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Abstract. Let K be a number field and let C/K be a curve of genus 2 with Jacobian

variety J . In this paper, we study the canonical height ĥ : J(K) → R. More specifi-
cally, we consider the following two problems, which are important in applications:

(1) for a given P ∈ J(K), compute ĥ(P ) efficiently;

(2) for a given bound B > 0, find all P ∈ J(K) with ĥ(P ) ≤ B.

We develop an algorithm running in polynomial time (and fast in practice) to deal
with the first problem. Regarding the second problem, we show how one can tweak
the naive height h that is usually used to obtain significantly improved bounds for the

difference h− ĥ, which allows a much faster enumeration of the desired set of points.

Our approach is to use the standard decomposition of h(P ) − ĥ(P ) as a sum of
local ‘height correction functions’. We study these functions carefully, which leads
to efficient ways of computing them and to essentially optimal bounds. To get our
polynomial-time algorithm, we have to avoid the factorization step needed to find the
finite set of places where the correction might be nonzero. The main innovation at
this point is to replace factorization into primes by factorization into coprimes.

Most of our results are valid for more general fields with a set of absolute values
satisfying the product formula.
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1. Introduction

Let K be a global field and let C/K be a curve of genus 2 with Jacobian variety J .
There is a map κ : J → P3 that corresponds to the class of twice the theta divisor on J ;
it identifies a point on J with its negative, and its image is the Kummer surface KS
of J . Explicit versions of κ can be found in the book [CF96] by Cassels and Flynn for C
given in the form y2 = f(x) and in the paper [Mül10] by the first author for general C
(also in characteristic 2). Thus κ gives rise to a height function h : J(K) → R, which
we call the naive height on J . It is defined by

h(P ) =
∑
v∈MK

log max{|κ1(P )|v, |κ2(P )|v, |κ3(P )|v, |κ4(P )|v} ,

where MK is the set of places of K, κ(P ) = (κ1(P ) : κ2(P ) : κ3(P ) : κ4(P )), and |·|v is
the v-adic absolute value, normalized so that the product formula∏

v∈MK

|x|v = 1 for all x ∈ K×

holds.

By general theory [HS00, Chapter B] the limit

ĥ(P ) = lim
n→∞

h(nP )

n2

exists; it is called the canonical height (or Néron-Tate height) of P ∈ J(K). The

difference h− ĥ is bounded. The canonical height induces a positive definite quadratic
form on J(K)/J(K)tors (and on the R-vector space J(K)⊗Z R).

In this paper, we tackle the following two problems:

Problem 1.1. Find an efficient algorithm for the computation of ĥ(P ) for a given point
P ∈ J(K).

Problem 1.2. Find an efficient algorithm for the enumeration of all P ∈ J(K) which

satisfy ĥ(P ) ≤ B, where B is a given real number.

These problems are important because such algorithms are needed if we want to saturate
a given finite-index subgroup of J(K) (see the discussion at the end of Section 18). This,
in turn, is necessary for the computation of generators of J(K). Such generators are
required, for instance, to carry out the method described in [BMS+08] for the compu-
tation of all integral points on a hyperelliptic curve over Q. Furthermore, the regulator
of J(K) appearing in the conjecture of Birch and Swinnerton-Dyer is the Gram deter-
minant of a set of generators of J(K)/J(K)tors with respect to the canonical height. So
Problem 1.1 and Problem 1.2 are also important in the context of gathering numerical
evidence for this conjecture as in [FLS+01].

