Computing the 2-Selmer sets, we find in both cases that its elements are accounted for by
the points in the known orbit. So modulo the action of the automorphism group, it is enough
to consider only the 2-covering of the curve that lifts the two points at infinity.
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We first look at the second curve, which we denote C2. Its polynomial f splits off three
linear factors over K, where K is the field obtained by adjoining one of the roots α of f
to Q. The relevant 2-covering then maps over K to the curve y2 = (x − α)g(x), where g is
the remaining cubic factor. This is an elliptic curve (with two K-points at infinity and one
with x = α). Computing its 2-Selmer group (this involves obtaining the class group of a
number field of degree 18, which we can do without assuming GRH; the computation took a
few days), we find that it has rank 1. We know three K-points on the elliptic curve (coming
from the points at infinity and from (α, 0)); they map surjectively onto the Selmer group. So
we can do an Elliptic Curve Chabauty computation, which tells us that the only K-points
whose x-coordinate is rational are the two points at infinity. This in turn implies that the
known rational points on C2 are the six points in the orbit of the points at infinity.

Now we consider the fourth curve, C4. Here the field generated by a root of f is actually
Galois (with group S3). We work over its cubic subfield L. Over L, f splits as 16 times
the product of three monic quadratic factors h1, h2, h3, and we consider the elliptic curve E
given as y2 = h1(x)h2(x), with one of the points at infinity as the origin. This curve has full
2-torsion over L, so a 2-descent is easily done unconditionally. We find that the 2-Selmer
group has rank 3, so the Mordell-Weil rank of E over L is 1 (the difference of the two points
at infinity has infinite order). An Elliptic Curve Chabauty computation then shows that
the only K-points on E with rational x-coordinate are those at infinity and those with x-
coordinate −3. Since there are no rational points on C4 with x-coordinate −3, this shows
as above for C2 that the only rational points are the six points in the orbit of the points at
infinity.

This proves the following statement.

Lemma 8.1. Let (a, b, c) be a non-trivial primitive solution of x2 + y3 = z13. Then the
13-torsion Galois module E(a,b,c)[13] of the associated Frey curve is irreducible.

8.2. Dealing with the CM curves.

13 is congruent to 1 both mod 3 and mod 4, so the 13-torsion Galois representations on 27a1
and on 288a1 both have image contained in the normalizer of a split Cartan subgroup. But
unfortunately the general result of [BPR13] does not apply in this case. We can, however,
use the approach taken in Section 8.1 above. Since we are in the split case, the curves have
cyclic subgroups of order 13 defined over a quadratic field K, which is Q(ω) for 27a1 (with
ω a primitive cube root of unity) and Q(i) for 288a1. We find the twist of X1(13) over K
that corresponds to the Galois representation over K on this cyclic subgroup. Finding the
twist is not entirely trivial, since the points on X0(13) corresponding to 27a1 or to 288a1 are
branch points for the covering X1(13) → X0(13) (of ramification degree 3, respectively 2).
In the case of 27a1 we use a little trick: the isogenous curve 27a2 has isomorphic Galois
representation, but j-invariant 6= 0, so the corresponding point in X0(13)(K) lifts to a
unique twist, which must be the correct one also for 27a1. Since cube roots of unity are
in K, we can make a coordinate change so that the automorphism of order 3 is given by
multiplying the x-coordinate by ω. We obtain the following simple model over K = Q(ω) of
the relevant twist of X1(13):

C27a1 : y2 = x6 + 22x3 + 13 .
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The points coming from 27a1 are the two points at infinity, and the points coming from 27a2
are the six points whose x-coordinate is a cube root of unity.

For 288a1, we figure out the quadratic part of the sextic twist (the cubic part is unique in
this case) by looking at the Galois action on the cyclic subgroup explicitly. We find that the
correct twist of X1(13) is

C288a1 : y2 = 12ix5 + (30i+ 33)x4 + 66x3 + (−30i+ 33)x2 − 12ix .

Here the points coming from 288a1 are the ramification points (0, 0) and (−1, 0) and the
(unique) point at infinity. There are six further points over Q(i) on this curve, forming an
orbit under the automorphism group, of which

(
(4i− 3)/6, 35/36

)
is a representative.

As a first step, we compute the 2-Selmer group of the Jacobian J of each of the two curves. In
both cases, we find an upper bound of 2 for the rank of J(K). The differences of the known
points on the curve generate a group of rank 2, so we know a subgroup of finite index of J(K).
It is easy to determine the torsion subgroup, which is Z/3Z for 27a1 and Z/2Z × Z/2Z
for 288a1. Using the reduction modulo several good primes of K, we check that our subgroup
is saturated at the primes dividing the group order of the reductions for the primes above 7
for 27a1, or the primes above 5 for 288a1. We also use this reduction information for a bit of
Mordell-Weil sieving (compare [BS10]) to show that any point in C27a1(Q(ω)) with rational
j-invariant must reduce modulo both primes above 7 to the image of one of the known eight
points, and that any point in C288a1(Q(i)) with rational j-invariant must reduce modulo both
primes above 5 to the image of one of the three points coming from 288a1 (the other six
points have j in Q(i) \Q).

It remains to show that these points are the only points in their residue classes mod 7,
respectively, mod 5. For this, we use the criterion in [Sik13, Theorem 2]. We compute the
integrals to sufficient precision and then check that the pair of differentials killing J(K) is
‘transverse’ mod 7 (or 5) at each of the relevant points, which comes down to verifying the
assumption in Siksek’s criterion. Note that we apply Chabauty’s method for a genus 2 curve
when the rank is 2; this is possible because we are working over a quadratic field. See the
discussion in [Sik13, Section 2].

We obtain the following result.

Lemma 8.2. Let (a, b, c) be a non-trivial primitive solution of x2 + y3 = z13. Then the
13-torsion Galois module E(a,b,c)[13] of the associated Frey curve is, up to quadratic twist,
symplectically isomorphic to E[13] for some E ∈ {96a2, 864a1, 864b1, 864c1}.

Proof. By Lemma 8.1, E(a,b,c)[13] is irreducible, so by Theorem 5.1, it is symplectically
isomorphic to E[13] for E one of the given curves or one of the CM curves 27a1, 288a1
or 288a2. These latter three are excluded by the computations reported on above. �
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