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ABSTRACT. Let K be a number field and let C'/K be a curve of genus 2 with Jacobian
variety J. In this paper, we study the canonical height h: J(K) — R. More specifi-
cally, we consider the following two problems, which are important in applications:

(1) for a given P € J(K), compute h(P) efficiently;
(2) for a given bound B > 0, find all P € J(K) with A(P) < B.

We develop an algorithm running in polynomial time (and fast in practice) to deal
with the first problem. Regarding the second problem, we show how one can tweak
the naive height h that is usually used to obtain significantly improved bounds for the
difference h — h, which allows a much faster enumeration of the desired set of points.
Our approach is to use the standard decomposition of h(P) — h(P) as a sum of
local ‘height correction functions’. We study these functions carefully, which leads
to efficient ways of computing them and to essentially optimal bounds. To get our
polynomial-time algorithm, we have to avoid the factorization step needed to find the
finite set of places where the correction might be nonzero. The main innovation at
this point is to replace factorization into primes by factorization into coprimes.

Most of our results are valid for more general fields with a set of absolute values
satisfying the product formula.

Date: March 31, 2016.
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CANONICAL HEIGHTS ON GENUS TWO JACOBIANS 3
1. INTRODUCTION

Let K be a global field and let C/K be a curve of genus 2 with Jacobian variety J.
There is a map x: J — P3 that corresponds to the class of twice the theta divisor on J;
it identifies a point on J with its negative, and its image is the Kummer surface KS
of J. Explicit versions of x can be found in the book [CF96] by Cassels and Flynn for C
given in the form y? = f(z) and in the paper [Miil10] by the first author for general C
(also in characteristic 2). Thus k gives rise to a height function h: J(K) — R, which
we call the naive height on J. It is defined by

h(P) = logmax{|x1(P)|u, [r2(P)]o, [k3(P)]u, |ra(P)]u}
vEME
where M is the set of places of K, k(P) = (k1(P) : ke(P) : k3(P) : k4(P)), and ||, is

the v-adic absolute value, normalized so that the product formula

H |z], =1 for all z € K*

veEMg
holds.
By general theory [HS00, Chapter B| the limit
. h(nP
hP) = tim D)
n—oo mn

exists; it is called the canonical height (or Néron-Tate height) of P € J(K). The

difference h — h is bounded. The canonical height induces a positive definite quadratic
form on J(K)/J(K )tors (and on the R-vector space J(K) ®z R).

In this paper, we tackle the following two problems:

Problem 1.1. Find an efficient algorithm for the computation of iL(P) for a given point
P e J(K).

Problem 1.2. Find an efficient algorithm for the enumeration of all P € J(K) which
satisfy h(P) < B, where B is a given real number.

These problems are important because such algorithms are needed if we want to satu-
rate a given finite-index subgroup of J(K) (see the discussion at the end of Section 18).
This, in turn, is required for the computation of generators of J(K'). Such generators are
required, for instance, to carry out the method described in [BMS'08] for the compu-
tation of all integral points on a hyperelliptic curve over Q. Furthermore, the regulator
of J(K) appearing in the conjecture of Birch and Swinnerton-Dyer is the Gram deter-
minant of a set of generators of J(K)/J(K )iors With respect to the canonical height. So
Problem 1.1 and Problem 1.2 are also important in the context of gathering numerical
evidence for this conjecture as in [FLST01].

It is a classical fact, going back to work by Néron [Nér65], that h(P) and the difference
h(P)—h(P) can be decomposed into a finite sum of local terms. In our situation, this can
be done explicitly as follows. The duplication map P — 2P on J induces a morphism
d: KS — KS, given by homogeneous polynomials (01,2, d3,04) of degree 4; explicit
equations can again be found in [CF96] and [Mill0]. For a point Q € J(K,), where K,
is the completion of K at a place v € Mk, such that x(Q) = (x1 : 2 : x3 : 14) € KS(K,),
we set

&v(Q) = —logmax{|dj(x1, 2, x3,24)|y : 1 < j <4} + 4log max{|z;|, : 1 < j < 4}.
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Note that this does not depend on the scaling of the coordinates. We can then write
h(P) in the following form (compare Lemma 2.4):

h(P)=h(P)— > i4f(n+1>év(2np)

veEMpi n=0
We set, for Q € J(K,) as above,
(1.1) (@) = Y47 e,(27Q),
n=0

and we deduce the decomposition

(1.2) W(P)—h(P)= Y [(P),

vEME
which is valid for all points P € J(K). In addition, &, = fi, = 0 for all but finitely
many v (the exceptions are among the places of bad reduction, the places where the given
equation of C' is not integral and the archimedean places). The maps &,: J(K,) — R
are continuous maps (with respect to the v-adic topology) with compact domains, so
they are bounded. Therefore [i, is also bounded.

Let us first discuss Problem 1.1. Because of equation (1.2), it suffices to compute h(P)
(which is easy) and ), ., fiv(P) in order to compute h(P) for a point P € J(K).
Building on earlier work of Flynn and Smart [FS97], the second author introduced an
algorithm for the computation of fi,(P) in [Sto02]. One of the main problems with this
approach is that we need integer factorization to compute the sum @(P) := 3", ji,(P),
where v runs through the finite primes v such that f,(P) # 0, because we need to find
these primes, or at least a finite set of primes containing them.

We use an idea which was already exploited in [MS15] to find a polynomial-time algo-
rithm for the computation of the canonical height of a point on an elliptic curves (in
fact we first used this technique in genus 2 and only later realized that it also works,
and is actually easier, for elliptic curves). When v is non-archimedean, then there is a
constant ¢, > 0 such that the function

Moy 1= /]v/cv

maps J(K,) to Q. In fact fif(P) is a sum of rational multiples of logarithms of positive
integers. As in [MS15], we find a bound on the denominator of y, that depends only on
the valuation of the discriminant; this allows us to devise an algorithm that computes
ff(P) in quasi-linear time. We can compute fi,(P) for archimedean v essentially from
the definition of fi,. This leads to a factorization-free algorithm that computes h(P) in
polynomial time. More precisely:

Theorem 1.3. Let J be the Jacobian of a curve of genus 2 defined over Q, and let
P € J(Q). There is an algorithm that computes h(P) in time quasi-linear in the size of
the coordinates of P and the coefficients of the given equation of C, and quasi-quadratic
in the desired number of digits of precision.

See Theorem 14.5 for a precise statement. We expect a similar result to be true for any
number field K in place of Q.

We now move on to Problem 1.2. If we have an upper bound g for h — B, then the set of

~

all points P € J(K) such that h(P) < B + 3 contains the set {P € J(K) : h(P) < B}.
Since the naive height h is a logarithmic height, 8 contributes exponentially to the size
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of the box we need to search for the enumeration. Therefore it is crucial to keep 8 as
small as possible.

We write 3, = max{/i,(Q) : Q € J(K,)}, and we obtain the bound
WP —h(P) < 3 A

’UGMK

from (1.2). If we write 7, = max{Z,(Q) : Q € J(K,)}, then clearly 7,/4 < 3, < 7.,/3.
In [St099], it is shown that for curves given in the form 3? = f(z), where f has v-adically
integral coefficients, we have

Ay < —log |2t disc(f)], = —log [27*A,,

with disc(f) denoting the discriminant of f considered as a polynomial of degree 6 and
A denoting the discriminant of the given equation of C. When v is non-archimedean
and the normalized additive valuation of A is 1, then we can take 7, = 5, = 0 [Sto02].

The results of the present paper improve on this; they are based on a careful study of the
functions fi,. It turns out that when v is non-archimedean, the set of points where p,
(or equivalently, fi,) vanishes forms a group. Moreover, the function u, factors through
the component group of the Néron model of J when the given model of C/K,, which
we assume to have v-integral coefficients in the following, has rational singularities; see
Theorem 7.5. If the minimal regular model of C' is semistable, then we can use results
of Zhang and Heinz to give explicit formulas for pu, in terms of the resistance function
on the reduction graph of C' (which is essentially the dual graph of the special fiber
of the minimal regular model, suitably metrized). We use this to find simple explicit
formulas for u, that apply in the most frequent cases of bad reduction, namely nodal or
cuspidal reduction. These explicit formulas give us the optimal bounds for ji, in these
cases. By reducing to the semistable case and tracking how u, changes as we change
the Weierstrass equation of C', we deduce the general upper bound

. 1
(1.3) Bo < =7 log|Al,

for non-archimedean v; see Theorem 11.3.

When v is archimedean, we also get a new bound for fi,, by iterating the bound obtained
by the second author in [St099], leading to vast improvements for 3,. Combining the
archimedean and non-archimedean bounds, we find a nearly optimal bound § for A — h.

To get even smaller search spaces for the enumeration, we make use of the observation
that we can replace the naive height h by any function A’ such that |h' — h| is bounded.
Using the results on nearly optimal bounds for p, and such a modified naive height A’
(which is also better suited than h for the enumeration process itself) we get a much
smaller bound on the difference &’ — h than what was previously possible. This makes
the enumeration feasible in many cases that were completely out of reach so far.

As an example, we compute explicit generators for the Mordell-Weil group of the Jaco-
bian of the curve

(1.4) C: y* = 823428002°% — 4701351602° + 52485681x*
+ 23960404662° + 5672079692% — 985905640 + 247747600

over Q, conditional on the Generalized Riemann Hypothesis (which is needed to show
that the rank is 22). See Proposition 19.1. This curve has at least 642 rational points,
which is the current record for the largest number of known rational points on a curve
of genus 2, see [Stob].
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The paper is divided into four parts. In Part I, we first generalize the usual notion of the
naive height on projective space and clarify the relation between these generalized naive
heights and suitable canonical heights, all in Section 2. We then introduce local height
correction functions ¢ and p (= p, in the notation introduced above) on the Jacobian
of a genus 2 curve over a non-archimedean local field in Section 3. This is followed in
Section 4 by a study of certain canonical local heights constructed in terms of u. We
close Part I by introducing and investigating the notion of stably minimal Weierstrass
models of curves of genus 2 in Section 5 and recalling some well-known results on Igusa
invariants in Section 6.

Part II is in some sense the central part of the present paper. Here we study the
local height correction function g over a non-archimedean local field. Using Picard
functors, we show in Section 7 that u factors through the component group of the Néron
model of the Jacobian when the given model of the curve has rational singularities.
We then relate p to the reduction graph of C' in Section 8. Building on this, the
following sections contain simple explicit formulas for u when the reduction of the curve
is nodal (Section 9), respectively cuspidal (Section 10). A simple argument then gives
the improved general upper bound (1.3) for u, see Section 11.

In Part IIT we describe our factorization-free algorithm for the computation of h(P) for
P € J(K), where K is a global field. We start in Section 12 by showing how to compute
ty(P) for non-archimedean v, using a bound on its denominator. The following section
deals with archimedean places, before we finally combine these results in Section 14 into
an algorithm for the computation of iL(P) that runs in polynomial time; this proves
Theorem 1.3. Some examples are discussed in Section 15.

In the final Part IV we turn to Problem 1.2. Section 16 contains two methods for
bounding [, for archimedean v. In the following Section 17 we describe a modified
naive height h’ such that the bound on the difference h’' — h becomes small. We use this,
the results of Section 16, and our nearly optimal bounds for the non-archimedean height
correction functions from Part II to give an efficient algorithm for the enumeration of
the set of rational points with bounded canonical height in Section 18. In the final
Section 19 we compute generators of the Mordell-Weil group of the record curve (1.4).

Acknowledgments. We would like to thank David Holmes for suggesting the proof of
Lemma 7.1.
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PART I: GENERALITIES ON HEIGHTS AND GENUS TwWO JACOBIANS
2. GENERALIZED NAIVE HEIGHTS

Let K be a field with a set My of places v and associated absolute values ||, satisfying
the product formula

H |z, =1 for all x € K* .

’UGMK
We write K, for the completion of K at v. For a tuple z = (z1,...,2,) € K]* we set
HxHU = ma'X{|x1‘U7 sy ‘xm‘v}

In the following we will introduce some flexibility into our notion of height on projective
spaces. (This is similar to the framework of ‘admissible families’ in [Zar95].)

Definition 2.1.

(1) Let v € Mg. A local height function on P™ at v is a map h,,: K1\ {0} — R such
that
(i) ho(Az) =log ||y + hy(z) for all z € K1\ {0} and all A € KX, and
(ii) !hv(az) —log ||3:HU} is bounded.

(2) A function h: P™(K) — R is a height on P™ over K if there are local height
functions h, such that for all z € P"(K) we have
h((:rl 3 S $m+1)) = Z hy(x1, 22, Tms1)
vEMK

and hy(z) = log ||z, for all but finitely many places v.

Note that property (i) of local height functions together with the product formula imply
that h is invariant under scaling of the coordinates and hence is well-defined.

One example of such a height is the standard height hgg, which we obtain by setting
hy(z) = log ||z||, for all v. We then have the following simple fact.

Lemma 2.2. Let h be any height on P™ over K and let hgq be the standard height.
Then there is a constant ¢ = c(h) such that

|h(P) — hsta(P)| < ¢ for all P € P™(K).

Proof. This follows from property (ii) of local height functions. g
Example 2.3. Other examples of heights can be obtained in the following way. For
each place v, fix a linear form [,(x1,...,Zm+1) = G121 + ... + Gym+1Tm+1 With
Ay is---s0umt1 € Ky and ayme1 # 0, such that l,(z) = x4 for all but finitely
many v. Then
h((zy @ wmy)) = Y logmax{|zifu, ..., [Tl lo(21, -, Zimg1) o}
vEME

is a height on P™.

More generally, we could consider a family of automorphisms A, of K™™' with A, equal
to the identity for all but finitely many v, and take

h(z) = ) logmax || Ay(z)l|, -

UEMK
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Now consider a variety V' C P™ and an endomorphism ¢: V' — V of degree d (i.e., given
by homogeneous polynomials of degree d). Then by general theory (see, e.g., [HS00,
Thm. B.2.5]) |hsta(¢(P)) — dhsa(P)| is bounded on V(K). We write ¢°" for the n-fold
iteration of ¢. Then the canonical height

h(P) = lim d™"hga(p™ (P))

exists (and satisfies h(o(P)) = dh(P)) [HS00, Thm. B.4.1]. Let k be any height on P™.
Since |h — hgtq| is bounded, we can replace hgq by h in the definition of h without
changing the result. We can then play the usual telescoping series trick in our more
general setting.

Lemma 2.4. Let o((x1 : ... : Tmy1)) = (01(@) : ... 1 @mga(z)) with homogeneous
polynomials p; € Kx1,...,Tm1] of degree d. We have
WP)=h(P)— 3 fu(P).
vEMK
where

fi(P) = d~"e,(o"(P))
and, when P = (x1:...: Tmy1) and ;72 (1, Tmy1),
Eo(P) = dhy(x) = ho(01(2), - -, a1 (2)) -
Proof. Note that &, is well-defined: scaling = by A adds |\|, to hy(z) and d|A|, to

ho(p1(2), ..., @mi1(z)). Let x be projective coordinates for P and write z(™ for the
result of applying (¢1,...,@ms1) n times to 2 = 29, Then

h(P) = lim d"h(¢™(P))
= h(P) + i =" (m(°" I (P)) — dh(°" (P)))
n=0

= h(P) + i d= N (hy (2Y) = dhy ()
n=0

UEMK

=h(P)— > id*(”“)év(w"”(fj))

vEM K n=0
—h(P) = 3 fu(P). O
vEMK
We call the functions fi,: P™(K,) — R local height correction functions.

Note that when K, is a discretely valued field such that |z, = exp(—c,v(z)) for x € K*
with a constant ¢, > 0 (and where we abuse notation and write v: K — Z also for the
normalized additive valuation associated to the place v) and h = hgq, then we have

fy(P) = cypiy(P) and Ey(P) = cyey(P),

where -
po(P) = d~ " e, (P)
n=0

and
o(P) = min{v(p1(x)), ..., v(ems1(2))} — dminfv(z1),...,v(zm+1)},
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if x = (z1,...,%m+1) are homogeneous coordinates for P. This is the situation that we
will study in some detail in Part II of this paper, for the special case when V C P3 is
the Kummer surface associated to a curve of genus 2 and its Jacobian J and ¢ is the
duplication map (then d = 4).

To deal with Problem 1.1, we work with the standard height hgq. We use our detailed
results on the local height correction functions to deduce a bound on the denominator
of p, (its values are rational) in terms of the valuation of the discriminant of the curve.
This is the key ingredient that leads to our new factorization-free and fast algorithm for
computing il, see Part III.

To deal with Problem 1.2, we use the flexibility in choosing the (naive) height h and
modify the standard height in such a way that the sum > ., sup fi,(J(Ky)) that

bounds the difference h — h is as small as we can make it. The local height functions we
use are as in Example 2.3 above, with [, (z1,x2,z3,x4) = x4/s, for certain s, € K} in
most cases. This choice has the property that for any P = (z1 : 22 : 23 : x4) € P3(K)
different from (0:0:0: 1) we have

0< hstd((xl T x9 mg)) < h(P).

This is relevant, since we can fairly easily enumerate all points P as above that are on
the Kummer surface and satisfy hstd((xl DTy 333)) < B, see Part IV. Refinements of
the standard height constructed using Arakelov theory were also used by Holmes [Hol14]
to given an ‘in principle’ algorithm for the enumeration of points of bounded canonical
heights on Jacobians of hyperelliptic curves over global fields.

3. LOCAL HEIGHT CORRECTION FUNCTIONS FOR GENUS 2 JACOBIANS

Until further notice, we let k£ be a non-archimedean local field with additive valuation v,
normalized to be surjective onto Z. Let O denote the valuation ring of k with residue
class field £ and let 7 be a uniformizing element of . We consider a smooth projective
curve C' of genus 2 over k, given by a Weierstrass equation

(3.1) Y24+ H(X,2)Y =F(X,Z)

in weighted projective space Px (1,3, 1), with weights 1, 3 and 1 assigned to the variables
X, Y and Z, respectively. Here

F(X,Z2) = foZ° + 1XZ° + foX2 2% + f3X323 + fLX*Z% + fsX5Z + fe X5

and
H(X,Z)=hoZ® + i XZ% + ho X?Z + h3 X3
are binary forms of degrees 6 and 3, respectively, such that the discriminant A(F, H)

of the Weierstrass equation (3.1) is nonzero. In characteristic different from 2, this
discriminant is defined as

A(F,H) =272 disc(4F + H?) € Zlho, ..., h3, fo, ..., fe] »

and in general, we define it by the generic polynomial given by this formula. The curve
defined by the equation is smooth if and only if A(F, H) # 0.

For the remainder of this section we assume that F, H € O[X, Z], so that equation (3.1)
defines an integral Weierstrass model C of the curve in the terminology of Section 5
below. The discriminant of this model is then defined to be A(C) := A(F,H). We
may assume that C is given by such an integral equation if k is the completion at a
non-archimedean place of a number field K and C' is obtained by base change from K,
since we can choose a globally integral Weierstrass equation for the curve. But also in
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general, we can always assume that C' is given by an integral equation after applying
a transformation defined over k, since we know from Corollary 4.6 in the next section
how the local height correction function p defined in Definition 3.1 below behaves under
such transformations.

We now generalize the definition of € given in [Sto02] to our more general setting ([Sto02]
works with Weierstrass equations that have H = 0). As in the introduction, let .JJ denote
the Jacobian of C' and let KS be its Kummer surface, constructed explicitly together
with an explicit embedding into P? in [CF96] in the case H = 0 and in [Miill0] in the
general case. Also let x: J — P3 denote the composition of the quotient map from .J
to KS with this embedding; it maps the origin O € J(k) to the point (0 : 0 : 0 : 1).
A quadruple z = (z1, 29, 73,24) € k* is called a set of Kummer coordinates on KS if
x is a set of projective coordinates for a point in KS(k); we denote the set of sets of
Kummer coordinates on KS by KSy (this is the set of k-rational points on the pointed
affine cone over KS). For x € KSy we write v(z) = min{v(z1),...,v(z4)}, and we say
that x is normalized if v(x) = 0. If P € J(k), we say that © € KSy is a set of Kummer
coordinates for P if k(P) = (x1 : xo : x3 : 24).

We let § denote the duplication map on KS, which is given by homogeneous polynomials
01,...,04 € Olxy,...,x4] of degree 4 such that §(0,0,0,1) = (0,0,0,1). We recall that
there is a symmetric matrix B = (Bjj)1<i j<4, Where the B;; € Olx1,..., %4, Y1, .., V4]
are bi-homogeneous of degree 2 in x1,...,2x4 and yi, ..., ys each and have the following
properties, see [CF96, Chapter 3] and [Miill0].

(i) Let z,y € KSy be Kummer coordinates for P,Q € J(k). Then there are Kummer
coordinates w, z € KSy for P 4+ @ and P — @, respectively, such that

w*z = (wizj + nijwjzi)1§i7j§4 = B(LL’, y)
and hence v(w) + v(z) = v(B(z,y)); here n;; = 1 if i # j and n;; = 0 if i = j.
(ii) If = € KSy, then B(x,z) = d§(x) * (0,0,0,1).

We specialize the notions introduced in Section 2 to our situation: we consider the
Kummer surface KS ¢ P3? with the duplication map § of degree d = 4. We use the
standard local height on P3.