It is a classical fact, going back to work by Néron [Nér65], that ĥ(P ) and the difference

h(P )−ĥ(P ) can be decomposed into a finite sum of local terms. In our situation, this can
be done explicitly as follows. The duplication map P 7→ 2P on J induces a morphism
δ : KS → KS, given by homogeneous polynomials (δ1, δ2, δ3, δ4) of degree 4; explicit
equations can again be found in [CF96] and [Mül10]. For a point Q ∈ J(Kv), where Kv

is the completion of K at a place v ∈MK , such that κ(Q) = (x1 : x2 : x3 : x4) ∈ KS(Kv),
we set

ε̃v(Q) = − log max{|δj(x1, x2, x3, x4)|v : 1 ≤ j ≤ 4}+ 4 log max{|xj |v : 1 ≤ j ≤ 4} .
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Note that this does not depend on the scaling of the coordinates. We can then write
ĥ(P ) in the following form (compare Lemma 2.4):

ĥ(P ) = h(P )−
∑
v∈MK

∞∑
n=0

4−(n+1)ε̃v(2
nP )

We set, for Q ∈ J(Kv) as above,

(1.1) µ̃v(Q) =

∞∑
n=0

4−(n+1)ε̃v(2
nQ) ,

and we deduce the decomposition

(1.2) h(P )− ĥ(P ) =
∑
v∈MK

µ̃v(P ) ,

which is valid for all points P ∈ J(K). In addition, ε̃v = µ̃v = 0 for all but finitely
many v (the exceptions are among the places of bad reduction, the places where the given
equation of C is not integral and the archimedean places). The maps ε̃v : J(Kv) → R
are continuous maps (with respect to the v-adic topology) with compact domains, so
they are bounded. Therefore µ̃v is also bounded.

Let us first discuss Problem 1.1. Because of equation (1.2), it suffices to compute h(P )

(which is easy) and
∑

v∈MK
µ̃v(P ) in order to compute ĥ(P ) for a point P ∈ J(K).

Building on earlier work of Flynn and Smart [FS97], the second author introduced an
algorithm for the computation of µ̃v(P ) in [Sto02]. One of the main problems with this
approach is that we need integer factorization to compute the sum µ̃f(P ) :=

∑
v µ̃v(P ),

where v runs through the finite primes v such that µ̃v(P ) 6= 0, because we need to find
these primes, or at least a finite set of primes containing them.

We use an idea which was already exploited in [MS15] to obtain a polynomial-time
algorithm for the computation of the canonical height of a point on an elliptic curves
(in fact we first used this technique in genus 2 and only later realized that it also works,
and is actually easier to implement, for elliptic curves). When v is non-archimedean,
then there is a constant cv > 0 such that the function

µv := µ̃v/cv

maps J(Kv) to Q. More precisely, µ̃f(P ) is a sum of rational multiples of logarithms
of positive integers. As in [MS15], we find a bound on the denominator of µv that
depends only on the valuation of the discriminant; this allows us to devise an algorithm
that computes µ̃f(P ) in quasi-linear time. We can compute µ̃v(P ) for archimedean v
essentially from the definition of µ̃v. This leads to a factorization-free algorithm that
computes ĥ(P ) in polynomial time:

Theorem 1.3. Let J be the Jacobian of a curve of genus 2 defined over Q, and let
P ∈ J(Q). There is an algorithm that computes ĥ(P ) in time quasi-linear in the size of
the coordinates of P and the coefficients of the given equation of C, and quasi-quadratic
in the desired number of digits of precision.

See Theorem 14.5 for a precise statement. We expect a similar result to be true for any
number field K in place of Q.

We now move on to Problem 1.2. If we have an upper bound β for h− ĥ, then the set of
all points P ∈ J(K) such that h(P ) ≤ B + β contains the set {P ∈ J(K) : ĥ(P ) ≤ B}.
Since the naive height h is a logarithmic height, β contributes exponentially to the size
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of the box we need to search for the enumeration. Therefore it is crucial to keep β as
small as possible.

We write β̃v = max{µ̃v(Q) : Q ∈ J(Kv)}, and we obtain the bound

h(P )− ĥ(P ) ≤
∑
v∈MK

β̃v

from (1.2). If we write γ̃v = max{ε̃v(Q) : Q ∈ J(Kv)}, then clearly γ̃v/4 ≤ β̃v ≤ γ̃v/3.
In [Sto99], it is shown that for curves given in the form y2 = f(x), where f has v-adically
integral coefficients, we have

γ̃v ≤ − log |24 disc(f)|v = − log |2−4∆|v ,
with disc(f) denoting the discriminant of f considered as a polynomial of degree 6 and
∆ denoting the discriminant of the given equation of C. When v is non-archimedean
and the normalized additive valuation of ∆ is 1, then we can take γ̃v = β̃v = 0 [Sto02].

The results of the present paper improve on this; they are based on a careful study of the
functions µ̃v. It turns out that when v is non-archimedean, the set of points where µv
(or equivalently, µ̃v) vanishes forms a group. Moreover, the function µv factors through
the component group of the Néron model of J when the given model of C/Kv, which
we assume to have v-integral coefficients in the following, has rational singularities; see
Theorem 7.4. If the minimal proper regular model of C is semistable, then we can use
results of Zhang and Heinz to give explicit formulas for µv in terms of the resistance
function on the reduction graph of C (which is essentially the dual graph of the special
fiber of the minimal proper regular model, suitably metrized). We use this to find simple
explicit formulas for µv that apply in the most frequent cases of bad reduction, namely
nodal or cuspidal reduction. These explicit formulas give us the optimal bounds for µ̃v
in these cases. By reducing to the semistable case and tracking how µv changes as we
change the Weierstrass equation of C, we deduce the general upper bound

(1.3) β̃v ≤ −
1

4
log |∆|v

for non-archimedean v; see Theorem 11.3.

When v is archimedean, we also get a new bound for µ̃v by iterating the bound obtained
by the second author in [Sto99], leading to vast improvements for β̃v. Combining the

archimedean and non-archimedean bounds, we find a nearly optimal bound β for h− ĥ.

To get even smaller search spaces for the enumeration, we make use of the observation
that we can replace the naive height h by any function h′ such that |h′− h| is bounded.
Using the results on nearly optimal bounds for µv and such a modified naive height h′

(which is also better suited than h for the enumeration process itself) we get a much

smaller bound on the difference h′ − ĥ than what was previously possible. This makes
the enumeration feasible in many cases that were completely out of reach so far.

As an example, we compute explicit generators for the Mordell-Weil group of the Jaco-
bian of the curve

C : y2 = 82342800x6 − 470135160x5 + 52485681x4(1.4)

+ 2396040466x3 + 567207969x2 − 985905640x+ 247747600

over Q, conditional on the Generalized Riemann Hypothesis (which is needed to show
that the rank is 22). See Proposition 19.1. This curve has at least 642 rational points,
which is the current record for the largest number of known rational points on a curve
of genus 2, see [Stob].
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The paper is divided into four parts. In Part I, we first generalize the usual notion of the
naive height on projective space and clarify the relation between these generalized naive
heights and suitable canonical heights, all in Section 2. We then introduce local height
correction functions ε and µ (= µv in the notation introduced above) on the Jacobian
of a genus 2 curve over a non-archimedean local field in Section 3. This is followed in
Section 4 by a study of certain canonical local heights constructed in terms of µ. We
close Part I by introducing and investigating the notion of stably minimal Weierstrass
models of curves of genus 2 in Section 5 and recalling some well-known results on Igusa
invariants in Section 6.

Part II is in some sense the central part of the present paper. Here we study the
local height correction function µ over a non-archimedean local field. Using Picard
functors, we show in Section 7 that µ factors through the component group of the Néron
model of the Jacobian when the given model of the curve has rational singularities.
We then relate µ to the reduction graph of C in Section 8. Building on this, the
following sections contain simple explicit formulas for µ when the reduction of the curve
is nodal (Section 9), respectively cuspidal (Section 10). A simple argument then gives
the improved general upper bound (1.3) for µ, see Section 11.