Definition 3.1. Let x € KS, be a set of Kummer coordinates on KS. Then we set

o0

e(x) =v(d(x)) —4dv(z) € Z and u(x) = Z 4nl+15(5°"(x)) ,

n=0

where 0°" denotes the n-fold composition j o...o0 4.

Because 4 is given by homogeneous polynomials of degree 4, e(z) does not depend on
the scaling of z, so it makes sense to define ¢(P) = ¢(x) for points P € KS(k), where
x € KSy is any set of Kummer coordinates for P, and to define ¢(P) = ¢(k(P)) for
points P € J(k). We likewise extend the definition of . Then we have

w(2P) — 4u(P) = —e(P) for all P € J(k).

Note that our assumption F, H € O[X, Z] implies that € > 0. If & is a local field (as we
assume here), then KS(k) is compact in the v-adic topology, and ¢ is continuous, so € is
bounded.

Remark 3.2. More generally, if k is a field with a discrete valuation and not of charac-
teristic 2, then the arguments in [Sto99] show that when H = 0, ¢ < v(2* disc(F)), so €
is bounded also for these more general fields.
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If k is any field with a discrete valuation, then one can still conclude that ¢ is bounded,
by making use of the fact that the duplication map is well-defined on KS, which implies
that the ideal generated by the J; and the polynomial dg defining KS contains a power of
the irrelevant ideal. So for some N > 0, one can express every azév as a linear combination
of dp(x),...,d4(x) with coefficients that are homogeneous polynomials of degree N — 4
with coefficients in k. The negative of the minimum of the valuations of these coefficients
then gives a bound for e.

Remark 3.3. If k is the completion of a global field at a place v, then for a € k*,
v(a)/log ||lal|ls = —cy is a negative constant. So for P € J(k) we have e(P) = ¢,&,(P)
and p(P) = ¢yfiy(P), where &, and fi, are as defined in the introduction.

We will also have occasion to use the following function. Let x,y € KSy and define
(3-2) e(z,y) = v(B(z,y)) — 2v(z) — 2v(y).
In the same way as for e(x) above, we can extend this to points in KS(k) and J(k).

Lemma 3.4. Let x,y,w,z € KSy be Kummer coordinates satisfying w * z = B(z,y).
Then we have

o(w) * 6(2) = B(6(x),6(y)) -
Proof. The proof carries over verbatim from the proof of [Sto02, Lemma 3.2]. O

We deduce the following:

Lemma 3.5. Let x,y,w,z € KSy be Kummer coordinates satisfying w * z = B(z,vy).
Then we have

£(5(2),6()) + 2¢(w) + 22 (y) = e(w) + £(2) + 4= (. ).

Proof. Using Lemma 3.4, relation (3.2), and property (i) above for §(w), d(z), d(z)
and J(y), we obtain

v(0(w)) +v(8(2)) =v(B(6(x),8(y))) =e(5(x),5(y)) + 2v(6(z)) + 2v(6(y)) .
Subtracting four times the corresponding relation for w, z,  and y, we get
e(w) +e(2) = e(d(x),d(y)) — de(z,y) + 2e(z) + 22(y),

which is the claim. O

We state a few general facts on the functions € and p.

Lemma 3.6. For points P,Q € J(k), we have the relation

(P + Q)+ pu(P — Q) —2u(P) —2u(Q) = —e(P,Q).

Proof. Let x and y be Kummer coordinates for P and @), respectively; then w and z as
in Lemma 3.5 are Kummer coordinates for P+ @ and P — @ (in some order). The claim
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now follows from the formula in Lemma 3.5:

P+ Q)+ (P —Q) —2u(P) —21(Q)

= i 47 H(e(2"P 4 2"Q) + e(2"P — 2"Q) — 2:(2"P) — 2¢(2"Q))
n=0

= D47 (7 (W) + 26 (2)) — 250 (@) — 2:(5°" (1)
n=0

3 4 () (), 8 () — (67 (a), 57 (1)
n=0

= —¢(v,y) = —e(P, Q). O
Lemma 3.7. If P € J(k) satisfies u(P) =0, then u(P + Q) = u(Q) for all Q € J(k).

Proof. We take (P, Q) < (Q +nP, P) in Lemma 3.6, where n € Z. Taking into account
that u(P) = 0 and writing a,, for p(Q + nP), this gives

ant1 — 2ap + apn—1 = —e(P,Q + nP).

As k is a non-archimedean local field, the multiples of P accumulate at the origin
O € J(k). Recall that ¢ is locally constant. This implies that every value (P, Q + nP)
occurs for infinitely many n € Z, since Q + (n+ N )P will be close to Q +nP for suitably
chosen N. We have for any m > 0
m m
Uil — A — Ay + Qg1 = Z (ant1 — 2ap + ap-1) = — Z e(P,Q +nP).

n=—m n=-—m

Since g is bounded, the left hand side is bounded independently of m. We also know
that ¢(P,Q +nP) > 0. But if ¢(P,Q + nP) were nonzero for some n, then by the
discussion above, the right hand side would be unbounded as m — oo. Therefore it
follows that (P, @ +nP) = 0 for all n € Z. This in turn implies a, 41 — 2a, + ap—1 =0
for all n € Z. The only bounded solutions of this recurrence are constant sequences. In
particular, we have

p(P+Q)=a; =ag=puQ). O

Proposition 3.8. The subset U = {P € J(k) : u(P) = 0} is a subgroup of finite index
in J(k). The functions P+ e(P) and P — p(P) factor through the quotient J(k)/U.

Proof. Lemma 3.7 shows that U is a subgroup. We have ¢(P) = 0 for P € J(k)
sufficiently close to the origin. So taking a sufficiently small subgroup neighborhood U’
of the origin in J(k), we see that ¢(2"P) = 0 for all P € U’ and all n > 0. This
implies that =0 on U’, so U D U’. Because k is a local field, U’ and therefore also U
have finite index in J(k). By Lemma 3.7 again, p factors through J(k)/U, and since
e(P) =4u(P) — u(2P), the same is true for e. O

We will now show that we actually have

U={PeJk):e(P)=0}

(the inclusion ‘C’ is clear from the definition and Proposition 3.8.) This is equivalent to
the implication e(x) = 0 = ¢(d(z)) = 0 and generalizes [Sto02, Thm. 4.1]. For this we
first provide a characteristic 2 analogue of [Sto02, Prop. 3.1(1)].
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We temporarily let k& denote an arbitrary field. Let Cr g be a (not necessarily smooth)
curve in the weighted projective plane with respective weights 1, 3, 1 assigned to the
variables X,Y, Z that is given by an equation

(3.3) Y24+ H(X,Z2)Y = F(X,Z2),

where F, H € k[X, Z] are binary forms of respective degrees 6 and 3. Let KSg i denote
the subscheme of P given by the vanishing of the equation defining the Kummer surface
of Cr g if Cp g is nonsingular. Then the construction of 6 = (d1, d2, 3, d4) still makes
sense in this context, but we may now have ¢;(x) = 0 for all 1 < i < 4 (which we
abbreviate by d(z) = 0) for a set « of Kummer coordinates on KSz . We generalize
Proposition 3.1 in [Sto02] (which assumes H = 0) to the case considered here.

Note that two equations (3.3) for Cp g are related by a transformation 7 acting on an
affine point (£, 7n) by

(a4 b en+U(E1)
(3.4 e = (S0, 22D,

where A = (2%) € GLy(k), e € k™ and U € k[X, Z] is homogeneous of degree 3. The
transformation 7 also acts on the forms F and H by

T*F(X,Z) = (ad — be) ¢ (2 FA + (eH* — U4)UA)
T*H(X,Z) = (ad — be) ™3 (eH* — 2U4) |
where we write
SA = 8(dX —bZ, —cX + aZ)
for a binary form S € k[X, Z].

Lemma 3.9. Let x € KSp (k). If 6(6(x)) = 0, then we already have §(x) = 0.

Proof. If k has characteristic different from 2, we can apply a transformation so that the
new Weierstrass equation will have H = 0; the statement is then [Sto02, Prop. 3.1(1)].
So from now on, k has characteristic 2. We may assume without loss of generality that
k is algebraically closed. If the given curve is smooth, then the result is obvious, because
the situation described in the statement can never occur. If it is not smooth, we can
act on F' and H using transformations of the form (3.4), so it is enough to consider only
one representative of each orbit under such transformations. This is analogous to the
strategy in the proof of [Sto02, Prop. 3.1]. We can, for example, pick the representatives
listed in Table 1.

For these representatives, elementary methods as in the proof of [Sto02, Prop. 3.1] can
be used to check that 6(x) = 0 indeed follows from §((x)) = 0. O

We can use the above to analyze the group U.

Theorem 3.10. Suppose that k is a non-archimedean local field and that J is the Ja-
cobian of a smooth projective curve of genus 2, given by a Weierstrass equation (3.1)
with integral coefficients. Then the set {P € J(k) : e(P) = 0} equals the subgroup U in
Proposition 3.8. In particular, U is a subgroup of finite index in J(k) and € and p factor
through the quotient J(k)/U. Moreover we have that e(—P) = e(P) and U contains the
kernel of reduction J(k)' with respect to the given model of J, i.e., the subgroup of points
whose image in KS(8) equals that of O.
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type H F conditions
1 0 0
2 VA 0
3 z3 aXZ® a#0
4 X 72 DA a#0
5 X7? bX3273 b#0
6 z3 aXZ°+bX3273 ab #0
7 X7z 0
8 | XZ(X+2) 0
9 | XZ(X+2) bX3273 b(b+1)#0
10 | XZ(X+Z) | aXZ5+0bX3Z3 | a(a+b)(a+b+1) #0
11 XZ? aX 75+ bX373 ab #0
12 0 X7Z°
13 0 X373

TABLE 1. Representatives in characteristic 2

Proof. The statement in Lemma 3.9 implies £(P) = 0 = £(2P) = 0 for points P € J(k),
since £(P) = 0 is equivalent to §(Z) # 0 if z are normalized Kummer coordinates for P,
with reduction Z. This shows that (P) = 0 implies u(P) = 0 (and conversely), so
{P € Jk):eP) =0} ={P € J(k) : u(P) = 0} = U. The remaining statements
now are immediate from Proposition 3.8, taking into account that for P in the kernel of
reduction, we trivially have ¢(P) = 0. O

An algorithm for the computation of p(P) which is based on Theorem 3.10 (for H = 0) is
given in [Sto02, §6]. Using the relation in Lemma 3.6, we obtain the following alternative

procedure for computing p(P).

1. Let x be normalized Kummer coordinates for P.

Set yo = (0,0,0,1) and y; = x.

2. Forn=1,2,..., do the following.

a. Using pseudo-addition (see [FS97, §4]), compute normalized Kummer coordinates
Yn+1 for nP from z, y,—1 and y,; record e(P,nP), which is the shift in valuation
occurring when normalizing y,1.

b. If e(P,nP) = 0, check whether v(d(y,)) = 0 (by Theorem 3.10, this is equivalent
tonP € U). If yes, let N =n and exit the loop.

3. Return

1 Nl
n=1
To see that this works, note that by Lemma 3.6 we have

p((n+1)P) — 2u(nP) 4+ p((n — 1)P) = 2u(P) — (P, nP).

The sequence (u(nP))n ¢z 18 periodic with period N, where N is the smallest positive
integer n such that nP € U (which exists according to Theorem 3.10). Taking the sum
over one period gives

ANu(P) =Y e(P,nP)= Y c(P,nP).
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From the periodicity we can also deduce the possible denominators of u(P). As e has
integral values, we see that j(P) € 5xZ if N is a period of (,u(nP))neZ. In fact, we can
show a little bit more.

Corollary 3.11. Let P € J(k) and N = min{n € Z~¢ : p(nP) = 0}. Then

1
u(P) e NZ if N is odd, and

1
w(P) € ﬁZ if N is even.

Proof. The sequence (E(P, nP))n ¢z, has period N and is symmetric. So if N is odd, we
actually have

1 N-1 (N=1)/2 .
—m;esPnP v ; e(P.nP) € L. O

Analyzing the possible denominators of u(P) will play a key role in Section 12, where
we discuss another algorithm for the computation of u(P).

4. CANONICAL LOCAL HEIGHTS ON KUMMER COORDINATES

We now define a notion of canonical local height for Kummer coordinates. We keep the
notation of the previous section.

Definition 4.1. Let x € KS, be a set of Kummer coordinates on KS. The canonical
local height of x is given by

A(x) = —v(a) - plx).

Remark 4.2. We can also define the canonical local height on an archimedean local field
in an analogous way. Then, if K is a global field and x is a set of Kummer coordinates
for a point J(K), we have

. 1.
h(P) = —
(P)= 3 —Af).
UEMK
where ¢, is the constant introduced in Remark 3.3 for a non-archimedean place v and
¢, = [K, : R]7! if v is archimedean.

The canonical local height A on Kummer coordinates has somewhat nicer properties than
the canonical local height defined (for instance in [FS97] or, more generally, in [HS00,
§B.9]) with respect to a divisor on J.

Proposition 4.3. Let x,y,z,w € KSy. Then the following hold:
(i) AG(2) = 4@). -
(ii) If w*z = B(x,y), then A(2) + A(w) = 2X\(z) + 2A(y).
(ili) A(z) = — limp_yo0 4 "0 (0°"(2)).
(iv) If K'/k is a finite extension of mmzﬁcatzon index e and N is the canonical local
height over k', then we have N(z) = e - A(x).

Proof.

(i) This follows easily from the two relations

v(6(z)) =4dv(z) +e(z) and p(6(z)) =4p(z) —e(z
(ii) This is similar, using Lemma 3.6 and &(z,y) = v(w) + v(2) — 2v(z) — 2v(y).
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(iii) This follows from (i) and the fact that u(x) is a bounded function, implying
Ax) = 47"A(6"(z)) = —47"v(5°"(x)) + O(4™™).
(iv) This is obvious from the definition of A. O

The canonical local height on Kummer coordinates also behaves well under isogenies.

Proposition 4.4. Let a: J — J' be an isogeny of Jacobians of dimension 2 defined

over k. Then o induces a map a: KS — KS' between the corresponding Kummer

surfaces; let d denote its degree. We also get a well-defined induced map a: KSy — KSy

if we fiz a € k* and require «(0,0,0,1) = (0,0,0,a). Then we have
Aa(z)) = dA(z) — v(a)

for all x € KSy.

Proof. All assertions except for the last one are obvious. By the definition of 5\, we can
reduce to the case a = 1. Using part (iii) of Proposition 4.3 it is then enough to show
that

v(6(a(z))) = dv(6°™(z)) + O(1).
However, we have v(a(x)) — dv(z) = O(1) by assumption, so it suffices to show that
(4.1) v(6(a(x))) = v(a(67(x))) .
But since a: J — J' is an isogeny, §°"(a(x)) and a(6°™(z)) represent the same point
on K9, hence they are projectively equal. Because they also have the same degree, the
factor of proportionality is independent of x. It therefore suffices to check (4.1) for a
single x; we take z = (0,0,0,1) € KSp. Because we have §(z) = = and, by assumption,
a(z) = 2/, where 2’ = (0,0,0,1) € KS,(k), we find

"(a(z)) =2 and «a(6"(z)) =2,
thereby proving (4.1) and hence the proposition. a

Remark 4.5. Canonical local heights with similar functorial properties were constructed
by Zarhin [Zar95] on total spaces of line bundles (without the zero section). See
also [BG06] for an approach to canonical local heights using rigidified metrized line
bundles.

The preceding proposition is particularly useful for analyzing the behavior of the canon-
ical local height under a change of Weierstrass equation of the curve.

Recall that two Weierstrass equations for C' are related by a transformation 7 as in (3.4),
specified by a triple (A4,e,U), where A = (2%) € GLy(k), e € k™ and

U=upZ®+u XZ%+usX?Z + us X3 € k[X, Z]

is homogeneous of degree 3. Such a transformation induces a map on KSy as follows:
Let © = (21,22, x3,24) € KSy. Then 7(z) is given by the following quadruple:

(ad — bc)_1 (d2x1 + cdxy + s,
2bdxy + (ad + be)xg + 2acxs,
52161 + abxry + azxg,
(ad — bc)_2(62:c4 + lix1 + loxo + l3x3)> ,
where [1, l9, I3 do not depend on x. More precisely, we can write

li=1lix+ L2+ 13,
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where
2
e .
li1 = mlé’l with l;l € Z[fo,-.., f6,a,b,c,d,
lig = MQQ with I, € Z[ho, ..., hs, uo, . . ., us, a, b, ¢, d],
1 /

liz = mli’3 with l;g € Zlug, ..., us,a,b,c,d

for ¢ = 1,2,3. All of the lé,j are homogeneous of degree 8 in a, b, ¢, d and homogeneous
in the other variables.

So we see that 7 acts on k? as a linear map whose determinant has valuation
v(T) = 2v(e) — 3v(ad — be) .
In this situation, Proposition 4.4 implies:

Corollary 4.6. Let 7 = ([a,b,c,d],e,U) be a transformation (3.4) between two Weier-
strass equations C and C' of a smooth projective curve C/k of genus 2 and let KS be the
model of the Kummer surface associated to C. Then we have

Ar(x)) = Mz) = v(7)
for all x € KSp. In particular,

p(z) = p(r(2)) +o(r(2)) = v(z) —v(7).

This can be used to construct a canonical local height which does not depend on the
choice of Weierstrass equation.

Definition 4.7. Let C/k be a smooth projective curve of genus 2 given by a Weierstrass
equation (3.1) with discriminant A and let KS be the associated Kummer surface. We
call the function

- A 1
A KSy — R, x— Nz)+

EU(A)

the normalized canonical local height on KSy.

Corollary 4.8. The normalized canonical local height is independent of the given Weier-
strass equation of C'.

Proof. Let T be a transformation (3.4) between two Weierstrass equations of C' with
respective discriminants A and A’. Then we have

(4.2) v(A") = v(A) + 10v(7),

see [Liu96, §2]. O

We will not need the normalized canonical local height in the remainder of this paper.

5. STABLY MINIMAL WEIERSTRASS MODELS

In this section, k continues to denote a non-archimedean local field with valuation ring O
and residue field €. We build on results established by Liu [Liu96] in the more general
context of hyperelliptic curves of arbitrary genus.

Recall that an equation of the form (3.1) defining a curve C' over k of genus 2 is an
integral Weierstrass model of C' if the polynomials F' and H have coefficients in O.
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(Note that this is slightly different from the notion of an ‘integral equation’ as de-
fined in [Liu96, Définition 2], but the difference is irrelevant for our purposes, since any
minimal Weierstrass model is actually given by an integral equation, see [Liu96, Remar-
que 4].) It is a minimal Weierstrass model of C' if it is integral and the valuation of its
discriminant is minimal among all integral Weierstrass models of C' [Liu96, Définition 3].
We introduce the following variant of this notion.

Definition 5.1. An integral Weierstrass model of a smooth projective curve C over k
of genus 2 is stably minimal if it is a minimal Weierstrass model for C' over k' for every
finite field extension k' of k.

Stably minimal Weierstrass models can be characterized in terms of the multiplicities of
the points on the special fiber. The definition below is equivalent to [Liu96, Définition 9]
when the curve is reduced, see [Liu96, Remarque 8].

Definition 5.2. Only for this definition let k£ be an arbitrary field, and let Cr y be a
curve in [P, (1,3, 1) given by an equation of the form (3.1) over k; we assume that Cr g

is reduced. The multiplicity m(P,Cr i) of P € Cp (k) is defined as follows:

e If P is a singular point of type A,, then m(P,Cr ) =n+ 1.

e If P is fixed by the involution ¢«(X : Y : Z) = (X : =Y — H(X,Z) : Z) and is
nonsingular, then m(P,Crg) = 1.

e Otherwise m(P,Cpp) = 0.

An algorithm that computes the multiplicity was given by Liu [Liu96, §6.1]. Liu defines
further multiplicities A.(P) [Liu96, Définition 10] for points on the special fiber of an
integral Weierstrass model (and r > 1) that allow to characterize when such a model is
minimal. We note here that A\.(P) gives the value of A(P) = A\1(P) after making a field
extension of ramification index r. Also, Lemme 7(e) of [Liu96] states for r sufficiently
large that A.(P) = m(P) if the special fiber is reduced and implies that A.(P) > r if
the special fiber is non-reduced. In the reduced case, we also have A\(P) < m(P).

Setting A = A;, Corollaire 2 in [Liu96] states (for ¢ = 2) that the model is minimal if
and only if A(P) < 3 and X (P) < 4 (and is the unique minimal Weierstrass model up
to O-isomorphism if and only if, in addition \'(P) < 3) for all £&-points P on the special
fiber, where N'(P) is a number satisfying N (P) < 2[\(P)/2], see [Liu96, Lemme 9(c)].

Lemma 5.3. An integral Weierstrass model of a smooth projective curve C over k of
genus 2 is stably minimal if and only if its special fiber is reduced and the multiplicity
of every geometric point on the special fiber is at most 3.

If the special fiber is reduced and all multiplicities are at most 2, then the model is
the unique minimal Weierstrass model of C over any finite extension k' of k, up to
isomorphism over the valuation ring of k'.

Proof. First note that the multiplicity of a point is a geometric property; it does not
change when we replace k£ by a finite extension. If the special fiber of an integral
Weierstrass model has the given properties, then it follows from Liu’s results mentioned
above that \(P) < m(P) < 3 and therefore N'(P) < 4 for all points P on the special
fiber, even after replacing k by a finite extension. It follows that the model is stably
minimal.

If m(P) <2 for all P, then A(P) < 2 and X(P) < 2, so by Liu’s results, the model is
the unique minimal Weierstrass model of C' over k’.

Conversely, assume that the special fiber does not have the given properties. Then
either the special fiber is non-reduced, or else there is a point P on the special fiber
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of multiplicity m(P) > 4. If the special fiber is non-reduced, then after replacing k by
a sufficiently ramified extension k', there is a point P on the special fiber such that
A(P) > 3 over k' (ramification index 4 is sufficient). If the special fiber is reduced and
there is a (geometric) point P on the special fiber with m(P) > 3, then again after
replacing k by a sufficiently large finite extension k' (such that P is defined over the
residue field and the ramification index is at least m(P)), we have \(P) = m(P) > 3
over k’. Liu’s results then show that the model is not minimal over &’. O

Lemma 5.4. If C' is a smooth projective curve over k of genus 2, then there is a finite
extension k' of k such that

(i) the minimal proper reqular model of C over the valuation ring of k' has semistable
reduction, and
(ii) each minimal Weierstrass model of C' over k' is already stably minimal.

Proof. That there is a finite extension with the first property is a special case of the
semistable reduction theorem [DMG69]. After a further unramified extension, we can
assume that all components of the special fiber of the minimal proper regular model
(which all have multiplicity 1) are defined over the residue field and that at least one
component has a smooth point defined over the residue field. This implies by Hensel’s
Lemma that C'(k') # (). Tt follows from [Liu96, Corollaire 5] that every minimal Weier-
strass model of C' over k' is dominated by the minimal proper regular model. Since the
latter has reduced special fiber, the same is true for each minimal Weierstrass model.

Now assume that there exists a stably minimal Weierstrass model of C' over &’. Then
every minimal Weierstrass model of C' over k¥ must already be stably minimal, since
both models must have the same valuation of the discriminant, and the discriminant of
the stably minimal model remains minimal over any finite field extension of k’. So it is
enough to show that a stably minimal model exists.

We now consider the various possibilities for the special fiber of the minimal proper
regular model. The possible configurations are shown in Figures 1, 2, 3 and 5 (on pages
30, 31, 32 and 37). If the reduction type is [In,—my—ms] in the notation of [NUT73],
then the Weierstrass model whose special fiber contains the component(s) that are not
(—2)-curves has the property that all points on the special fiber have multiplicity at
most 2; this is then the unique minimal Weierstrass model, and it is stably minimal
by Lemma 5.3. It remains to consider reduction type [I,, — Im, — []. We see that the
Weierstrass models that correspond to components in the chain linking the two polygons
and also those coming from the component of one of the polygons that is connected to
the chain satisfy the conditions of Lemma 5.3 and are thus stably minimal. On the other
hand, Weierstrass models whose special fiber does not correspond to a component in
the chain or to one of its neighbors have a point in the special fiber whose multiplicity
is at least 4 and so cannot be stably minimal. [l

6. IGUSA INVARIANTS

In this section we describe how we can easily distinguish between different types of
reduction using certain invariants of genus 2 curves introduced by Igusa in [Igu60]. The
results of this section are essentially due to Liu [Liu93]; see also [Mes91].

Let k£ be an arbitrary field of characteristic not equal to 2 and consider the invariants
Ja, Ju, Jg, Js, J1o defined in [Igu60], commonly called Igusa invariants. Then Jo;(F') is
an invariant of degree 2i of binary sextics, and if

F(X,Z) = foZ° + IXZ° + foX2 2% + f3X323 + f1X*Z% + fsX°Z + fe X5
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is a binary sextic, then Jo;(F) € Z[%, fo, ..., fg]. For example, Jio(F) = 272 disc(F).
It is shown in [Igu60] that the invariants Jo, J4, Jg, J1o generate the even degree part of
the ring of invariants of binary sextics.

Now let F' and H be the generic binary forms over Z of degrees 6 and 3, respectively,
with coefficients fy, ..., fg and hg, ..., hs as before. It turns out that Jo; (4F + H2) is
an element of Z[fo, ..., fe, ho, ..., hs3].

Definition 6.1. Let k& be an arbitrary field and let H, F' € k[X, Z] be binary forms
of respective degrees 3 and 6 over k. Let Crpy be the curve given by the equation
Y2+ H(X,Z)Y = F(X,Z) in the weighted projective plane Py(1,3,1). For 1 <i <5
we define the Igusa invariant Jo;(Cr ) of Cpu as

J2i(Crp) = Joi (AF + H?) .
Following Liu [Liu93], we also define two additional invariants, namely

L(Cry) = Jo(Cru)* — 24J4(Cr p)

and

Lo(Cru) = —8J4(Cru)’ + 9J2(Cru) Ja(Cra) Js(Cr i)
—27J5(Cru)? — J2(Cru)*Js(Cru) -

The following is a consequence of [Liu93, Thm. 1].
Proposition 6.2. Let k be a field and let Cr g /k be the curve given by the equation
Y2 4+ H(X,2)Y = F(X,Z)

in Pr(1,3,1), where H, F € k[X,Z] are binary forms of degree 3 and 6, respectively.
For1<i<5 and j € {4,12} we set Jo; = J2;(Cru) and I; = I;(Crn).

(i) Crp is smooth <= Jig # 0.
(ii) Cr g has a unique node and no point of higher multiplicity
<~ JlO =0 and I 7& 0.
(iii) Cpu has exactly two nodes
< Jl():[lQ:O, 14750, andJ47éO 07‘J6750.
(iv) Cpu has three nodes <= Jig =1l =Jy=Js =0 and I # 0.
(v) Cpu has a cusp <= Jig =I12 =14 =0 and Jy; # 0 for some i < 4.
(vi) Cpu is non-reduced or has a point of multiplicity at least 4 <= Jo; =0 for all i.

When C' is a curve of genus 2 over a non-archimedean local field, then Igusa invariants
can also be used to obtain information on the reduction type of C, see [Liu93, Thm. 1,
Prop. 2].

Proposition 6.3. Let k be a non-archimedean local field with normalized additive val-
uation v: k* — 7Z and valuation ring O, and let C/k be a smooth projective genus 2
curve, given by a minimal Weierstrass model with reduced special fiber. Suppose that
the minimal reqular model C™™ of C' over Spec O is semistable and has reduction type
K in the notation of [NUT3]. We set Joy = Joi(C) fori € {1,...,5} and Iy = 14(C),
Iip = I12(C).

(i) If K = [Im—0—o], where m > 0, then m = v(Jip).
(i) If K = [Iymy—my—0], where 0 < my < mag, then

mq = min {’U(Ilg), %U(Jlo)} and mg = v(J1g) —mq .
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(il) If I = [I;my—my—ms), where 0 < my < mg < mg, then
mi = min {’U(J4), %U(Jlo), %U(Ilg)} N
mo = min {’U(Ilg) —mai, %(’U(Jlo) — ml)} and
m3 = U(Jlo) —mip —Mmg.
(iv) If K= [Io — Io — 1], then | = {5v(Jyp).
(v) If K = [In, — Io — 1], where my > 0, then
= T12U(112) and mi = U(Jlo) - U(Ilg) .
(vi) If K = [In, — I, — 1], where ma > mq >0 and [ > 0, then
l= %U(L;) ,

my = min {v(12) — 3v(14), 3(v(Jio) — 3v(14))} and

mo = U(Jlo) - 3U(I4) —mi.

21
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PART II: STUDY OF LOCAL HEIGHT CORRECTION FUNCTIONS

In Part II of the paper, k will always denote a non-archimedean local field with residue
field ¢, valuation ring O and normalized additive valuation v: k* — Z. We let C be a
curve of genus 2 over k, given by an integral Weierstrass model C, which we consider
as a subscheme of the weighted projective plane Pg(1,3,1), where S = Spec(O). In the
following five sections we find explicit formulas and bounds for the local height correction
function p for the most frequent cases of bad reduction and use these to deduce a general
bound on . We denote the minimal regular model of C' over S by C™". Let J be the
Jacobian of C; we denote its Néron model over S by J. We write C,, C™" and 7, for
the respective special fibers of C, C™" and 7.

7. THE ‘KERNEL’ OF u

By Theorem 3.10, the set

U={PecJk):e(P)=0}
is a group and the local height correction function u factors through the quotient J(k)/U.
In this section we relate U to the Néron model of J when C has rational singularities.
See [Art86] for a brief account of the theory of rational singularities on arithmetic sur-
faces.

For the remainder of this section we assume that C/S is normal and reduced. We let
JY denote the identity component (the scheme with generic fiber J; = J and special
fiber the connected component of the identity J0 of the special fiber J,) of the Néron
model J. If C" — C is a desingularization of C, then the identity components Picg, /s

and Picg /s of the respective relative Picard functors of C’ and C can both be represented

by separated schemes, see [BLR90, Thm. 9.7.1]. There are canonical S-group scheme
morphisms

(7.1) Picg g — Picg, g — J°;

the latter map is an isomorphism by [BLR90, Thm. 9.4.2]. Let «: Picg /s JY denote

the composition of the morphisms from (7.1); note that a does not depend on the choice
of the desingularization C’.

Let Cgp be the smooth locus of C. Essentially following [BLR9I0, §9.3], we define W as the
subscheme of the smooth S-scheme Cs(fn) containing the points w = {P, P»} € W such
that the hyperelliptic involution ¢ maps the component containing P; to the component
containing P, and such that H'(C,, Oc, (Dy)) = 0, where D is the universal Cartier

divisor D C Cxg CS%) induced by the canonical map Cs(ig — Divg /s The latter condition

implies that if w = {P;, P»} lies on the generic fiber of W, then the divisor (P;) + (P)
is non-special. Then W has the following properties:

(2)

(i) W is an open subscheme of Csp -
(ii) There is a strict S-birational group law on W, induced by the group law on Pic, /S

(iii) Picg /8 is the S-group scheme associated with this strict S-birational group law.

For (ii) and (iii) see the discussion preceding [BLR90, Thm. 9.3.7].
Let Picéz/)s be the open subfunctor of Pice,g whose elements have total degree 2. Let

p: W — PicéQ/)S be the canonical map induced by D; by [BLR90, Lemma 9.3.5] it is an

open immersion. We can find a section x(y € P}Q(S) such that its pullback Dy under the
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covering map C — PL is horizontal and does not intersect the singular locus of C. We

denote by ¢ the class of Dg in Pic((f/)s. Let w = { Py, P,} € W; using the condition on

the action of ¢ on the components P; and P lie on, we find that
po(w) := p(w) —cp € Picg/s .
In fact py defines an open immersion py: W — Pic) /s> see [BLRI0, Lemma 9.3.6].

Lemma 7.1. If P € J(k) is in the image of a and the residue characteristic of k is
not 2, then e(P) = pu(P) = 0.

Proof. We may assume that C : Y2 = F(X,Z). Let Jr denote the model of .J in P
constructed in [CF96, Chapter 2] and let Jr/S denote the model it defines over S.
Furthermore, we denote by J, }9 the scheme whose generic fiber is Jr and whose special

fiber J. IElv is the connected component of the identity of the smooth locus of the special

fiber Jr,. We have a morphism : CS%) — J, }9, defined using the expressions for the

coordinates on Jp in [CF96, Chapter 2], see the proof of [BS10, Lemma 5.7]. We also
denote the restriction of this morphism to W by .

By the Néron mapping property, there is a morphism : jg — J. In general, its
image can be a proper subset of J?. Nevertheless, the following diagram of S-scheme
morphisms is commutative by [Liu02, Prop. 3.3.11], since W is reduced, J" is separated
and the diagram is commutative when restricted to generic fibers:

(7.2) T

J

We claim that im(«) C im(g). To prove this, we will show that ¢ is surjective onto the
image of v as a morphism of sheaves on the big étale site over S. Let T be an S-scheme
and let = € PicQ /5(T). By property (ii) and (iii) of W, there is an étale cover T'/T and

Wi, ..., wy € W(T") such that
z = po(w1) + ...+ po(wn)

where the sum is taken with respect to the group law on Pic?z /s In fact we can take
n = 2; this follows from [BLR90, Lemma 5.1.4] and the discussion following [BLR90,
Lemma 5.2.4]. Setting

y =¥(w1) +¢(w2),
where now the sum is taken with respect to the group law on 7, 19, we immediately deduce
¢(y) = a(z) from the commutativity of the diagram (7.2).

Let P € J(k). It follows from [BS10, Prop. 5.10] that ¢(P) = 0 if and only if P maps to
jg,v(é)' Since £(P) = 0 implies p(P) = 0, the result follows. O

Now suppose that the residue characteristic is 2. In this situation no explicit analogue
of the group scheme Jr has been constructed yet. Instead, we will show directly that
there is an open subscheme W’ of W such that a point P € J(k) in the image of
aopolw: W' — J° must satisfy u(P) = 0. This will suffice for our intended application.

In analogy with [BS10, Definition 5.1], we define a subscheme D g of Ag’ X Aé X Ag’
consisting of all triples

(A4, B,C) = ((ag, a1,az), (bo, b1, b2, b3), (co,c1,ca,c3,¢4)) € Af x Af x A
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such that
AC =F—-B?-BH,
where
A = aZ?’+uXZ+aX?,
B = byZ3 4+ XZ%+ b, X%Z + b3 X3,
C = Z*+aXZ?+eX?Z?+ X7 + ey X2

Moreover, we denote by Dz 7 the subscheme of P? x A¢ defined as (73 x id) (prm(f) 7))
where pr;, is the projection onto the first two factors and ms is the canonical map

AYN{(0,0,0)} — P

Note that if the curve C ; defined by Y2 + H(X,Z)Y = F(X,Z) in Pg(1,3,1) is
nonsingular, then Dy 5 is in bijective correspondence with the possible Mumford rep-
resentations of effective divisors of degree 2 on C 5.

Let D% 7 be the subset of all (A,B) € Dy g such that A does not vanish at the
image in P! of a singular point of C. We define a map (: D% g~ €@ such that

if (((A,B)) = {Py, P}, then there are representatives (X;, Y;,Z;) of P; (i = 1, 2)
satisfying

(i) AX,2) = (21X = X1Z2)(Z2X — X2Z);

Consider the subscheme W of Dy 7 given by those points (A, B) which satisfy one of

the following conditions: 7

(1) (A,B) € D%ﬂ,
]51 to the component containing ]52.

(2) A= cf)(X, Z)?, where L vanishes at the projection of a singular point of C to P!
and L3 does not divide F — B2 — BH.

and if ¢((A, B)) = {Py, P,}, then + maps the component containing

If C; ; is nonsingular, and (A4, B) € Dy z, then we can compose the natural surjection
Dy g — Jac(Cp ) \ {O} with the quotient map Jac(C ) — KSg 7. In the general
case one can also define a surjection w: Dz 5 — KSz 7 \{(0 : 0 : 0 : 1)}, where the
image of a pair (A, B) € Dy 5 under w is of the form (ag : —ay : ag : x4). We only give
the form of x4 in two special cases: If b3 = by = 0, then we have

(7.3) Ty = b% + b1.51(aog, a1, az) + So(ag, a1, az).
and if bo = b1 = O, then
(7.4) x4 = b3 + baT' (a0, a1, az) + Ty(ao, a1, az).

Here Sy, S1,7y,11 are homogeneous forms in ag, a1, as; Ty and Sy have coefficients in
Fa[fo,- .-, f6], whereas S; and T) have coefficients in Falhg,. .., hs].

Lemma 7.2. If x € w(W) C KS; g, then we have §(x) # 0.

Proof. Changing the given model if necessary, we can assume that H and F are as in
the list of representatives 1-13 in Table 1. Table 2 contains conditions on z which are
equivalent to the vanishing of §(z) for each representative and additional conditions
which a point z = (21 : 2 : z3 : 74) € P? satisfying §(z) = 0 must satisfy in order
to lie on KS P Finally, we have listed the multiplicities that C 7o has at the points
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type condition additional | multiplicities
1 z4 =0
2 x4 =0 (6)
3 x4 = x1=0 (5)
4 T4 = 1 =0 (4)
5 |xix3 =24 = (3, 2)
6 Tl =1T4= (3)
7 x4 =0 (4, 2)
8 T4 = (2,2, 2)
9 T1X3 = T4 = (2, 2)
10 Tl = X4 = 0 (2)
11 Tl = X4 = 0 (3)
12 Ty = 0 Ir1 = 0 (5)
13 Ty = 0 r1x3 — 0 (3, 3)

TABLE 2. Conditions for the vanishing of §(x)

(X:2)=(1:0),(X:2Z)=(0:1)and (X : Z) = (1: 1), respectively, in case the
multiplicities there are greater than 1.

Let (A, B) € W be such that w((A4, B)) = z. If A(X,Z) does not vanish at the image
in P! of a singular point, then in particular 1 # 0 and, if (0, 0) is a singular point, also
x3 # 0. Using Table 2, this already implies that d(z) # 0 whenever C is irreducible.
In the reducible cases 2, 7 and 8, C has two irreducible components and one checks
easily that x4 does not vanish if (((4, B)) = {Py, P>} such that . maps the component
containing P; to the component containing Py. Hence §(z) # 0 by Table 2.

We now assume that A(X,2) vanishes at the image of a singular point. It suffices to
consider the cases L = Z and L = X. We will show that x4 # 0, which is enough to
prove 6(x) # 0 using Table 2.

If L = Z, then we may assume B = boX2Z + b3 X3 and we have z = (0: 0 : 1 : my4).
Because A divides F'+ B?+BH, we get b3 = 0. A simple computation using (7.4) shows
that in all cases 1-13 we have x4 = by(by + h2), but (A, B) € W implies ba(be + hs) # 0.

If L = X, then we may assume B = b1 XZ2% + byZ3 and find z = (1:0:0: zy4).
Using an argument analogous to the one employed for L = Z we get by = 0 and
x4 = b1(by + h1) # 0 using (7.3). O

Define the subscheme W’ of W as the intersection W N ¢(W) c €.

Lemma 7.3. If P € J(k) is in the image of o and the residue characteristic of k is 2,
then e(P) = u(P) = 0.

Proof. First suppose that P € J(k) is a point such that (4, B) € W, where (A, B)
is a Mumford representative of (the effective degree 2 divisor corresponding to) P. If
x € KSy is a set of normalized Kummer coordinates for P, then the reduction z € KSj 5

of x satisfies £ € w(W). Lemma 7.2 implies that 6(Z) # 0 and hence e(x) = 0.

To finish the proof, we argue in a similar way as in the proof of Lemma 7.1. Note that
W is defined in such a way that we have W’ = W if C is irreducible. If C is reducible,
then a point {P;, P>} in the special fiber of W lies in the special fiber of W’ if and only
if © maps the component containing P; to the component containing P». Hence W' is
an open subscheme of W (recall that C is assumed to be reduced).
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This implies that for an S-scheme T and x € Picg / 5(T') we can find an étale cover T'/T
and finitely many wy, ..., w, € W/(T") such that z = pg(w1) +. ..+ po(wy,). We already
showed that pu(a(po(w;))) =0 for all ¢ = 1,...,n; by Lemma 3.7, this suffices to prove
the lemma. O

Taking Lemmas 7.1 and 7.3 together, we have now proved the following.

Proposition 7.4. Let «: Picg/s — J° be the canonical homomorphism. If P € J(k)
is in the image of a, then ¢(P) = u(P) = 0.

Let Jo(k) denote the subgroup of J(k) consisting of points whose image on the special
fiber of J is in J°(€). Then the group ®() of £-rational points in the component group
® of J satisfies

D(t) = J(k)/Jo(k)-

We can now give a criterion for when € and p factor through ®(¥).

Theorem 7.5. Let C' be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C with rational singu-
larities. Then € and p factor through ®(¢).

Proof. First note that if C has rational singularities, then C is normal and reduced.
Moreover, according to [BLR9I0, Thm. 9.7.1(b)], the homomorphism « is an isomorphism
if and only if C has rational singularities. This implies that the image of «, restricted to
the generic fiber, is Jyo(k). By Proposition 7.4, we have e(P) = pu(P) = 0 for P in the
image of a. Theorem 3.10 implies that p and e factor through ®(¢). O

Remark 7.6. A non-minimal Weierstrass model cannot have rational singularities. How-
ever, there are minimal (even stably minimal) Weierstrass models of curves of genus 2
that have non-rational singularities. See Example 10.4 for a stably minimal Weierstrass
model having p(P) # 0 for some points P € Jy(k).

This behavior cannot occur for elliptic curves; here p always factors through ®(¢),
provided the given Weierstrass model is minimal, see [Sil88]. This is crucial for the
usual algorithms to compute canonical heights on elliptic curves. Note that a Weierstrass
model of an elliptic curve is minimal if and only if it has rational singularities by [Con05,
Corollary 8.4].

8. NERON FUNCTIONS AND REDUCTION GRAPHS

Our next goal is to derive a formula for u(P) in the case when the minimal proper
regular model of C' is semistable and u factors through ®(¢). To this end, we need the
notion of Néron functions. The following result is due to Néron; see [Lan83, §11.1].

Proposition 8.1. Let A be an abelian variety defined over a local field k. Then we can
associate to any divisor D € Div(A) a function Ap: A \ supp(D) — R such that the
following conditions are satisfied, where we write A = X mod const. to indicate that the
functions X\ and N differ by a constant.

(1) If D, E € Div(A), then Ap+r = Ap + Ag mod const.

(2) If D = div(f) € Div(A) is principal, then Ap = v o f mod const.

(3) If D € Div(A) and Tp: A — A is the translation map by a point P € A(k), then we
have )\T;D = Ap o Tp mod const.

Also, Ap is uniquely determined up to adding a constant.
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We call a function Ap as in Proposition 8.1 a Néron function associated with D.

We can use local heights on Kummer coordinates to construct Néron functions on the

Jacobian J of our genus 2 curve C. If Py € C(k), then we have an embedding C' — .J,

defined over k, that maps a point P € C to the divisor class [(P) — (Py)] € Pic% = J.

Its image is the theta divisor ©p,. We set @3]50 = Op, + O,(p,); then @3130 is symmetric

and in the linear equivalence class of 20 (where © is a theta divisor coming from taking

a Weierstrass point as base-point). For the following, fix a point co € C(k) at infinity.
For i € {1,...,4}, we set

D; = 0% + div <”>

K1

and we define a function \;: J(k) \ supp(D;) — R by

o (A(P)
Ai(P) = A .
HF) <’”w’(P ))
Lemma 8.2. Let oo € C(k) be a point at infinity as above and let i € {1,...,4}. Then
D; is defined over k and the function \; is a Néron function associated with D;.

Proof. If oo ¢ C(k), then we have oo € C(k') for some quadratic extension k' of k and
the nontrivial element of the Galois group Gal(k’/k) maps oo to t(c0), proving the first
assertion. For a proof of the second assertion, see [Uchll, Thm. 5.3]. O

Definition 8.3. Assume that C' has semistable reduction over k. The reduction graph
R(C) of C is a graph with vertex set the set of irreducible components of the special
fiber of C™"; two vertices I'; and I'y are connected by n edges, where n is the number
of intersection points of I'y and 'y if I'} # 'y, and n is the number of nodes of I'y if
Iy =Ts.

We consider R(C') as a metric graph by giving each edge length 1. For two vertices
I'y and I'y, we define r(I'1,I'2) as the resistance between the vertices, when R(C) is
considered as an electric network with unit resistance along every edge.

Remark 8.4. We can compute r(I'1,I'2) as follows. Order the vertices of R(C') in some
way and let M be the intersection matrix with respect to this ordering. Since all
components of the special fiber have multiplicity one, the kernel of M is spanned by the
‘all-ones’ vector and the image of M consists of the vectors whose entries sum to zero.
Let v be the vector with entries zero except that the entry corresponding to I'y is 1 and
the entry corresponding to I's is —1. Then there is a vector g with rational entries such
that Mg = v, and
r(l',T2) =—g-v

is, up to sign, the standard inner product of the two vectors. (Note that g is not
unique, but adding a vector in the kernel of M to it will not change the result.) See for
instance [Cinll, Lemma 6.1].

Note that the linear map given by M on the space of functions on the vertices can be
interpreted as the discrete Laplace operator on the graph R(C'). It is then easy to see
that g, viewed as a function on the vertices, is piecewise linear along sequences of edges
not containing I'y, I's or a vertex of degree at least 3. This makes it quite easy to find g
and to compute r(I'1,T'2).

The reduction graph is unchanged when we replace k by an unramified extension. If
we base-change to a ramified extension &’ of k& with ramification index e, then the new
reduction graph is obtained by subdividing the edges of R(C) into e new edges. We can
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give these new edges length 1/e; then the underlying metric space remains the same.
In particular, r(T'1,T's) does not depend on k’. This allows us to replace k by a finite
extension if necessary. The scaling of the length corresponds to extending the valuation
v: kX = Zto kX — Q instead of considering the normalized valuation on &’. All notions
defined in terms of the valuation (for example, intersection numbers) are then scaled
accordingly.

Proposition 8.5. We assume that C™® is semistable. Let P = [(P1) — (P)] € J(k),
with Py, Py € C(k) mapping to components 'y and T'a, respectively, of the special fiber
of C™™. We make the following further assumptions.

(1) If Q1,Q2 € C(k) map to I'y and T'a, respectively, then u(P) = p([(Q1) — (Q2)])-
(ii) There is a constant py1 € Q such that p([(Q1) — (Q1)]) = p for all Q1,Q7 € C(k)
mapping to Ty such that the images of Q1 and Q) on the special fiber of C™™ are
distinct.
(ili) There is a constant py € Q such that p([(Q2) — (Q5)]) = p2 for all Q2,Q5 € C(k)
mapping to Ta such that the images of Q2 and Q% on the special fiber of C™™ are
distinct.

Then we have
M1+ pe2

p(P) =r(l,Ta) + 5

Proof. By the discussion preceding the statement of the theorem, we can assume that k
is sufficiently large for C'(k) to contain all points we might be interested in.

Let Py € C(k). The embedding with respect to Py is obtained from the ‘difference map’
: C x C — J that sends a pair of points (Py, P2) to [(P1) — (P2)] by specializing the
second argument to Fy. One easily checks that

" Op, = Ac + ({(Po)} x C) + (C x {R}),
where A denotes the diagonal and ¢ is the hyperelliptic involution on C'. We then have
0%, = 2A¢ + pri Do + prj Dy,
where Dy = (Py) + (¢(P)). By the results in [Hei04] this implies that, taking Ao to be
a Néron function associated to © Py
Ao ([(P1) = (R)]) = 2(P1, Po) + (P + P, Py + 1(Py)) + ¢

for all points Pi, P, € C(k™) with Py # Py and {P1, P} N { Py, t(Py)} = 0, where (-, -)
is the pairing in [Hei04, Thm. 4.4] and ¢ € R is a constant.

If C™" has semistable reduction, then, by [Hei04, Remark 4.6], the pairing (-, -) coincides
with Zhang’s admissible pairing (-,-), defined in [Zha93] in terms of harmonic analysis
on the reduction graph R(C). In these terms, we have for Q, Q" € C(k™):

(Q,Q) =(Q.Q)0=i(Q,Q) + g,(I,T"),

where i(Q, @/) is the intersection multiplicity of the sections Q,Q € C™in(O™) induced
by @ and @', respectively, and g, (', T") is the Green’s function associated to a certain
measure v on R(C), with T and I being the respective components of the special fiber
of C™™ that @ and Q' reduce to. See [Zha93, §4]. We extend g, to a bilinear map on
the free abelian group generated by the vertices of R(C').
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Lemma 8.2 gives, for Py = oo and P = [(P;)—(P2)] with normalized Kummer coordinates
z(P) = (x1(P),...,z4(P)),

p(P) = v(x1(P))

—Mi(P)
=v(x1(P)) — 2i
)

(Q1,Q2) —i(Q + Qq, Py + ()
gy (T'1,T2) — g, (T1 + T2, T + 1) — ¢,

where I'; and I'y are the respective components that P; and P» reduce to, and I'g and I,
are the respective components that Py and ¢(Fp) reduce to. We assume for a moment
that the images of P; and P» on the special fiber of the original model C are distinct
from the images of the points at infinity. By assumption (i), u(P) is unchanged when
we replace the points P; and P» by other points still mapping to I'; and I's, respectively.
We can therefore assume that the images of P, and P, on the special fiber of CMin are
distinct from each other and also from the images of Py and ¢(Pp). This implies that
v(z1(P)) = 0. Then the intersection numbers in the formula above are zero. We can
choose further points ()1 and )2 that also reduce to I'y and I's with reductions on the
special fiber of C distinct from those of Py and «(Py) and such that Py, P», Q1 and Q2
all reduce to distinct points on the special fiber of C™®. Using assumptions (ii) and (iii),
we obtain the following relations.

—2u = —3u([(P1) — (@1)]) = g»(T'1,T1) + g, (T'1,To + I) + 3¢
u(P) = u([(P1) = (P2)]) = —2gu(T'1,T2) — go(T1 + T2, Lo +T) — ¢
—p2 = —3u([(P2) — (Q2)]) = 9,(T'2,T2) + g, (T2, To 4+ Ip) + 3¢
Adding them together gives
1(P) — (1 + p2) = gu(T1 — To, Ty = Tp) = r(I'y,T9),
as desired. See [Zha93, §3] for the last equality.

If our assumption that the images of P, and P» on the special fiber of the original
model C are distinct from the images of the points at infinity is not satisfied, then we
choose another point Py for which the assumption is satisfied. We can then perform a
change of coordinates 7 over O that moves Py to infinity and apply the result above. By
Corollary 4.6 (note that v(7) = 0 in this case) and the fact that v(7(z)) = v(x), u(P) is
unchanged by 7. O

Remark 8.6. We see from the proof that for two points @, Q" both having image on
a component I', but with distinct reductions that are also distinct from those of Py
and ¢(Py), we always have

p((Q) = (@)]) = =2, (T, T) — 2, (T, Tp + T) — c.

So the assumption that this value does not depend on the choice of @ and @’ is not
really necessary.

Theorem 8.7. Let C' be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model. Let J be the Jacobian
of C' and J its Néron model over S = Spec O. Assume that the minimal proper reqular
model C™™ of C over S is semistable and that u factors through the component group ®(€)
of J. Let P € J(k) be such that its image in ®(£) is [I'1 — I'a|, where T'y and T'a are
components of the special fiber of C™™. Then we have

w(P)=r(l1,T2).
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FIGURE 1. The special fiber of reduction type [I,,—o—o] and its reduction graph

Proof. Since p factors through ®(¥), it follows that pu([(P1) — (P2)]) vanishes when P;
and P, map to the same component on the special fiber of C™" and in general depends
only on the components P; and P, map to. This shows that assumptions (i) to (iii) in
Proposition 8.5 are satisfied with p; = pa = 0. The claim follows. U

9. FORMULAS AND BOUNDS FOR p(P) IN THE NODAL REDUCTION CASE

In this section and the next, we will deduce explicit formulas for u(P) when we have a
stably minimal Weierstrass model C.

In this section we shall use Theorem 8.7 and Remark 8.4 to find explicit formulas for
u(P) whenever C/k has nodal reduction, i.e., the special fiber C, of C is reduced and
all multiplicities are at most 2. In this case C is semistable and therefore it has rational
singularities. Let A = A(C) denote the discriminant of C; we assume that there is at
least one node, so that v(A) > 0.

Since there are at most three nodes in the special fiber of C, we have to consider three
different cases. We assume that © = (21, z2, 3, x4) are normalized Kummer coordinates
for a point P € J(k).

First suppose that there is a unique node in the special fiber of C and set m = v(A). In
the notation of Namikawa and Ueno [NU73] this is reduction type [I,,—o—o]. If m =1,
then C is regular over S. In general, there is a unique component, which we denote
by A, of genus 1 in the special fiber of C™™. As in the case of multiplicative reduction of
elliptic curves (see for example [Sil94]), the singular point on the special fiber is replaced
by a string of m — 1 components of C™", all of genus 0 and multiplicity 1. We choose one
of the two components intersecting A and call it B; and number the other components
Bs, ..., By,—1 consecutively as in Figure 1.

Using [BLRI0, Thm. 9.6.1], it is easy to see that the geometric component group ®(¢)
of the Néron model is generated by [B; — A] and is isomorphic to Z/mZ. We have

[Bj — A] = ] . [Bl - A] in CI)(E)
We set By := B,;, := A. Then we have the following result.
Proposition 9.1. Suppose that there is a unique node in the special fiber of C; let m

and the notation for the components of the special fiber of C™® be as above. If P € J(k)
maps to [B; — A] in the component group, then we have

p(p) = =0
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FIGURE 2. The special fiber of reduction type [In, —m,—o0] and its reduc-
tion graph

Proof. Since the given model is semistable, we can use Theorem 8.7 and Remark 8.4.
One choice of g as in Remark 8.4 is given by

_M if0<j<i,
g(Bj)=4¢ .. "™ .
_M ifi <j<m.
m
Then ( )
i(m—1
p(P) =r(Bi, A) = —(9(Bi) — g(4)) = —
as claimed. 0

Remark 9.2. Proposition 9.1 resembles the formula for the canonical local height on an
elliptic curve with split multiplicative reduction given, for instance, in [Sil88].

Now suppose that there are precisely two nodes in the special fiber of C. The reduction
type is [y, —m,—o] in the notation of [NU73], where my,ma > 1 and mj + ma = v(A).
The special fiber of C™" is obtained by blowing up the two singular points of the
special fiber of C repeatedly and replacing them with a chain of m; — 1 and mo — 1
curves of genus 0, respectively. We call these components B1,..., By, -1,C1,...,Cpy—1,
numbered as in Figure 2, where A contains all images of points reducing to a nonsingular
point and we pick components B; and Cy intersecting A as in the case of a unique node.
The component group ® (&) is isomorphic to Z/m1Zx Z/msZ and is generated by [B1— A]
and [C] — A]; this follows again using [BLR90, Thm. 9.6.1]. If we have m; = 1 or mg = 1,
then the corresponding singular point on the special fiber of C is regular and is therefore
not blown up.

We set By := By, := Cp := Cj, := A. Then every element of the component group has
a representative of the form [B; — C;] with 0 <47 <m; and 0 < j < mg. The following
result expresses p(P) in terms of this representative.

Proposition 9.3. Suppose that there are exactly two nodes in the special fiber of C; let
m1 and ma and the notation for the components of the special fiber of C™™ be as above.
If P € J(k) maps to [B; — C}] in the component group, then we have

i(m1 —1) | j(ma —j)

u(P) = + :
mi mo

Proof. This is an easy computation along the same lines as in the proof of Proposi-
tion 9.1. 0O

The final case that we have to consider is the case of three nodes in the special fiber of
C, which then has two components. We call these components A and E. The special
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F1GURE 3. The special fiber of reduction type [l —my—ms] and its re-
duction graph

fiber of the minimal proper regular model is obtained using a sequence of blow-ups of the
singular points; they are replaced by a chain of m;—1 curves of genus 0 and multiplicity 1,
respectively, where v(A) = m + mg + m3. Hence the special fiber of C™" contains the
two components A and E, connected by three chains of curves of genus 0 that we call
Bi,...,Byn,-1, C1,...,Cpy—1 and Dy, ..., Dy,,_1, respectively, where By, and D
intersect A, as shown in Figure 3. The reduction type is [y, —my—ms)-

By [BLR90, Prop. 9.6.10], the group ®(¢) is isomorphic to Z/dZ x Z/nZ, where
mims + mims + meoms

d = ged(my, ma,m3) and n= ¥

We set By := Cp := Dy := A and B, := Cy,, := Dy, := E. Then it is not hard to see

that each element of ®(£) can be written in one of the forms
[BZ‘ - Cj], [C] - Dl] or [Dl — Bz]

with 0 < i <my, 0 < j <mg, 0 <[ < mg3. The following result allows us to express
wu(P) for any P € J(k) in terms of the component P maps to.

Proposition 9.4. Suppose that there are three nodes in the special fiber of C; let mq,
ma, m3 and the notation for the components of the special fiber of C™™ be as above. If
P maps to [B; — Cj] in the component group for some 0 < i < my and 0 < j < ma, then
we have

M(P) _ m2i(m1 — Z) +m3(i +j)(m1 — 14+ mo —j) +m1j(m2 —j)
mime + mims + mams '

The formulas for [C; — Dy} and [D; — B;] are analogous.

Proof. The proof is analogous to those of Propositions 9.1 and 9.3. To find g, use that it
is piecewise linear on the segments AB; ... B;, B;... By, 1 E, ACy...C;,Cj...Cpy1 E
and ADq ...Dp,,—1E and the relations at the vertices A, E, B; and Cj. O

Remark 9.5. Using the relation e(P) = 4u(P) — u(2P), one can show by a somewhat
tedious computation involving a number of different cases that if the image of P in ®(¥)
is [['; — I's], where I'; and I's are components of the special fiber of C™" then ¢(P) is
the ‘distance’ between I'y and I'y in the reduction graph, where the ‘length’ of the path
between B; and B; (say, analogously for C;, C; and D;, Dj) is min{2|i — j|,m;} and

otherwise, ‘lengths’ are additive. In particular, if ®(¢) = ®(¢), then
v =max{e(P): P e J(k)} =max{m; + m; —d;;: 1 <i<j <3},

where 6;; = 0 if both m; and m; are even, and J;; = 1 otherwise.
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Remark 9.6. In order to use the results of this section to actually compute u(P) for a
given point P € J(k), we need to be able to find the component of 7, that P reduces
to. One approach is to find P; and P» € C such that P = [(P;) — (P)] and find the
reductions of P; and P, to C™". Another approach is to use a transformation (possibly
defined over an unramified extension of k) to move the singular points to oo, (0,0) and
(1,0), respectively. Then we can (possibly after applying another transformation) read
off the component that P maps to directly from the Kummer coordinates of P.

The discussion of this section shows that we get the following results on the local height
constant § = max{u(P) : P € J(k)}. Recall that v = max{e(P) : P € J(k)} and that
v/4 < B < ~/3. We will see that in many cases the lower bound is attained.

Let P be a node on C,; it is defined over a finite extension of . We say that the
node P is split if the two tangent directions of the branches at P are defined over every
extension that P is defined over, otherwise P is non-split. We say that P is even if its
contribution m; to the valuation of the discriminant is even, and odd otherwise.

Corollary 9.7. Suppose that C'/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there is a unique node in the special fiber of C
and let m = v(A). Then we have

2

B=—

2m

1 \‘sz < U(A)‘
if the node is split or even, and 8 = 0 otherwise.

Proof. This follows from Proposition 9.1, taking into account that if m is odd and the
node is non-split, then the group ®(¥) is trivial. O

Remark 9.8. Using the relation e(P) = 4u(P) — u(2P), one can check that
e(P) = 2min{i,m — i} if P maps to [B; — A] in ®(¥).

If m is even (and 8 > 0), then f =m/4 = /4. If m is odd, then 8 = (m —1/m)/4 and
v=m—1,s0 /7= (141/m)/4 approaches 1/4 as m — oo, but for m = 3 (the worst
case), we have 3 = /3.

Corollary 9.9. Suppose that C'/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there are exactly two nodes in the special fiber of
C. Let v(A) = my + ma as above. Then we have

g Lo|mif, Lomi| _u(d)
2m 2 2mo 2 - 4
if each of the nodes is split or even,
gL |mi
2mi 2

if the node corresponding to m; is split or even and the other node is non-split and odd,
and 8 = 0 if both nodes are non-split and odd.

Proof. This follows from Proposition 9.3, taking into account the action of Frobenius
on O(t). O

If we have three nodes, then it helps to take the field of definition of the nodes into
account.
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Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there are three nodes in the special fiber of C.
We say that C is split if the two components A and E of the special fiber of C™™ are
defined over €, otherwise C is non-split. Let v(A) = my + mo + mg as above and set
M = mimo + mims + mams.

(a) If all nodes are €-rational, C is split, and we have my > ms and mg > mg, then

2 2 2
B = ﬁ (mz V;HJ +ms3 {(mlzmﬂ J +my {?J) < m11m2 < U<4A).

(b) If all nodes are t-rational, but C is non-split, then

{%:1§i<]’§3, m; and m; even}.

B = max{0} U

(¢) If two of the nodes lie in a quadratic extension of € and are conjugate over € and
one s t-rational, then

2 2
% max{ V;HJ + mimg, V;L?’J +my {%J } , if C 1is split,
m

B= ?1, if C is mon-split and my is even,
0, otherwise.
where mg corresponds to the rational node (and my = ms).
(d) If all nodes are defined over a cubic extension of € and are conjugate over €, then
mi =mg =m3 =v(A)/3 and
v(A)
B = 9

0, otherwise.

, if C 1is split,

Proof. The proof of (a) follows easily from Proposition 9.4.

For the other cases, note that in the non-split case, some power of Frobenius acts as

negation on the component group ®(), so the only elements of ®(£) are elements of

order 2 in ®(t), which correspond to [B,,, 2 — Cp,, o] if m1 and my are even (where
takes the value (m; + mg2)/4), and similarly with the obvious cyclic permutations.

In the situation of (c), we must have m; = mo. If P = [(P) — (P»)] € J(k) and
Py € C(k) maps to one of the conjugate nodes, then P> must map to the other, so all
P € J(k) must map to a component of the form [B; — Cj] or [D; — D;]. Now the result
in the split case follows from a case distinction depending on whether m; < mg or not.
In the non-split case, the only element of order 2 that is defined over € is [B,, /o —C,y, /o]

if it exists.

In the situation of (d), the group ®(¥) is of order 3 (generated by [E — A]) in the split
case and trivial in the non-split case. O

Extending the valuation v: £* — Z to v: kX — Q, we get extensions of € and y to J(k).
Denote max{u(P) : P € J(k)} by 5 and max{e(P) : P € J(k)} by 4. Then by the
discussion at the beginning of Section 8 and the results above, we find that

5.0 _ &)
F=1-22,
when there are one or two nodes, and
o) _ 5 w(A) min{mymyms) _ v(d)
6 4 A 1
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when there are three nodes.

10. FORMULAS AND BOUNDS FOR p(P) IN THE CUSPIDAL REDUCTION CASE

In this section we consider the case of a stably minimal Weierstrass model C such that
there are (one or two) points of multiplicity 3 on the special fiber. In the notation of
Namikawa and Ueno [NU73], the reduction type is of the form [K; — KCq — ], where [ > 0
and KC; is an elliptic Kodaira type for j € {1,2}. By [Liu94], we have

D(E) = Dy (E) x Do(¥),
where ®; is the component group of an elliptic curve with Kodaira type ;. As in the
previous section, we write A = A(C) for the discriminant of the model C.

Lemma 10.1. Suppose that the residue characteristic of k is not 2. Let C be given by a
stably minimal Weierstrass model with reduction type [IC1 — Ko —1]. Then after at most
a quadratic unramified extension of k there is a stably minimal Weierstrass model

C:Y?=F(X,Z)= fs X+ fsX°Z + L X 22 + X323 + foX?Z4 + 1 X Z° + fo 25
of C, isomorphic to the given model of C, such that the elliptic curve Eq with Weierstrass
model

E1:Y2Z = X3+ [oX?Z + h XZ% + fo2°
has Kodaira type K1 and the elliptic curve Fo with Weierstrass model
E: Y2 Z = X3+ fuX?Z + fs X 2% + f 23

has Kodaira type K.

Proof. After possibly making a quadratic unramified extension and applying a transfor-
mation, we can suppose that one cusp on the special fiber is P = (0,0) and that the
other singularity (if it exists) is the unique point at infinity on the special fiber.

Because the residue characteristic is not 2, we may assume that C has H =0 and f3 =1
(the latter can be achieved by scaling the variables in a suitable way; note that f3 must
be a unit). By Hensel’s Lemma there is a factorization F' = F} F,, where F} is a cubic
form reducing to X?3. Similarly, F, reduces to Z> if there is a cusp at infinity and to
Z%(aX + Z) with a # 0 if there is a node at infinity. Consider the elliptic curves given
by the Weierstrass models

D:Y*Z = F(X,2)
and

Dy:Y?Z = Fy(Z,X).
Then we claim that D; has Kodaira type ;. To see this, note that in order to desin-
gularize C (respectively, D;) in P (respectively, in the singular point @ = (0,0) on the
special fiber of D;) we first blow up C (respectively, D;) in P (respectively, Q). Under
this blow-up map, the strict transform of P (respectively, Q) is contained in the chart C?
(respectively, Di) obtained by dividing the z- and y-coordinates by . But in fact C!
and Dj have identical special fiber and this continues to hold after further blow-ups (if
any are necessary), which suffices to prove that D; has Kodaira type 1. An analogous
argument shows that Do has Kodaira type Ko.

To complete the proof of the lemma, we therefore only need to make sure that if F
factors as F' = F}Fy, then & has the same reduction type as D; for ¢ = 1,2. This is
certainly satisfied if the coefficients of & and D; agree modulo 7Vit!, where Nj is the
number of blow-ups needed to construct the minimal desingularization of D;. Writing
out the coefficients of F' in terms of the coefficients of F} and F5, we see that this can



36 J. STEFFEN MULLER AND MICHAEL STOLL

be achieved by acting on a stably minimal Weierstrass model (with H = 0) for C via a
suitable element of GL2(O). O

Remark 10.2. If the residue characteristic is 2, then it is not hard to see that one can
also construct a stably minimal Weierstrass model C and elliptic Weierstrass models &;
and & as in the lemma in a similar way. The construction is more cumbersome, since
we cannot assume H = 0.

In view of Theorem 7.5 we want a condition for C to have rational singularities.

Lemma 10.3. The model C has rational singularities if and only if I = 0.

Proof. We may assume that C is as in Lemma 10.1 or Remark 10.2. By [Art66, Prop. 1],
the assertion that P is a rational singularity depends only on the strict transform of its
preimage under an arbitrary desingularization. So let £: C" — C be the minimal desin-
gularization of P and let & : & — &1 be the minimal desingularization of the singular
point @ = (0,0) on the Weierstrass model & (cf. Lemma 10.1 and Remark 10.2). By
the proof of Lemma 10.1, the strict transforms of P and ) under £ and &;, respectively,
are isomorphic to each other. In particular, P is a rational singularity if and only if
@ is a rational singularity. If oo is a cusp as well (if it is a node, then it is a rational
singularity anyway), then we get the analogous statement for & by symmetry.

However, by [Con05, Corollary 8.4] a Weierstrass model of an elliptic curve has rational
singularities if and only if it is minimal. But it is easy to see that £ and & are
simultaneously minimal if and only if [ = 0. O

N [
N

FIGURE 4. The special fiber of reduction type [Ip — I — 0]

Suppose [ = 0. If both 1 and K9 are good or multiplicative, then we are in the situation
[y —my—0] for some mj, mo > 0, which we have discussed in the previous section. So
we may assume that at least one of the K; is additive, say K. Then the special fiber of
the minimal proper regular model C™" of C' looks like the special fiber of £, but with
one of the rational curves replaced by (see [NU73])

e a curve A of genus 1, if Ky = I, see Figure 4 for the case Ko = I;
e one of the rational components of Ky, otherwise.

Suppose now that [ > 0. Then the special fiber of C™" consists of the Kodaira types
K1 and K9, connected by a chain of [ — 1 rational curves, see for example Figure 5.
According to Lemma 10.3, not all singularities of the given stably minimal Weierstrass
model C are rational. The following example shows that in this situation e(P) # 0 and

hence u(P) # 0 can indeed occur for P € Jy(k).
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F1GURE 5. The special fiber of reduction type [I,, — Im, — [] and its
reduction graph

Ezxample 10.4. Let p be an odd prime and let C/Q,, be given by
Y2 =2Z(X2+Z)(X3+p°X 2% 4+ p%273).

Let P, = (0,p*) € C(Qp) and P> = «(P;). We have reduction type [Iy — III — 1] and
hence #®(£) = 2. It turns out that both P; and P, map to the same component and
so we have P = [(P;) — (P)] € Jo(k). The image of P on the Kummer surface is of
the form (x; : 0 : 0 : x4), where v(zq) — v(z1) = 2. We get ¢(P) = ¢(2P) = 6 and
u(P) = pu(2P) = 2.

The case of semistable reduction, corresponding to reduction type [In, — In, — ], see
Figure 5, deserves special attention. Here [ > 1, by the discussion above. Note that
mi = 0 (or mg = 0) is possible; in that case A (or E) is a curve of genus 1 and there
are no components B; (or D;). If m; =1 (or mg = 1), then A (or FE) is a nodal curve
(and again there are no B; or D;). After perhaps an unramified quadratic extension,
we can assume that all components in the ‘chain’ that connects the two polygons in the
special fiber of C™" are defined over €. There are then [ + 1 different (meaning pairwise
non-isomorphic over @) minimal Weierstrass models of the curve, compare the proof of

Lemma 5.4. Explicitly, these models can be taken to have the form
Ci: Y2 4 (hom¥ Z3 + ym? Z2X + hon I ZX? 4 hym3=D X3)Y
(10.1) = for% 28 + finY X Z° + forP X224 + X323
+ fam? D x4 72 4 fintI X0 7 4 fenS09) X6
for j=0,1,...,[, where
Y2 + haxy + hoy = 23 + fox® + fiz + fo and
Y2 + hoxy + hay = 23 + fax® + fsx + fs

are minimal Weierstrass equations of elliptic curves of reduction types I, and I,
respectively. Such a model corresponds to the vertex C; of the reduction graph (where
we set Cy = A and C; = E); the corresponding component of the special fiber of ™" is
the one that is visible in the special fiber of C;. The valuation of the discriminant of C;
is m1 + mo + 121 and does not depend on j.

Let Py, P, € C(k) reduce to components I'y and T'y of the special fiber of C™n  respec-
tively. Consider the model C; of C. If there is a simple path from I'y to I'z in the
reduction graph that passes through Cj, then we say that C; lies between Py and P.
We denote the p-function computed with respect to C; by p;.

Proposition 10.5. Let P, P, € C(k) be points reducing to components T'y and Ty
of the special fiber of C™ and let j € {0,1,...,l}. Define jmin and jmax to be the
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smallest, respectively largest, j' € {0,1,...,1} such that Cj lies between Py and P,. Let
P=[(P)— (P)] € J(k). Then

r(rlvl—‘?) +jmax _jmin < Nj(P) < T(F1>F2) + |] - jmax| + |] _jmin‘ .

If C; lies between P and P, then the inequalities are equalities.

Proof. First note that the last statement follows from the first, since jmin < 7 < Jmax
implies jmax - jmin = ’] - jmax’ + |] - jmin|‘

Let Bo = By,, = A and Dy = D,,,, = E. We prove a number of lemmas.

Lemma 10.6. If j = jmax = jmin € {0,(}, then p;(P) =r(I'1,T2).

Proof. We assume that j = jmax = Jjmin = [; the other case is analogous. Then I'y and I'y
are both of the form D;, and we consider the model C;. We first claim that pu(P) = 0 if
I'y =TIy, but the images of P, and P, on I'7 are distinct. This is clear if I'y = Dy = F,
since in this case P is in the image of «, compare Lemmas 7.1 and 7.3. Otherwise,
we note that the multiplicities on the special fiber of C; are 1, 2 and 3. Transforming
the equation over O if necessary, we can assume that its reduction is case 7 in Table 1
of [Sto02] or (if the residue characteristic is 2) case 5 in Table 2 here.

Recall that 'y = I'y = D;, where we can assume 0 < i < mgy/2. Applying a transforma-
tion, we may assume that the points P, = (£ : 1 : 1) and Py = (&2 : 12 : 1) both reduce
to (0:0: 1) modulo 7 and that ms = min{v(fy),2v(f1)}. First suppose that i < mgy/2.
We then have v(&1) = v(&2) = v(&§1 — &) = . Normalizing the Kummer coordinates x
of P so that z; = 1, we can check that v(x2) and v(z3) are positive, but that v(x4) = 0.
This follows because I'y = D; = T'y implies that v(f2&1&2 + 2mn2) = 2i if char(t) # 2
and H = 0 and that v(&ma + &am1) = 2¢ if char(¢) = 2. By a similar argument, the
reduction of the image of P on the Kummer surface has non-vanishing last coordinate
if mg is even and i = mg/2. According to the tables, this implies that ¢(P) = 0 and
therefore also p(P) = 0.

Now consider the case that I'; and I's do not necessarily coincide. The considerations
above imply that the assumptions of Proposition 8.5 are satisfied with pu; = pus = 0
(where we use Lemma 3.7 for the first assumption); the proposition then establishes the
claim. O

Lemma 10.7. Assume that I'y = T'y = Cj with 0 < j < 1. Then p;(P) = 0.
Proof. In this case, P is in the image of «, so the claim follows by Proposition 7.4. [

Note that Lemmas 10.6 and 10.7 establish the claim of Proposition 10.5 in all cases such
that J = Jmin = Jmax-

Lemma 10.8. Assume that both C; and Cjy1 lie between Py and P>, where 0 < j < [.
Then ,LLJ(P) = ,uj_H(P).

Proof. Let 7: (£ :m: ()~ (7€ : n: 7~ 1¢); then 7 gives an isomorphism from the generic
fiber of C; to that of Cj;1. The induced map on Kummer coordinates is

(21,22, 73, 24) — (77221, T2, W23, T4) ;
we have v(7) = 0. Since both C; and C; 1 lie between P; and P», assuming that I' is to
the left and I's to the right of C; and Cj41, we must have that the z-coordinate of Py on C;
does not reduce to infinity, whereas that of P does. For normalized Kummer coordinates

x = (21,22, 23, 24) of P on the Kummer surface associated to C;, this implies v(z2) = 0
(the point is not in the kernel of reduction, so v(z4) > min{v(z1),v(z2),v(x3)}) and
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v(z1) > 0. Comparing valuations in the equation of C;, we see that P, = (1 : n : ()
must have v(¢) > 2, which implies v(z1) > 2. It follows that v(r(x)) = 0 = v(z). By
Corollary 4.6 we also have A(7(z)) = A(x) (recall that v(7) = 0). Since

—v(x) — i (P) = Mz) = A7 (@) = —o(7(2)) — pj 11 (P),
the claim follows. O

Lemma 10.9. If C; lies between Py and P>, then p;(P) depends only on I'y and I's.

Proof. Let P{, Py € C(k) be points also mapping to I'y and I'y, respectively. We assume
without loss of generality that I'y is to the left of I'o. By Lemmas 10.6 or 10.7, we have
that ji,,, (I(P) — (P])]) = 0 and py,,, ([(P2) — (P})]) = 0. Using Lemmas 10.8 and 3.7,
we obtain

13 ([(P1) = (P)]) = M ([(P1) = (P2)]) = e ([(P1) = (P3)])
= W ([(P1) = (P)]) = M ((P1) = (P2)]) = p5(P). O

Lemma 10.10. Let Pj, Pj € C(k) be points mapping to distinct points on the same
component of the special fiber of C™™ and let P' = [(P]) — (P3)] € J(k). Let jo be the
unique index such that Cj, lies between P| and Pj. Then p;(P') = 2|j — jol.

Proof. By Lemmas 10.6 and 10.7, we have pj,(P") = 0. Since the images of P{ and P,
on the special fiber of C™" are distinct, P’ is not in the kernel of reduction with respect
to CjO' If

200) — (:ngo),:UéJ'O)’xgjO)’ xZ(Ljo))
are normalized Kummer coordinates for P’ on the Kummer surface associated to Cj,,
we therefore have

0= U(ff(jo)) = min{“(iﬂgjo)),v(:z:gjo)), U(l‘gjo))}.
Applying a suitable power of 7 (see the proof of Lemma 10.8), we find that
2 = (W2(j0_j)xgj0),xéj0)’ 7T2(j—j0)1::(),j0), xgjO))

are (not necessarily normalized) Kummer coordinates for P’ on the Kummer surface
associated to Cj. For definiteness, assume that j > jo, the case j = jo being clear.

Similarly to the proof of Lemma 10.8, we find that 0 = v(z(0)) = v(x(lj())), which implies
that v(z)) = —2(j — jo). In the same way as in the proof of Lemma 10.8, we deduce

wi(P") =2(j — jo) = 2|5 — Jol- 0

To continue the proof of the proposition, we now first consider the case that C; lies
between P; and P». In this case, Lemmas 10.9 and 10.10 show that the assumptions in
Proposition 8.5 hold with p1 = 2|j — jmin| and p2 = 2|j — jmax| or conversely. So the
statement follows from Proposition 8.5 and |j — jmax| + [J — Jmin| = Jmax — Jmin-

Now assume that C; does not lie between P; and P». We assume for definiteness that
§ > jmax. For normalized Kummer coordinates zmax) for P = [(P;) — (P,)] on the

(jmax))}

Kummer surface associated to Cj .., we have v(:néj"‘a")) < Jrnin{v(avgjma")),v(av3
compare the proof of Lemma 10.8 above. Then z(/) = 77—Jmax(z(max)) are Kummer
coordinates for [(P;) — (P)] on the Kummer surface associated to C;, and we have

I

v<m(jmax)) _ 2(] _ jmax) S U(x(])> S Q}(a:.(jmax)) .
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It follows that
145 (P) = Hjinar (P)
— (_j\(x(j)) _ U(m(j))) _ (_j\(x(jmax)) _ v(x(jmax)))
= v(x(jma")) — U(J}(j)) €{0,1,...,2(j — Jmax) }-
As pj o (P) = 7(I'1,I'2)+ jmax —Jmin by the case already discussed, the result follows. O

Corollary 10.11. Let C be a stably minimal Weierstrass model of C' with discrimi-
nant A; assume that C has reduction type [I,, — Ly, — ] with 1 > 0. As usual, let

B(C) = max{u(P): P e J(k)} and  B(C) = max{u(P): Pc J(k)},
where [ is computed with respect to C. Then we have

_ A - A
By <Bo)=MEm2 g VA Ly s A
4 4 6
Proof. The assumption on the reduction type implies that the model is equivalent to
one of the form (10.1). Proposition 10.5 then gives upper bounds for u([(P1) — (P)]),

with P, P, € C(k), depending on the images I'; and I's of P and P, in the reduction
graph. The maximizing case occurs for I'y = B, /2 and I'y = D,,, 5, giving

w([(Pr) = (P2)]) = (B, 2 Ding o) + 1= gmi + 1+ gma + 1.
For the remaining inequalities, recall that v(A) = mj + ma + 121 and that [ > 0. O

We state a technical lemma, which will be needed for the proof of Theorem 10.13 below.

Lemma 10.12. Suppose that the residue characteristic of k is not 2. Consider a de-
generate Weierstrass equation of the form

C:Y?=fo28+ 1 XZ° + fo,X%2% + X323
and let
E:y? = fo+ fro+ foa® +2°
be an elliptic Weierstrass equation. If Q1 = (x1,y1) and Q2 = (x2,y2) are points in E(k),
then Py = (z1 :y1 : 1) and Py = (x2 : y2 : 1) are points in C(k), and if x1,z2 € O, then
pe([(P1) — (P2)]) < pe(Q1 — Q2).

Here pge is the height correction function for the elliptic curve £ and p¢ denotes the
height correction function defined in the same way as p in the smooth case in terms of
the equation C.

Proof. Let 6, = (d¢c,1,0¢2,0¢c,3,0¢c,4) be the duplication polynomials on the Kummer
surface associated to C, and let d¢ = (dg,1,dg,) be the duplication polynomials for
the numerator and denominator of the z-coordinate associated to £. Then a generic
computation shows that, if (£ : & : 3 : 4) is the image of [(P1) — (P)] on the Kummer
surface, we have (& : &) = x(Q1 — @Q2). In addition, we find that (as polynomials in
the &) dc.1(&1,€2,€3,84) = 0e,2(84, 1) and de.a (1, €2, 83, 84) = de1(845 1)

That P;, P, € C(k) is obvious from the equations. For the last statement, we observe
that min{v(&1),v(&2),v(&3),v(&4)} = min{v(&1),v(&4)} (this is where we use that
and x9 are integral), which implies

pe(((P) = (P2)]) = Tim 470 (33"(9)) — v(¢)

< lim 47" (8" (&4, &1)) — min{v(&1),v(&)}

n—oo

= pe(Q1 —Q2) . O



CANONICAL HEIGHTS ON GENUS TWO JACOBIANS 41

The following consequence is useful for practical purposes. For simplicity, we state it for
the case of residue characteristic # 2, but we expect that the statement remains true
for residue characteristic 2.

Theorem 10.13. Suppose that the residue characteristic of k is not 2. Let C be a stably
minimal Weierstrass model of C' such that C' has reduction type [K1 — Ko —1]. Then

B(C) < B(Kr) + B(K2) + 21,

where B(KC) denotes the maximum of u for an elliptic curve of reduction type K (taking
the action of Frobenius into account), see Table 1 in [CPS06].

Proof. We may assume that the point(s) of multiplicity 3 on the special fiber are defined
over £, at the cost of an at most quadratic unramified extension of k. Then we can move
these points to have z-coordinates 0 and oo, respectively, and so we can assume that
our model C is as in Lemma 10.1. Let P € J(k); we write P = [(P;) — (P)] with
points Py, P, € C (k') for a finite extension k" of k such that the reduction of C over &’
is semistable. We can find Cp, C = C; and C; as vertices in the reduction graph of the
minimal proper regular model of C over k’. Then the part of the graph to the left
of Cy corresponds to the reduction graph of & over k’, in the sense that we consider
a semistable model that dominates £ (and is minimal with that property); the graph
then is either a line segment (potentially good reduction) or a line segment joined to
a circle (potentially multiplicative reduction), with £ corresponding to the end of the
line segment joined to the remaining graph of C. Similarly, the part of the graph to the
right of C; corresponds to the reduction graph of £ over k'.

Now assume that both P; and P, map (strictly) to the left of Cp in the reduction graph.
This means that the x-coordinates of the points have positive valuation. We can then
find points P{ and Pj in & (k') with the same z-coordinates as P; and P» and nearby y-
coordinates. Then Pj — P} is in £;(k) and P; and Pj have the same images as P; and P»
in the reduction graph. By our previous results for the semistable case, the value of (or
at least the upper bound given in Proposition 10.5 for) po(P) depends only on the part
of the graph to the left of Cy. We can therefore let [ tend to infinity; then Lemma 10.12
and the discussion preceding Lemma 10.3 show that po(P) is bounded by the value
of ug, on the difference P| — Pj. By the arguments in the proof of Proposition 10.5, we
have that

pie(P) = pj(P) < po(P) + 25 < B(Ky) +21.
The case that P, and P, both map to the right of C; is similar.

If (say) P, maps to the left of Cy and P> maps to the right of Cp, but not to the right
of C;, then by the formula of Proposition 10.5, we can bound uc(P) by p1 + 21, where
u1 comes from the part of the graph between P} and Cy. By an argument similar to
the one used in the previous paragraph, p; can be bounded by pug, (Py), where Pj is the
point on &; corresponding to P; and we take the second point to be on the component
visible in Cy. If P> maps to the right of C;, then we similarly obtain a bound of the form
w1+ p2 420 < B(Kq) + B(K2) + 2. The remaining cases are similar or follow directly
from Proposition 10.5. (|

The example in Section 19 demonstrates the effect of the improved bounds on S as given
in the preceding section. For other examples the bounds established in this section will
be similarly useful.
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11. GENERAL UPPER AND LOWER BOUNDS FOR B

In this section we derive an upper bound for the geometric height constant 3(C) in the
general case by reducing to the semistable situation. We also give a lower bound of the
same order of magnitude. We note the following consequence of the results obtained so
far, see the discussion at the end of Section 9 and Corollary 10.11.

Corollary 11.1. Assume that C is a stably minimal Weierstrass model of C over k
and that the minimal proper reqular model C™™ of C over k has semistable reduction.
Denoting the discriminant of C by A and writing 3(C) = max{uc(P) : P € J(k)}, where
ue denotes p with respect to the model C and J is the Jacobian of C, we have
v(A) v(A)
6 4

<B(C) <

When C™" does not have semistable reduction, the idea is to pass to a suitable field
extension k' /k and apply Corollary 11.1 over k’. In order to compare the corresponding
geometric height constants 3, we need to analyze how p changes under minimization.
We first prove the following key lemma:

Lemma 11.2. There exists a transformation 7: C — C', defined over k, such that C' is
a minimal Weierstrass model and

v(7(z)) +v(1) <v(x) for all x € KSy .

Proof. 1f C is already minimal, then there is nothing to prove. Otherwise, [Liu96, Re-
marque 11] implies that we can compute a minimal Weierstrass model by going through
the following steps for finitely many points P on the special fiber of C.

(a) Move P to (0,0).
(b) Scale x by 1/.
(c) Replace C by the normalization of the resulting model.

As transformations of the form (a) do not change v(z) and have determinant of valua-
tion 0, it suffices to prove

v(T(x)) +v(1) < v(z) for all x € KSy

for a transformation 7 = o o p, where p is as in (b) and o is as in (c¢). Note that
such a transformation decreases the valuation of the discriminant, cf. [Liu96, Lemme 9]
and [Liu96, Corollaire 2]. By the discussion following Proposition 4.4, the transformation
p maps x € KSy to (7x1, w0, 7 tws, m324).

Suppose v(2) = 0 and, without loss of generality, H = 0. According to [Liu96, Remar-
que 2], the normalization can be computed using the transformation o mapping an affine
point (£,m) to o(&,n) = (&, nm~*®) for some nonnegative integer s. As v(7) = 3 — 2s, we
must have s > 2, since otherwise 7 would increase the valuation of the discriminant.
Because 7(1) = (721,72, 7 123, 737 2%14) for 2 € KSy, we find that v(7(x)) < v(z) + 1,
implying

v(1(z)) +v(r) —v(z) < -25s+4<0.

The case v(2) > 0 is slightly more complicated. Here one computes the normalization
by repeatedly applying transformations

(1L.1) (em) (5, ”*R(“)) 7

™
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where R € O[X, Z] is a certain cubic form, until the minimum of the valuations of the
coefficients of F+RH — R? is equal to 1. See [Liu96, Remarque 2]. Such a transformation
maps Kummer coordinates = = (x1, x2, x3,x4) to

(zl, To, T3, T 224 + l1z1 + loxg + lgxg)

and the expressions for the [/; given in Section 4 show that v(l;) > —2 for all i. As
the determinant of a transformation (11.1) has valuation —2, we need to apply at least
two such transformations, because otherwise the valuation of the discriminant would
increase. In other words, 0 = g50---007 where s > 2 and every o; is of the form (11.1).

By the properties of the transformations (11.1), it suffices to show the desired inequality
for the case s = 2, since further applications of transformations o; will only make the
left hand side of the desired inequality smaller and will not change the right hand side.
So suppose that ¢ = g9 0 01; then 7 = ¢ 0 p maps x € KSy to

T(z) = (ﬂxl, T, ™ txs, T w4+ Ty 4 wlows + wlszs + mlixy + lyxe + Wﬁllé$3) ,

where the [; arise from oy and the I} arise from o5. As v(7) = —1, it clearly suffices to
prove that
(11.2) v(r(x)) <wv(z)+ 1.

But if (11.2) is false, then v(z) = v(z4) < min{v(z1),v(z2) + 1,v(x3) + 2}. In this

situation it follows from the lower bounds v(l;) > —2 and v(l}) > —2 that we get
v(rl@y + wlawo + mlzws + wliay + lywg + 7 131‘3) > v(xy) — 1.

This implies (11.2) and therefore finishes the proof of the lemma. g

Theorem 11.3. Let C' be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C. Then we have

5oy < VA0
aley < U5

Proof. By Lemma 5.4 there is a finite extension k'/k such that the minimal proper
regular model of C over k' is semistable and such that all minimal Weierstrass models
of C over k' are stably minimal. By Corollary 11.1, the claim therefore holds for any
minimal Weierstrass model of C' over k'.

It follows from Lemma 11.2 that there is a transformation 7: C — C’ defined over &’
such that C’ is a minimal (and hence stably minimal) Weierstrass model over k' and
such that

(11.3) v(1(z)) +v(1) < v(x)

for all x € KS,.

Then by the above we have /
ulr(z)) < %C”

(4.2), we find

v(x

) v(r(z)) —v(7)

Now using Corollary 4.6 and the relation

px) = p(r(x)) -

< U(Aicl)) —v(x) +o(r(z)) —v(r)
— U(A4(C)) —v(x) +v(r(z)) + %U(T)
_ i)

4 9



44 J. STEFFEN MULLER AND MICHAEL STOLL

where we have used (11.3) and v(7) < 0. O

Remark 11.4. When the residue characteristic is not 2, then we can easily show that
B(C) is indeed always comparable to v(A(C)). We can assume that H = 0 and write
F = cFy with Fy primitive. We consider the points of order 2 on J. Such a point P
is given by a factorization Fy = G1G2 with G and G9 primitive of degrees 2 and 4,
respectively. An explicit computation shows that
£(P) = 40(c) + 20(R(P)).

where R(P) denotes the resultant of G; and G2, and we have 4u(P) = £(P). Since
v(A(C)) = v(disc(F)) = 10v(c) + v(disc(Fp)) and 4v(disc(Fp)) is the sum of the valua-
tions of the 15 resultants R(P), we find that

BO) = 1 max (d0() + 20(R(P)) 2 v(0)+ 35 3 (R(P)

2 . 1
=v(c) + Ev(dlsc(Fo)) > EU(A(C)) .

A similar statement should be true when the residue characteristic is 2.

Recall that we denote max{e(P): P € J(k)} by ¥(C).

Corollary 11.5. Let C be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C. Then we have

Y(C) < v(A(C)).-
If H =0 and char(k) # 2, then this can be improved to
7(C) <v(27A(C)).

Proof. The first inequality follows from 11.3 and from e(P) = 4u(P) — u(2P). The
second inequality is Theorem 6.1 of [Sto99]. d

Question 11.6. If C is a minimal Weierstrass model, does B(C) only depend on the
special fiber of C™" ¢

Note that the corresponding statement holds for elliptic curves [CPS06]. In our situa-
tion, however, there may be several non-isomorphic minimal Weierstrass models, which
complicates the picture.
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PART I1I: EFFICIENT COMPUTATION OF CANONICAL HEIGHTS

In this part we show how to compute the canonical height E(P) efficiently for a point P
over a number field, global function field or more general field with a system of absolute
values as in Section 2. We first explain how to compute the local height correction
functions. We use M(d) to denote the time needed to multiply two d-bit integers.

12. COMPUTING ji AT NON-ARCHIMEDEAN PLACES

In this section, k is a non-archimedean local field again, with valuation ring O, uni-
formizer 7, normalized valuation v and residue class field €. Let C be an integral
Weierstrass model for a genus 2 curve C' over k. We make no assumptions on the
reduction type of C. We already discussed a method for the computation of u(P) for
a given point P € J(k) in Section 3. In this section, we provide an alternative fast
algorithm and show that its running time is < (logv(A)) M((logv(A))v(A)(log #¥)),
where A = A(C).
Lemma 12.1. Assume that M is a positive integer such that Mu(P) € Z. Further
assume that max{e(P): P € J(k)} < B. Then
1 [log(BM/3)/log(4)]
_ —n—1
u(P) = M[M 3 4 5(2”Pﬂ.
n=0
Proof. This follows from Mu(P) € Z and from
BM

. U
3.4m

0< M 4" le(2"P) <

n>m

If we know that the reduction is nodal, then we get an upper bound B for ¢(P) and
all possible denominators of p(P) from the results of Section 9. More generally, if we
know the smallest positive period N of the sequence (u(nP)),, then we can take M = N
(respectively, M = 2N) if N is odd (respectively, even) by Corollary 3.11. Also note that
we can always take B = v(A) (or even B = v(27*A) if char(k) # 2 and the equation of
the curve has H = 0), see Corollary 11.5.

If we only know an upper bound for the denominator of p(P), then the following alter-
native approach can be used. This is analogous to [MS15, Lemma 4.2].

Lemma 12.2. Assume that M > 2 is an integer such that M'u(P) € Z for some
0< M < M. Assume in addition that max{e(P): P € J(k)} < B, and set

o 2
= | BBV

Then pu(P) is the unique fraction with denominator < M in the interval [pg, po+1/M?],
where

m
po =Y 47" 'e(2"P).

n=0
Proof. Note that
po < p(P)<po+ Y AT"IB < g+ 1/M.
n>m

But since M > 2, the interval [ug,po + 1/M?] contains at most one fraction with
denominator bounded by M; by assumption, p(P) is such a fraction. O
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In order to apply Lemma 12.2, we now find a general upper bound M on the possible
denominators of p. Let J denote the Néron model of J over S = Spec(O) and write ®
for the component group of J.

Proposition 12.3. Let N denote the exponent of ®(€) and let P € J(k). Then we have
1
P)e —Z.
wP) € o
If N is odd or if C' has a k™ -rational Weierstrass point, then we have
1

u(P) € NZ.

Proof. Let i € {1,...,4} be such that x;(P) # 0. Recall from Lemma 8.2 that the
function \; = Ao ;«% is a Néron function with respect to the divisor D;. As P ¢ supp D;,
we find X R

w(P) = Xz) = A\(P) (mod Z)
for any set of Kummer coordinates x for P. It follows from the results of [Nér65]
and [Lan83, §11.5] that

Ai(P) = j(Di, (P) = (0)) (mod Z),
where j(, ) denotes Néron’s bilinear j-pairing, defined in [Nér65, §I11.3].

By [Nér65, Prop. II1.2], the values of the j-pairing lie in ﬁZ, where N’ = #®(¥) It is
easy to see we can replace N’ by the exponent N in the proof of [Nér65, Prop. I11.2], so
the first statement of the proposition follows.

For the second statement, note that the j-pairing takes values in %Z if NV is odd, again
by [Nér65, Prop. II1.2] and its proof. If C' has a k™ -rational Weierstrass point Py, then
the divisor D; is linearly equivalent over k™ to 20p,, where Op, is the theta divisor
with respect to FPy. The Néron model does not change under unramified extensions, and
u(P) mod Z does not depend on the Weierstrass model of C' by Corollary 4.6. Hence
we can assume that ¢ = 1 and D1 = 20p,, so the linearity of the j-pairing in the first
variable proves the claim. O

Remark 12.4. In the notation of Namikawa-Ueno [NU73|, the only reduction types for
which Proposition 12.3 does not show that u(P) € 1/NZ (where N is the exponent

of ®(¢)), are [2III — ] and [2III* — ] for | > 0; [2I} — ] for n,l > 0; and [2],, — ] for
n > 0 even and [ > 0. We have not found an example where u(P) ¢ 1/NZ.

We can compute the group ®(¢) in practice using [BLR90, §9.6]. For this we need to
know the intersection matrix of the special fiber of a regular model of C over S. This
is implemented in Magma, but can be rather slow. If the residue characteristic is not 2,
then we can apply Liu’s algorithm [Liu94] to compute the reduction type and read
off ®(E).

In general, an upper bound for the exponent of ®(£) suffices to apply Lemma 12.2. We
give a bound which only depends on the valuation of the discriminant A = A(C).

Lemma 12.5. The exponent of ®(£) is bounded from above by

ot e mas [ 27}

Moreover, the denominator of u(P) is bounded from above by M for all P € J(k).

Proof. This follows from a case-by-case analysis, using the list of groups ®(£) from [Liu94,
§8] for all reduction types in [NU73], and Proposition 12.3. O
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Remark 12.6. By going through all reduction types, it is possible to obtain better upper
bounds for the denominator M’ of p(P) from the Igusa invariants discussed in Section 6.
First note that if the special fiber of C is non-reduced, then we have

(i) M' < 4if v(A) < 12;
(ii) M’ < max{12,v(A) — 15} otherwise.

Suppose that C is reduced; then, by Proposition 6.2, we can use the Igusa invariants of
the special fiber to distinguish between the multiplicities of its singularities.

(i) If all points on the special fiber of C have multiplicity at most 2, then we can bound
M’ using Proposition 6.3 (i-iii) and Propositions 9.1, 9.3, 9.4.

(ii) If there is a point of multiplicity 3 on the special fiber, then we have
o M’ <min{6,v(A)+ 1} if v(A) < 10;
o M’ <12, if v(A) < 20;
o M' < LMJ otherwise.

(iii) If there is a point of multiplicity > 4 on the special fiber, then we have
o M' < 3u(A)— 10 if v(A) < 10;
o M’ < 4v(A)—20 if v(A) > 10 and the model is minimal;
o M' < LMJ if the model is not minimal.

The results of this section lead to an efficient algorithm for the computation of u(P),
which is analogous to Algorithm 4.4 of [MS15]. We assume that the coefficients of F
and H and the coordinates of P are given to sufficient v-adic precision (in practice, they
will be given exactly as elements of a number field or function field).

If char(k) # 2 and H = 0, set B := v(27%A). Otherwise, set B := v(A).
Set M :=max {2, [v(A)?/3]}.
Set m := |log(BM?/3)/1og(4)].
Set po := 0. Let x be normalized Kummer coordinates for P with (m+1)B+1 v-adic
digits of precision.
5. For n := 0 to m do:
a. Compute 2’ := §(z) (to (m + 1)B + 1 v-adic digits of precision).
b. If v(2") = 0, then return po.
c. Set pg == po + 47" Lu(z").
d. Set z :=n~v)y/
6. Return the unique fraction with denominator at most M in the interval between pg
and pg + 1/M?2.

Ll ol e

The fraction in the final step can be computed easily, for instance using continued
fractions.

For the complexity analysis in the following proposition, we assume that elements of O
are represented as truncated power series in w, whose coefficients are taken from a
complete set of representatives for the residue classes. Operations on these coefficients
can be performed in time < M(log #¢).

Proposition 12.7. The algorithm above computes u(P). Its running time is

< (logv(A)) M((log v(A))v(A)(log #¢))

as v(A) — oo, with an absolute implied constant.
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Proof. The following proof is analogous to the proof of [MS15, Prop. 4.5]. Corollary 11.5
shows that B is a suitable upper bound for € and Lemma 12.5 shows that M is an upper
bound for the denominator of u. Because M > 2, the loop in step 5 computes the sum
in Lemma 12.2. Note that when v(z) = 0 in step 5b, then u(P) = pp by Theorem 3.10.
At each duplication step, the precision loss is €(2"P) < B, so that with our choice of
starting precision, after the m + 1 steps in the loop the resulting x still has at least one
digit of precision. This proves the correctness of the algorithm.

Clearly the running time of the algorithm is dominated by the running time of the loop
in step 5. Step 5a consists of a fixed number of additions and multiplications of elements
of O which are given to a precision of (m + 1)B + 1 digits. Because steps 5b—5d take
negligible time compared to step 5a, each pass through the loop takes

< M(((m+1)B + 1)(log #t))
operations, leading to a total running time that is

< (m+1)M(((m +1)B + 1)(log #t))
< mM(mB(log #t))

< (log v(A)) M((log v(A))v(A)(log #¢))
as v(A) — oo. Here we use that B < v(A) and M < v(A)?, so that m < logv(A). O

Remark 12.8. In step 2, we can use Remark 12.6 to compute a sharper upper bound
for the denominator of p. See also the discussion following Remark 12.4. Of course, if
we want to find u(P) for several points P, the quantities M, B and m only have to be
computed once.

Remark 12.9. We can compute pu(P) using the algorithm above in more general situ-
ations. Suppose that k is any discretely valued field with valuation ring O and uni-
formizer 7. In that case, the sequence (u(nP)), might not have a finite period, so the
method for the computation of u(P) discussed in Section 3 might not be applicable.
However, Lemma 12.1, Lemma 12.2, Proposition 12.3 and Lemma 12.5 remain valid.
If char(k) # 2 and if H = 0, then we have the upper bound ¢(P) < v(27%A) (cf. Re-
mark 3.2), so the algorithm above can be used and Proposition 12.7 remains valid as
well, in the sense that the computation can be done using < logv(A) operations with
elements of O/7" O, where n < v(A)logv(A). In the remaining cases, we can compute
an upper bound B on ¢ as in Remark 3.2, and we can apply the algorithm with this
choice of B.

13. COMPUTING p AT ARCHIMEDEAN PLACES

In this section, k is an archimedean local field, so £ = R or £ = C. We assume
that the curve C is given by a Weierstrass equation C with H = 0. In the following,
log, z = max{0, logz}.

Let x € k* be a set of Kummer coordinates. Recall that
E(x) = —[k : R] (log [|6(z)[|cc — 410g [|[|c)

and
o0

lw) = 34T (@)

n=0
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We easily obtain a lower bound for £ using the standard estimate for ||§(z)||oc. Since
the coefficients of the duplication polynomials 4, are universal polynomials of degree at
most 4 in the coefficients of F', this gives

< 1+1og, |Fllse,

where ||F||s is the maximum norm of the coefficient vector of F'. We recall that the
method described in Section 7 of [Sto99], leading to equation (7.1) there, provides an
upper bound # for € that can be explicitly computed for any given Weierstrass equation C
of the curve (provided H = 0). It is given by

4
:logm?X Z |Clz {SS’}‘ Z|b{S,S’}aj‘
{5,5"} J=1

< log 400 + 2log 1{nax la; {55}|—|—log{§n§u}< |bs,513.5

with certain numbers a; (s g1y, b{g,s7},;, where 4,5 € {1,2,3,4} and {5, S’} runs through
the ten partitions of the set of roots of F' into two sets of three. Using the formulas
in [St099, §10] and Mignotte’s bound (see for example [vzGG99, Cor. 6.33]), we see that

log{gngx |bgs,s1y,51 < 1+1ogy [|Flos

and

log Jnax, |a; 5,5y < 1+log, [|F]|eo + log, faax IR(S, ")

where R(S,S’) is the resultant of the two factors G, G’ of F corresponding to the
partition of the roots. Using Mignotte’s bound again, we find that
/| dise G | disc G|

/| disc F|

IR(S, ") ! = < |F|%]AC) 72,

leading finally to the estimate
€] < 1+log, [|Floc + log, |A(C)‘71 =:s(F).
If |&(x)| < 7 for all x € KS4, then we have

Z 4—n—16~(5on(x)) < g4—N’
n>N
so we need to sum the first
d  log(7i/3)
N=|-+ 22 I F
[Q—i- log 4 < d+logs(F)

terms to obtain an accuracy of 27¢. Comparing the largest term in any of the 0; and
the lower bound on ||§(z)||s0, we obtain a bound 6 on the loss of relative precision (in
terms of bits) in the computation of §(x); we have § < s(F). To achieve the desired
precision at the end, we therefore need to compute with an initial precision of

d+1+ N0 < (d+logs(F))s(F)
bits. The time needed for each duplication is then
< M((d+log s(F))s(F)) .

A logarithm can be computed to d bits of precision in time < (logd) M(d) by one of
several quadratically converging algorithms, see for example [BB98, Chapter 7], so we
obtain the following result.
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Proposition 13.1. Given Kummer coordinates x of a point P in J(k) (or KS(k)) to
sufficient precision, we can compute fi(P) to an accuracy of d bits in time

< (d+1log s(F))(logd) M((d + log s(F))s(F)),

where
s(F) =1+1log, |[Fllo +log [A(C)|".

In the applications k£ will be the completion of a number field at a real or complex place.
If the number field is Q and the given equation C of C' is integral, then |A(C)| > 1 and
we have s(F) =1+10g||F|lcoc = 1+ h(F'), where h(F') denotes the (logarithmic) height
of the coefficient vector of F' as a point in affine space. In general, we have the estimate
(denoting the value of s(F') for a place v by s,(F))

st(F) <[K:Q+ Zlog+ [l + Zlog+ NG
v]oo

v]oo v]oo
<[K: Q]+ h(F)+ h(A(C)) < h(F)

for h(F) large. This implies that we can compute the infinite part of the height correction
function in time

< (d+log h(F))(log d) M((d + log h(F))h(F)),
which is polynomial in d and h(F).

14. COMPUTING THE CANONICAL HEIGHT OF RATIONAL POINTS

The first algorithm for computing the canonical height on a genus 2 Jacobian over QQ was
introduced by Flynn and Smart [FS97]. It does not require any integer factorization,
but can be impractical even for simple examples, see the discussion in [Sto02, §1]. A
more practical algorithm was introduced by the second author in [Sto02]; here the local
height correction functions are computed separately, so some integer factorization is
required. Uchida [Uchl11] later introduced a similar algorithm. De Jong and the first
author [dJM14] used division polynomials for a different approach.

Building on the Arakelov-theoretic Hodge index theorem for arithmetic surfaces due
to Faltings and Hriljac, Holmes [Holl12] and the first author [Miill4] independently
developed algorithms for the computation of canonical heights of points on Jacobians of
hyperelliptic curves of arbitrary genus over global fields. While these algorithms can be
used to compute canonical heights for genus as large as 10 (see [Miill4, Example 6.2]),
they are much slower than the algorithm from [Sto02] when the genus is 2.

In this section we now combine the results of Sections 12 and 13 into an efficient al-
gorithm for computing the canonical height of a point on the Jacobian of a curve of
genus 2 over a global field K.

When K is a function field, then there are no archimedean places and factorization is
reasonably cheap. So in this case, the best approach seems to be to first find the places v
of K such that p,(P) is possibly non-zero (this includes the places at which the given
equation of the curve is non-integral) and then compute the corrections u,(P) for each
place separately as in the algorithm of Proposition 12.7, if necessary changing first to an
integral model and correcting for the transformation afterwards. In fact this approach
can be used whenever K is a field with a set of absolute values that satisfy the product
formula, because the algorithm before Proposition 12.7 is applicable over any discretely
valued field, see Remark 12.9. This includes function fields such as Q(¢) and C(¢).
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If K is a number field, then we compute the contribution from the archimedean places as
described in Section 13. The finite part of our algorithm is analogous to our quasi-linear
algorithm for the computation of the finite part of the canonical height of a point on an
elliptic curve in [MS15]; see Proposition 14.3 below. For simplicity, we take K to be Q
in the following. We write €, and p, for the local height correction functions over Q, as
given by Definition 3.1 and [is for the local height correction function over R as defined
in equation (1.1).

We assume that our curve is given by a model C: Y? = F(X, Z) with F € Z[X, Z], and
we set A = A(C). Our goal is to devise an algorithm for the computation of h(P) that
runs in time polynomial in log || F'||~, A(P) and the required precision d (measured in
bits after the binary dot). We note that h(P) can be computed in time

< log(h(P) + d)M(h(P) + d) ,

since it is just a logarithm. By Proposition 13.1, the height correction function fis,(P)
can be computed in polynomial time. So we only have to find an efficient algorithm for
the computation of the ‘finite part’ gf(P) := >_p Hp(P)log p of the height correction.

Fix P € J(Q). We call a set  of Kummer coordinates for P primitive if x € Z*
and ged(z) = 1. We set g, = ged(6(2(™)), where 2(™ is a primitive set of Kummer

coordinates for 2" P. Then
o0

p'(P)=>> 47"""loggn.
n=0
We also know by [Sto99] that g, divides D = |A|/2* = 24| disc(F)|, which implies that
log g, < log D for all n. To achieve a precision of 27¢, it is therefore enough to take the
sum up to

d log D
n=m:= {2+log 06

J < d+loglog D < d+ loglog || F|oo -

Since at each duplication step, we have to divide by g, to obtain primitive coordinates
again, it suffices to do the computation modulo D™*2. This leads to the following
algorithm.

1. Let D = |A]/16 and set m := |d/2 + loglog D — log 3].
2. Let z be primitive Kummer coordinates for P.
3. Set = 0.
4. For n := 0 to m do:
a. Compute 2’ := §(z) mod D™*2,
b. Set gy, := ged(D, ged(2')) and z := 2/ /g,.
c. Set p:=p+4"""tlogg, (to d bits of precision).
5. Return fif(P) =~ p.
Proposition 14.1. This algorithm computes ji'(P) to d bits of precision in time
< (d +loglog D) M((d + loglog D) log D) + h(P).

Proof. The discussion preceding the algorithm shows that it is correct. The duplication
in step 4a and the ged in step 4b can be computed in time
< M((m+2)log D) < M((d + loglog D)log D) ;

the division is even faster, since g, is small. The computation of the logarithm takes
time < log(d+log D) M(d + log D); this is dominated by the time for duplication. This
gives a time complexity of

< (d +loglog D) M((d + loglog D) log D) + h(P),
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where the last term comes from processing the input z. O

Note that log D < log||F||cc, so this bound is similar to (and even better by a factor
of log d than) the complexity for computing fis(P).

Remark 14.2. We note that an alternative way to proceed is to compute 2/ = §°(m+1) ()
mod D™*2 (without dividing out ged’s in between) and then use u = 4=™ ! log ged(z').
The advantage of the algorithm above is that we can actually work mod D™*2~" which
makes the computation more efficient. The advantage of the alternative is that it can
also be used when working over a number field with non-trivial class group (replacing
log ged (') by the logarithm of the ideal norm of the ideal generated by z’). The resulting
complexity is similar, with the implied constant depending on the base field.

We now show that we can in fact do quite a bit better than this, by using the strat-
egy already employed in [MS15]. Note that fif(P) is a rational linear combination of
logarithms of positive integers. We can compute such a representation exactly and effi-
ciently by the following algorithm. We again assume that x is a set of primitive Kummer
coordinates for P.

1. Set 2’ := d(x), go := ged(2’) and z := 2’/ gp.

2. Set D := ged(2* disc(F), g&°) and B := |log D/ log2|.

3. If B <1, return 0.

Otherwise, set M := max{2, | (B +4)2/3]} and m := |log(B3M?/3)/log4].

4. For n :=1 to m do:

a. Compute 2’ := §(x) mod D™ g,
b. Set g, := ged(D, ged(2')) and x := 2’/ gy,

5. Using the algorithm in [DJB04] (or in [DJB05]), compute a sequence (qi,...,q,) of
pairwise coprime positive integers such that each g, (for n = 0,...,m) is a product
of powers of the ¢;: g, = [[}—, ¢;""-

6. For i := 1 to r do:

a. Compute a :=> " 47 le, .
b. Let p; be the simplest fraction between a and a + 1/(B2M?).

7. Return >, p;logg; (a formal linear combination of logarithms).

Proposition 14.3. The preceding algorithm computes jif(P) in time
< (loglog D) M((loglog D)(log D)) + M(h(P)) .

Note that D < |A|/16 and log D < 1og || F||c-

Proof. If B < 1 in step 3, then we either have gy = 1 and jif(P) = 0, or we have
D € {2,3}. In the latter case, g is a power of p =2 or 3 and v,(A) = 1, which would
imply that €,(P) = 0 by [Sto02, Prop. 5.2], so go = 1, and we get a contradiction.

If a prime p does not divide go, then £,(P) = 0, implying p,(P) = 0. Suppose now
that p divides go; then we have v,(D) < B and v,(A) < B +4, so B, M and m are
suitable values for Lemma 12.2. We have v,(gn,) = €,(2"P) for all n < m, because
pmADee(D)+1 | pmtlgy (compare the proof of Proposition 12.7). All the g,, are power
products of the g;, so there will be exactly one 7 = i(p) € {1,...,r} such that p | ;).

Setting b, = vp(g;(p)) and a = >, 4_”_lei( n» We have

)

m m

Zéf"flap(TP) = 24*”*1%(9”) = bya,
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implying

o o0
pp(P) =) 47" 1g,(2"P) =bpa+ » 47, (2"P).
n=0 n=m-+1
Here the last sum is in [0,1/(B?M?)] by the definition of m (compare the proof of
Lemma 12.2). Therefore

a < 1p(P)/by < a+1/(0,B*M?) < a + 1/(B*M?).

Since the denominator of ji,(P) is at most M and since we have b, < v,(D) < B, the
denominator of p,(P)/b, is at most BM. Hence p,(P)/b, is the unique fraction in
[a,a + 1/(B?M?)] with denominator bounded by BM, so ju,(P) /b, = f1;() by Step 6b.

Now
> up(P)logp = pipbplogp =Y mi» bplogp=> pilogq;,
p p =1

=1 plg

so the algorithm is correct.

The complexity analysis is as in the proof of [MS15, Prop. 6.2]. Namely, the computa-
tions in step 1 can be done in time < M(h(P)). The computations in steps 2 and 3 take
negligible time. Each pass through the loop in step 4 takes time < M((m +2) log D),
so the total time for step 4 is < mM(m(log D)) < (loglog D) M((loglog D)(log D)),
because m < loglog D. The coprime factorization algorithm in [DJB04] (or in [DJBO05])
computes suitable g; for a pair (a,b) of positive integers in time < (log ab)(loglog ab)?.
We iterate this algorithm, applying it first to go and g1, then to each of the resulting
¢; and g2, and so on. There are always < log D terms in the sequence of ¢;’s and we
have g, < D for all n. Hence step 5 takes time < log D(loglog D)3. Because this is
dominated by the time for the loop and because the remaining steps take negligible
time, the result follows. O

Note that the complexity of the algorithm above is quasi-linear in log D and h(P). In
practice, the efficiency of this approach can be improved somewhat:

e We can split off the contributions of all sufficiently small primes p by choosing a
suitable bound 7" and trial factoring A up to 7'; the corresponding i, can then be
computed using the algorithm of Proposition 12.7; see also Remark 12.8. In step 3, we
can then set B := |log D’/logT|, where D’ is the unfactored part of D, and replace
B + 4 by B in the definition of M. If the coeflicients of F' are sufficiently large, then
this trial division can become quite expensive (even for small values of T"). So when
h(F') is large, it is usually preferable to avoid trial division altogether.

e We can update the g; after each pass through the loop in step 4 using the new g,; we
can also do the computation in step 4a modulo suitable powers of the ¢; instead of
modulo D™+ gq. Moreover, it is possible to use separate values of B, M and m for
each ¢;; these will usually be smaller than the one computed in step 2 and 3. In this
way, we can integrate steps 4, 5 and 6 into one loop.

Remark 14.4. Over a more general number field K in place of QQ the algorithm as stated
does not quite work, since we cannot always divide out greatest common divisors. In this
case we first compute (1) = §(z) and the ideal g generated by D and the entries of z(1).

Then we compute 22 = §(zM), ..., 2™+ = §(z(™) modulo the ideal D™t1gy. Let
G; be the ideal generated by the entries of ) and D™t and set
B =90"Ga, g2=Gy'Gs, g3=G5'Gs, ..., gm=G,'CGmi1.

The coprime factorization algorithms in [DJB04] and [DJB05] also work for ideals. In
the final result, logg; has to be replaced by log N(g¢;), where N(g;) is the norm of the
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ideal ¢;. This should result in a complexity similar to that over @ (with the implied
constant depending on K), or at least one that is dominated by the complexity of
computing the naive height and the contributions from the archimedean places. Un-
fortunately, no complexity analysis for standard operations with ideals in number fields
seems to be available in the literature; this prevents us from making a precise statement.
Alternatively, we can take the approach described in Remark 14.2.

Combining this with the results for archimedean places, we obtain an efficient algorithm
for computing the canonical height A(P) of a point P € J(Q). As mentioned above, we
expect a similar result to hold for any number field K in place of Q, with the implied
constant depending on K.

Theorem 14.5. Let C' be given by the model Y? = F(X,Z) with F € Z[X, Z] and let
P € J(Q) be given by primitive Kummer coordinates x (i.e., the coordinates are coprime
integers). We can compute h(P) to d bits of precision in time

< log(d-+h(P)) M(d+h(P))+(d+loglog || F'||c)(log d) M((d+loglog || F'|s) log || Flss) -

Proof. The first term comes from computing h(P). The second term is the complexity
bound for fis,(P) from Proposition 13.1. The complexity of computing jif(P) using the
algorithm of Proposition 14.3 is dominated by their sum, since we have D < |A|/16 and
log D < log || F|sc- O

Note that the complexity is quasi-linear in log || F||oc and in A(P), and quasi-quadratic
in d. The latter is caused by the (only) linear convergence of the computation of fis(P).
For elliptic curves one can use a quadratically convergent algorithm due to Bost and
Mestre [BM93], see also [MS15]; such an algorithm in the genus 2 case would lead to a
complexity that is quasi-linear in d as well.

In Section 15 below we illustrate the efficiency of our algorithm by applying it to a
family of curves and points with the property that the number go above is large, so that
the previously known algorithms have problems factoring it.

15. EXAMPLES

We have implemented our algorithm using the computer algebra system Magma [BCP97].
For the factorization into coprimes we have implemented a simple quadratic algorithm
due to Buchmann and Lenstra [BL94, Prop. 6.5] instead of the quasi-linear, but more
complicated, algorithms of [DJB04] or [DJB05]

Since the estimates for the required precision in the computation of the archimedean
contribution as given in Section 13 are too wasteful in practice, we instead compute this
contribution repeatedly using a geometrically increasing sequence of digits of precision
until the results agree up to the desired number of bits.

We now compare our implementation with Magma's built-in CanonicalHeight (ver-
sion 2.21-2), which is based on [FS97] and the second author’s paper [Sto02], for a
family of genus 2 curves. In CanonicalHeight, the duplication on the Kummer surface
is done using arithmetic over Q, making the implementation slow when points with large
coordinates show up during the computation. No factorization of the discriminant is
required. However, to find a set of primes such that i, (P) # 0 for every prime p not in
the set, CanonicalHeight factors the integer gcd(d(x)), where = are primitive Kummer
coordinates for P.
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Example 15.1. For an integer a # 0, consider the curve C, of genus 2 defined by the
integral Weierstrass model

y2 =a2° +ad%z +ad®.
Let J, denote the Jacobian of C,. Then the point P = [((0, a)) — (00)] € Jo(Q) is
non-torsion. A set of primitive Kummer coordinates is given by z = (0, 1,0,0) and we

have §(x) = (4a?,0,0,a"). Hence CanonicalHeight needs to factor a?.

Consider a = 5807658604988570942160367122286824505787920190639678196072209904446815339845301407936102
37063603282, with partial factorization 2-7-643-804743-a’, where a’ has 89 decimal digits,
and its smallest prime factor has 34 decimal digits. Our implementation computes ﬁ(P)
in 0.51 seconds, whereas Magma's CanonicalHeight needs about 15 minutes.

:L\IGXt7 we look at a = 200403772956059488950289789507853617719701760528626768445669337185652379002740
2225238543540575431528468305556200069359999066088091821746622820780762863572550314577271857779581968920 .
This factors as a = 23 - 5- 17 - a/, where o’ has 178 decimal digits and no prime divisor
with less than 50 decimal digits. Here, our implementation took 1.04 seconds to compute
h(P), whereas Magma did not terminate in 8 weeks.

For a = p - q, where p (respectively, q) is the smallest prime larger than 10%%0 (re-
spectively, 102°Y), the canonical height of P was computed in 5.87 seconds using our
implementation.

For the computations in these examples, we used a single core Xeon CPU E7-8837 having
2.67GHz. All heights were computed to 30 decimal digits of precision.

We conclude this part with an example over the rational function field Q(¢).
Ezample 15.2. Consider the curve C/Q(t) given by the equation
y? =ab —2t(t 4+ 1)z® + (t + 1)(t3 — 5t + 4t — 2)z* + 2t(t + 1)3(3t* + 1)2?
—t+ D)3t =22+ 4t — 1)a? — 42t + 13 (2 + 2t — Do + 4t*(t + 12,
It has the points
Pr=(1:1:0), Py=(0,—-22(t+1)%), Py=(t+1,2t(t—1)(t+1))

(and also points with z-coordinate t(t + 1) and a Weierstrass point (—t — 1,0)). Let
Q= [(P1)—2(P2)+ (P3)] € J(Q(t)). Its image on the Kummer surface has coordinates

(1:—t+1:-2t%(t+1):0).

Applying the duplication polynomials and looking at the gcd of the result, we see that
we have to compute the height correction functions at the places given by t =0, ¢t =1
and t = —1. We also have to consider the place at infinity, since our model of C' is not
integral there. We use the algorithms of Section 12. Consider the place t = 0. From
the valuations of the Igusa invariants (see Section 6) we can deduce that the reduction
type is [[7_3—2|, which gives us M = 41 for the exponent of the component group and
a bound B = 10 for €. We follow Lemma 12.1 and compute

3
1 1 8 4 7 6 98
— 413 g1y 2n ] - 7[41(7 St fﬂ -
(@)= 35 { nz:% =g Mateteta)l g

At t = 1, the model is not stably minimal. We can deduce from the Igusa invariants
that there is a stably minimal model over an extension of ramification index 4, which
has reduction type [I12—2—2|. This shows that the denominator of p; is divisible by

4-26 =104. With M =104 and B =9 we get m = 4 in Lemma 12.1; we obtain

4
@ = g ] - i e 2] -
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At t = —1, the situation is similar. There is a stably minimal model over an extension
with ramification index 4 again, which has reduction type [l20—0—0]. This leads to
M =4-20=80 and B = 20, so m = 4, and

4
1 1 7 10 8 10 8 51
(@ = [0 a4 e @) = o [80(G+ Gttt )| =
n(@) 80{ nz:% Q) =[Oyt et ettt B 20

Finally, at the infinite place, there is a stably minimal integral model over an extension
with ramification degree 2, which has reduction type [Is_g—o]. In a similar way as for
t = —1 and taking into account a shift of —8 coming from making the model integral,
we obtain i (Q) = 19/4 — 8 = —13/4. This results in

- 98 17 51 13 11
MQ) = (@) = 0o(Q) = 11(Q) = n-1(Q) = hoo(@) =3 = 17— 15 — 55+ = a5
To our best knowledge, the point @) is the point of smallest known nonzero canonical
height on the Jacobian of a curve of genus 2 over Q(¢). The curve was found by Andreas
Kiihn (a student of the second author) in the course of a systematic search for curves
with many points mapping into a subgroup of rank 1 in the Jacobian.
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PART IV: EFFICIENT SEARCH FOR POINTS WITH BOUNDED CANONICAL
HEIGHT

16. BOUNDING THE HEIGHT DIFFERENCE AT ARCHIMEDEAN PLACES

We now describe two approaches for getting a better upper bound 5 on [ than the one
coming from the bound on € given in [St099, Equation (7.1)], when k is an archimedean
local field and C/k is a smooth projective curve of genus 2, given by a Weierstrass
equation Y2 = F(X, Z) in Pk(1,3,1).

We write ||z||cc = max{|z1], |z2|, |x3|, |z4]} for the maximum norm.

16.1. Bounding ¢ closely.

For the first approach we assume that & = R. We describe how to approximate
max{(P) : P € J(R)} to any desired accuracy, which gives us an essentially optimal
bound 7. Recall that

maX{|51($1,$2,$3,$4)\, ceey |54(5617$27933,934)\}

£(P) o8 max{|z1|, |xa|, |3|, |Ta| }*

)

where (z1 : x2 : x3 : x4) is the image of P € J(R) on the Kummer surface. We can
normalize the Kummer coordinates in such a way that ||z||.c = 1 and one of the coordi-
nates is 1. We then have to minimize max{|d1|,. .., |ds|} over four three-dimensional unit
cubes, restricted to the points on the Kummer surface that are in the image of J(R).
This means that the relevant points satisfy the equation defining the Kummer surface
and in addition the value of (at least) one of four further auxiliary polynomials is pos-
itive. (In general, the values of these polynomials are squares if the point comes from
the Jacobian, and the converse holds for any one of the polynomials when its value is
non-zero. One can choose four such polynomials in such a way that they do not vanish
simultaneously on the Kummer surface.)

The idea is now to successively subdivide the given cubes. For each small cube, we check
if it may contain points in the image of J(R), by evaluating the various polynomials at
the center of the cube and bounding the gradient on the cube. If it can be shown that
the defining equation cannot vanish on the cube or that one of the auxiliary polynomials
takes only negative values on the cube, then the cube can be discarded. Otherwise, we
find upper and lower estimates for max{|01],...,|d4]} in a similar way. If the lower
bound is larger than our current best upper bound for the minimum, the cube can also
be discarded. (At the beginning, we have a trivial upper bound of 1 for the minimum,
coming from the origin.) Otherwise, we keep it and subdivide it further. We continue
until the difference of the upper and lower bounds for € on the cube with the smallest
lower bound for max{|di],...,|d4]} becomes smaller than a specified tolerance. The
upper bound for £ on that cube is then our bound 4, and we take (as before) B = /3.

We have implemented this approach in Magma [BCP97]. After a considerable amount
of fine-tuning, our implementation usually takes a few seconds to produce the required
bound. In many cases the new bound, which is essentially optimal as a bound on &, is
considerably better than the bound of [Sto99, (7.1)], but there are also cases for which
it turns out that the old bound is actually pretty good.

We used the following tricks to get the implementation reasonably fast.

e We keep the polynomials shifted and rescaled so that the cube under consideration is
[—1,1]3.
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e The shifting and scaling is done using linear algebra (working with vectors of coeffi-
cients and matrices) and not using polynomial arithmetic.

e The coordinates of the centers and vertices of all cubes are dyadic fractions. We scale
everything (by 24 = 16 at each subdivision step — note that the polynomials involved
are of degree 4) so that we can compute with integers instead.

16.2. Iterating Stoll’s bound.

We now describe a different approach that also works for complex places. Instead of
trying to get an optimal bound on £, we aim at a bound on f by iterating the bound
obtained from equation (7.1) in [Sto99]. We recall how this bound was obtained. There
is an elementary abelian group scheme G of order 32 that maps onto J[2] and acts on the
space of quadratic forms in the coordinates of the P? containing the Kummer surface.
This representation splits into a direct sum of ten one-dimensional representations that
correspond to the ten partitions {5, S’} of the set of ramification points of the double
cover C — P! into two sets of three. We write Y(s,sy for suitably normalized generators
of these eigenspaces ([St099] gives explicit formulas in the case H = 0). We can then
express the squares xf as linear combinations of these quadratic forms:

v} = ai(s,5Y(s,5 ()
{55}

for certain complex numbers a; (g g1 that can be explicitly determined. On the other
hand, y%& 51 is a quartic form invariant under the action of J[2] (the representation
of G on quartic forms descends to a representation of J[2]) and is therefore a linear
combination of the duplication polynomials ¢; and the quartic defining the Kummer
surface. So there are complex numbers byg g1y ; that can also be explicitly determined
such that

4
yis,sy (@) = bis.sn.505(x)
j=1

if x is a set of Kummer coordinates. Taking absolute values and using the triangle
inequality, we obtain

2 2
4
it < | D laigssrllyssy @] < | D0 laigssnly| D bgs,s.l10(@)]
{8,5} {5,5"} j=1

for all (z1 : w2 : w3 : 74) € KS(C). This gives a bound for £ in terms of the a; g ¢/
and bgg ¢1y,; as in equation (7.1) of [Sto99].

We refine this as follows. Define a function

4
@: Ry — R, (di,dy, ds,dy) —> D aigs,sryly| D bs.sldi
} J=1

{s,8
1<i<4

Lemma 16.1. Define a sequence (by), in Réo by
bp=(1,1,1,1) and bn+1 = @(by) .

Then (by,) converges to a limit b and we have
4N
AP) < o log x|

for all N > 1 and all P € J(C). In particular, sup fi(J(C)) < log ||b|cc-
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Proof. By our previous considerations, it is clear that |0;(x)| < d; for all j implies
|z;i| < @i(dy,da,ds,dy) for all i. We deduce by induction on N that

log [[2]loo < log [[bloc + 47 log 6°% (2) o
for all N > 1. Writing

oo
a(P) == 47" (log | w(2™V P) s — 47V log 67N (k(27V P)) ) .
m=0
we obtain an upper bound of log ||by || for each of the terms in parentheses, which gives
the desired bound.

To see that (by,) converges, we consider ®(z) = (log @i(exp(z1),...,exp(24))) cicq- It

is easy to see that the partial derivatives gf; are positive and that for each i, summing

them over j gives i. (This comes from the fact that ¢; is homogeneous of degree %)

This implies that ||®(2') — ®(z) oo < 7/l2’ — #||o, S0 that @ is contracting with contrac-
tion factor < i. The Banach Fixed Point Theorem then guarantees the existence of a
unique fixed point of ®, which every iteration sequence converges to. This implies the

corresponding statement for . O

If we are dealing with a real place, then we may gain a little bit more by making use of
the fact that the J;(z) are real, while some of the coefficients b;ggy ; may be genuinely
complex. This can lead to a better bound on [ysg o1}/

For example, considering the curve with the record number of known rational points, we
get an improvement from 7.726 to 0.973 for the upper bound on —ji using Lemma 16.1.
See Section 19 for more details. In practice it appears that this second approach is at
the same time more efficient and leads to better bounds than the approach described in
Section 16.1 above.

The approach described here can also be applied in the context of heights on genus 3
hyperelliptic Jacobians, see [Stol4].

17. OPTIMIZING THE NAIVE HEIGHT

We now consider an arbitrary local field k, with absolute value |-|. Let C be given by
an equation
Y?=F(X,2),
and let W be the canonical class on C'. The first three coordinates of the image of a point
P=[(X1:Y1:2Z1)+(X2:Y2:Zy)]—W € J on the Kummer surface are given by Z; Zs,
X175+ Z1 X9, X1Xo, whereas the fourth coordinate is homogeneous of degree 1 in the
coefficients f; of F' (if we consider Y7 and Y5 to be of degree 1/2). This has the effect that
the fourth coordinate usually differs by a factor of about || F|| := max{| fol, |fil],---,|fs|}
from the other three, which gives this last coordinate a much larger (when || F|| is large;
this is usually the case when k is archimedean) or smaller (this may occur when k is
non-archimedean) influence on the local contribution to the naive height when k = K,
and K is a global field. This imbalance tends to increase the difference hgiq — h between
naive and canonical height. This observation suggests to modify the naive height in the
following way, so as to give all coordinates roughly the same weight. Compare Section 2
for the general set-up. Let x be a set of Kummer coordinates over a global field K and
set
W(z) = Z 10gmaX{|l’1\w 220, 230, |$4‘U/HF||U} .
vEMK



60 J. STEFFEN MULLER AND MICHAEL STOLL

This is a height as in Example 2.3.

If v is a non-archimedean place, then this has the effect of using the Kummer surface
associated to a quadratic twist Cy of C' (which has a primitive polynomial on the right
hand side of its equation), since we essentially divide the coefficients by their ged. The
two Kummer surfaces are isomorphic, and so we can use the bound 3(Cy) for the height
correction function associated to the quadratic twist as a bound for the height correction
function p, relative to the modified naive height. (We cannot necessarily use 3(Cp), since
the isomorphism between the Jacobians of C' and of (Y is in general only defined over a
quadratic extension.) Note that v(A(C)) = v(A(Cy)) + 10v(F'), which leads to bounds
for B8 on C that are quite a bit larger than what we can get for Cy. Note also that this
allows us to deal with non-integral equations; in this case, we again implicitly scale to
make the polynomial on the right integral and primitive.

When k = K, & Qy (say) and we can write F' = 4F; + H? with binary forms F} and H
with integral coefficients, then C' is isomorphic to the curve C’ given by the Weierstrass
equation

Y?+ H(X,2)Y = F\(X,2),
and we can use the Kummer surface of the latter to define the local contribution to the
naive height. The isomorphism between the Kummer surfaces is given by (see [Miill0,
p. 53]; note that this is the inverse of the map given there)

(x1:mo w3 x4) > (xl R RN %1'4 + %(hohle + hohsxo + h1h21‘3)) ,

so defining the local component at v of h/(x) to be

174 + 3 (hohowy + hohsza + hihows)| } |

log max{ |1y, |2]v, |23]0,

we can replace the bound for u, by the bound we get on C’. If we use this at the places
above 2 where it applies (instead of, or combined with, the scaling described above), we
still obtain a height as in Example 2.3.

If v is an archimedean place, then the approach described in Section 16.2 above can
easily be adapted to the modified naive height. We just have to replace byg gy 4 = 1
by [|F|ly and ag s,y by asgssy/IIF[|2. This will usually lead to a negative upper
bound for fi,, which is fairly close to — log || F'||,, at least when F' is reduced in the sense
of [SCO3] and its roots are not too close together. This is because the scaled a; g ¢/}
are now all of size ~ ||F||;2 and the scaled byg ¢y ; are all of size = ||F||s, so ® as in
the proof of Lemma 16.1 roughly satisfies ||®(2)||lso ~ —2 log||F||c + 3 [|Z[|c, Which has
—log || F'||so as its fixed point.

Note that for a point (0:0:0:1) # P = (21 : 22 : x3 : 4) € KS(K) we have, for all
versions h’ of the modified height,

hotd (21 : @2 : x3)) < B'(P).

We will therefore find all points P with h'(P) < B, if we can enumerate all P with
hsta((z1 : x2 : 23)) < B. This can be done (over Q) by using the -a option of the second
author’s program j-points, which is available at [Stoa]. In this way, enumerating
all points as above with B up to roughly log 50000 is feasible. See the discussion in
Section 18 below.

Note that it is quite possible that we end up with a bound
howa (1 : w2 2 23)) < W(P) < h(P)+ B forall P e J(Q)\ {0}

with 8 < 0. In this case —f is a lower bound on the canonical height of any nontrivial
point in J(Q); in particular, the torsion subgroup of J(Q) must be trivial. To give an
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indication of when we can expect § to be close to zero or negative, write | disc(F)| = DD’
with D and D’ coprime and D’ squarefree. Then the contribution of the finite places
to ( can be bounded by 1 log D, and we get  ~ —log || F||cc+ 1 log D. Soif D < ||F||,
we are in good shape. Note that |disc(F)| < [|F||LY, so this means that 60% or more
of log | disc(F")| comes from primes p dividing the discriminant exactly once. For curves

that are not very special this is very likely to be the case.

In Section 19 we show how this approach can be used to get a very small bound for the
height difference even for a curve with ten-digit coefficients.

18. EFFICIENT ENUMERATION OF POINTS OF BOUNDED CANONICAL HEIGHT

Let C: y?> = f(z) be a curve of genus 2 over QQ with Jacobian J. In this section we
describe the algorithm for enumerating all points P € J(Q) with h(P) < B that follows
from the considerations above. We assume that f € Z[z] and proceed as follows.

1. Compute the complex roots of f numerically.

2. Compute the coefficients a; 15 g1 and byg g1y ; from the roots and the leading coeffi-
cient of f according to the formulas given in [St0o99, Section 10].

3. Multiply all ay s 5/} by |12 and multiply all bis,srya BY | flloo-

4. Iterate the function ¢ from Section 17 (but using the modified coefficients) a number
of times, starting at (1,1, 1, 1), until there is little change; let o be the upper bound
for fiso as in Lemma 16.1.

5. Factor the discriminant of f.
Let g be the ged of the coefficients of f and set fi(x) = f(x)/g.

6. For each prime divisor p of 2disc(f), do the following.
a. Let e, be the p-adic valuation of g.
b. If p =2 and f; = h2+4f, for polynomials fo, h € Z[z], set C1: y> +h(z)y = fo(x);
otherwise set C1: 2 = f1(x). Let Ji be the Jacobian of Cj.
c. If e, is even, let 3, be the bound for p,, on J;(Q)) as obtained in Part II. Otherwise,
let 3, be the bound for p, on J1(Q,).

7. Set B = Boo + Zp Bplogp.

8. Use j-points with the -a option to enumerate all points O # P € J(Q) such that
hstd(("il(P) : HQ(P) : I€3(P))) < B+§g.

9. Add O to this set and return it.

It follows from the discussion in the previous sections that the set returned by this
algorithm contains all points with canonical height at most B. If necessary, one can
compute the actual canonical heights using the algorithm from Part III and discard the
points whose height is too large.

The actual enumeration is done by running through all points (z; : xo : 23) € P? of
(standard) height at most B + 3 and checking whether there are rational numbers x4
such that (z1 : x2 : x3 : x4) is on the Kummer surface. For each of these points on
the Kummer surface, we then check if it lifts to the Jacobian. Both these conditions
are equivalent to some expression in the coordinates (and the coefficients of f) being a
square. j-points tries to do this efficiently by using information modulo a number of
primes to filter out triples that do not lift to rational points on J. Let N = |exp(B + )]
Then j-points usually takes a couple of seconds when N = 1000, a few minutes when
N = 5000 and a few days when N = 50000. The running time scales with N3, but
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the scaling factor depends on how effective the sieving mod p is. For Jacobians of high
rank, the program tends to take longer than for ‘random’ Jacobians.

Since the running time depends exponentially on B + B, it is very important to obtain a
small bound B for the difference between naive and canonical height. The improvement
at the infinite place that we can achieve by considering a modified naive height is crucial
for making the enumeration feasible also in cases when the defining polynomial has large
coefficients. This is demonstrated by the example in Section 19 below.

If the discriminant of f is too large to be factored, then one can use
- 1 )
B = B + 1 log| disc(f1)]

(or use information from small prime divisors as in the algorithm above and % log D for
the remaining primes, where D is the unfactored part of the discriminant). But note
that it is usually a great advantage to know the bad primes, since we can take 8, = 0 for
primes p such that v,(disc(f)) = 1. In most cases, this leads to a much smaller bound 3.

One of the most important applications of this enumeration algorithm is its use in
saturating a given finite-index subgroup of J(Q), which gives (generators of) the full
group J(Q). This is a necessary ingredient for the method for obtaining all integral
points on C' developed in [BMST08], for example, and for computing the regulator

of J(Q).

There are essentially two ways of performing the saturation. Let G C J(Q) denote the
known subgroup.

(i) Let p be (an upper bound for) the covering radius of the lattice A = (G/Gyors, h).
Then J(Q) is generated by G together with all points P € J(Q) that satisfy h(P) <
p?, see [Sto02, Prop. 7.1]. This approach is feasible when 5+ p? is sufficiently small.

(ii) Let I = (J(Q) : G) denote the index; we assume that J(Q)tors C G. If my,...,m,
are the successive minima of A and there are no points P € J(Q)\G with h(P) < B

then
R -~
I< r
\/HJ 1mln{mJ,B}

see [F'S97, Section 7]. Here ~, is (an upper bound for) the Hermite constant for
lattices of rank r and R is the regulator of G (i.e., the determinant of the Gram
matrix of any basis of A). This can be used to get a bound on I whenever B is
strictly positive, so for the enumeration we only need B to be sufficiently small.
(If B < 0, then we can do entirely without enumeration to get an index bound.)
In a second step, one then has to check that G is p-saturated in J(Q) (or find
the largest group G C G' C J(Q) with (G’ : G) a power of p) for all primes p
up to the index bound. This can be done by considering the intersection of the
kernels of the maps J(Q)/pJ(Q) — J(F,)/pJ (F,) for a set of good primes ¢ (such
that the group on the right is nontrivial). If this intersection is trivial, then G
is p-saturated; otherwise it tells us where to look for points that are potentially
divisible by p. Since the index bound gets smaller with increasing B (as long as
B < m,), it makes sense to pick B in such a way as to balance the time spent in
the two steps of this approach.

19. EXAMPLE

As an example that demonstrates the use of our nearly optimal upper bound for the
difference h — h between naive and canonical height (which is based on the optimal



CANONICAL HEIGHTS ON GENUS TWO JACOBIANS 63

bounds for the p, obtained in Sections 9, 10 and 11 and the variation of the naive
height discussed in Section 17), we consider the curve

C': y? = 823428005 — 470135160x° + 52485681x*
+ 2396040466x> + 56720796922 — 9859056402 + 247747600 .

This curve is of interest, since it holds the current record for the largest number of
known rational points (which is 642 for this curve), see [Stob]. A 2-descent on its
Jacobian J (assuming GRH) as described in [Sto01] and implemented in Magma gives
an upper bound of 22 for the rank of J(Q), and the differences of the known rational
points generate a group of rank 22. The latter statement can be checked by computing
the determinant R of the height pairing matrix of the following 22 points in J(Q),
which is fairly fast using the algorithm for computing canonical heights described in
Section 14. The points are given in Mumford representation (a(z),b(x)), which stands
for [(01,b(61)) + (02,b(02))] — W, where 0y, 05 are the two roots of a(x) and W is the
canonical class. Not all of these points are differences of rational points, but they are
linear combinations of such differences.

(ac + z, 18868z + 15740),

2 1 11747 21131
( +§ —§7T

(z% + 22— 3,16315z + 26195 ,
(2% — 32 — 4 34104z + 30976 :
(z% + Sz + 2,6767137 +64543),

), (2% — da, 21880, — 15740),
=5
=5 )
) (
) (
(z® — 32 — 1, 31875z + 35003), (2° 4 Sz — 2, 432898, 4 279026
) (
) (
) (
) (
) (

3
2?2 + 5x + 4, 2762562 + 273128),

2 5 1433669 371650
x —|—12x+3, e )

x? — 4z — 5,65987x + 69115),
6 883626x 4 905522)

)

)

2 — 5x —

)

2
2+ 19 65 4287373 T+ 5207005)7

229, 178 3014179 10824742
(2" + Fo — 5 6 ) 84T ~ 84>~ 204 294
37 23742013 . 5459431 2 5. 1089388
(z” + @93 420 204 o1 ) (@7 — 1@, T — 15740),
325 11 30014567, _ 2230444 2 683 279 45519013 5478709
(9” + %5~ o0 T 14y o) (@ = 157 — T w0 %t oo )
2 91 584 6911886712 16665656516 2 259 163 52305719 13101271
(@° — 766% — 769> somzer % T~ so361 ) (@ e T i B
(22 — 073, _ 1252 54505985456, 25990632928 22— @ o 40 47131040, _ 8471860
2307 769 0 1774083 591361 /° 51 B1° 867 867

TABLE 3. Generators of the known part of J(Q).

The discriminant of C factors as
A=2%.3".57.112.13% . 17° . 19* . 237 . 41 . 737
- 2707 - 43579 - 108217976921 - 8723283517315751077 .
The results of [St099, Sto02] lead to a bound of

1
§(4310g2+310g3+9log5+210g11+210g13

+ 61log 17 + 4log 19 + 21og 23 + 4log 41 + 3log 73) ~ 40.1

for the contribution of the finite places to the height difference bound. When trying
to get a better bound (for 7,) by essentially doing an exhaustive search over the p-
adic points of the Kummer surface, Magma gets stuck at p = 2 for a long while, but
eventually finishes with a contribution of 26.434 from the finite places and a total bound
of 34.163. This contribution turns out to be (7,/3)logp in all cases except for p = 73,
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where it is % log 73 instead of % log 73. Our new results from this paper give the following
bounds on the local contributions. ®,, is the component group (¢ and y factor through
it in all cases) and ‘gain’ gives the gain in the bound on the height difference obtained
by using the optimal bound on u versus the bound ~/3, where 7 is the maximum of the
values of ¢.

p | reduction type o, Bp /3 | gain
2 [To—9_s] 7/2427 |2+ 1145/242 | 26/3 | 1.341
3| [Io—IV =0 737 2/3 2/3 | 0.000
5| [Ii_3_o] 7./267. 22/13 2 | 0.495
11| [Io_o) 7.)27. 1/2 2/3 | 0.400
13| [Ta—o—0] 727 1/2 2/3 | 0.427
17| [T—o—s] | Z/2Z xZ/6Z 1 4/3 |0.944
19| [I-1] 7./52 3/5 2/3 | 0.196
23| [I—o—o] 7.)27. 1/2 2/3 |0.523
41 [Io—1-1] YARYA 3/5 2/3 10.248
73 [11-1-1] Z/3Z 1/3 1/3 | 0.000

This now gives a bound of =~ 20.429 for the contribution of the finite places. The
optimization of the naive height does not give any improvement at the odd finite places,
since the polynomial f defining the curve is primitive. On the other hand, we note
that f is congruent to a square mod 4, so we can use the Kummer surface of the curve
y? + (22 + 2)y = f1(x) (where f(x) = 4f1(x) + (22 + x)?) for the local height at 2; this
reduces the local height difference bound at 2 by 2log 2, so the contribution of the finite
places to the height difference h — h can be bounded by & 19.043.

Now we consider the contribution of the infinite place. The bound obtained from [St099,
(7.1)] is 7.726. Using Lemma 16.1 with N = 10 improves this to 0.973; increasing N
further gives no significant improvement. However, modifying the local height at the
infinite place by scaling the contribution of the fourth coordinate by || f||=! reduces this
bound considerably to ficc < —19.25654 (compare this to —log | f|lec &~ —21.59708).
This finally gives

W (P) < h(P) —0.21357
for our modified (at the places 2 and oo) naive height h’. Note that this is an instance
where we immediately get a strictly positive lower bound on h(P) for P # O (since then

R (P) > 0); this shows that J(Q) has trivial torsion subgroup (which is also easy to see
by computing the order of J(F),) for a few good primes p).

So if we enumerate all points P € J(Q) with 2'(P) < log N and do not find points that
are not in the known subgroup G, then we obtain a bound for the index I = (J(Q) : G)
as follows (see the discussion at the end of Section 18).

22
I< R
H  min{m;,log N 4 0.21357} '
where R is the regulator of G and mq, mo,...,mg2 are the successive minima of the

lattice (@, h), which are
8.5276, 8.5668, 8.5956, 8.8594, 9.0256, 9.0776, 9.1426, 9.1753,
9.4456, 9.7428, 9.7747, 9.9047, 9.9465, 9.9611, 9.9704, 10.1408,
10.3472, 10.3784, 10.5284, 10.5356, 10.6318, 10.9287.
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With N = 10000 we obtain I < 1516, with N = 20000 we get I < 1024 and with
N > 45033 we obtain the best possible bound I < 900. We checked that there are
no unknown points P with k(P) = (21 : x2 : 3 : 24) such that hgq((z1 : 22 : x3)) <
log 20000 and verified that the index is not divisible by any prime p < 1024. Both
computations took about two days each on a single core. This implies the following.

Proposition 19.1. Assume the Generalized Riemann Hypothesis. Let
C': y? = 8234280025 — 470135160x° + 52485681z
+ 239604046623 + 5672079692 — 9859056402 + 247747600 .

and denote by J the Jacobian of C. Then J(Q) is a free abelian group of rank 22,
freely generated by the points listed in Table 3. In particular, J(Q) is generated by the
differences of rational points on C.
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