In Part III we describe our factorization-free algorithm for the computation of ĥ(P ) for
P ∈ J(K), where K is a global field. We start in Section 12 by showing how to compute
µv(P ) for non-archimedean v, using a bound on its denominator. The following section
deals with archimedean places, before we finally combine these results in Section 14 into
an algorithm for the computation of ĥ(P ) that runs in polynomial time; this proves
Theorem 1.3. Some examples are discussed in Section 15.

In the final Part IV we turn to Problem 1.2. Section 16 contains two methods for
bounding µ̃v for archimedean v. In the following Section 17 we describe a modified
naive height h′ such that the bound on the difference h′− ĥ becomes small. We use this,
the results of Section 16, and our nearly optimal bounds for the non-archimedean height
correction functions from Part II to give an efficient algorithm for the enumeration of
the set of rational points with bounded canonical height in Section 18. In the final
Section 19 we compute generators of the Mordell-Weil group of the record curve (1.4).

Acknowledgments. We would like to thank David Holmes for suggesting the strat-
egy of the proof of Proposition 7.3, Elliot Wells for pointing out an inaccuracy in the
complexity analysis in Propositions 14.1 and 14.3, and the anonymous referee for some
useful remarks and suggestions.
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Part I: Generalities on Heights and Genus Two Jacobians

2. Generalized naive heights

Let K be a field with a set MK of places v and associated absolute values |·|v satisfying
the product formula ∏

v∈MK

|x|v = 1 for all x ∈ K× .

We write Kv for the completion of K at v. For a tuple x = (x1, . . . , xm) ∈ Km
v we set

‖x‖v = max{|x1|v, . . . , |xm|v}.
In the following we will introduce some flexibility into our notion of height on projective
spaces. (This is similar to the framework of ‘admissible families’ in [Zar95].)

Definition 2.1.

(1) Let v ∈MK . A local height function on Pm at v is a map hv : Km+1
v \ {0} → R such

that
(i) hv(λx) = log |λ|v + hv(x) for all x ∈ Km+1

v \ {0} and all λ ∈ K×v , and
(ii)

∣∣hv(x)− log ‖x‖v
∣∣ is bounded.

(2) A function h : Pm(K) → R is a height on Pm over K if there are local height
functions hv such that for all x ∈ Pm(K) we have

h
(
(x1 : x2 : . . . : xm+1)

)
=
∑
v∈MK

hv(x1, x2, . . . , xm+1)

and hv(x) = log ‖x‖v for all but finitely many places v.

Note that property (i) of local height functions together with the product formula imply
that h is invariant under scaling of the coordinates and hence is well-defined.

One example of such a height is the standard height hstd, which we obtain by setting
hv(x) = log ‖x‖v for all v. We then have the following simple fact.

Lemma 2.2. Let h be any height on Pm over K and let hstd be the standard height.
Then there is a constant c = c(h) such that

|h(P )− hstd(P )| ≤ c for all P ∈ Pm(K).

Proof. This follows from property (ii) of local height functions and the requirement that
hv(x) = log ‖x‖v for all but finitely many v. �

Example 2.3. Other examples of heights can be obtained in the following way. For
each place v, fix a linear form lv(x1, . . . , xm+1) = av,1x1 + . . . + av,m+1xm+1 with
av,1, . . . , av,m+1 ∈ Kv and av,m+1 6= 0, such that lv(x) = xm+1 for all but finitely
many v. Then

h
(
(x1 : . . . : xm : xm+1)

)
=
∑
v∈MK

log max{|x1|v, . . . , |xm|v, |lv(x1, . . . , xm+1)|v}

is a height on Pm.

More generally, we could consider a family of automorphisms Av of Km+1
v with Av equal

to the identity for all but finitely many v, and take

h(x) =
∑
v∈MK

log max ‖Av(x)‖v .
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Now consider a projective variety V ⊂ PmK and an endomorphism ϕ : V → V of degree d
(i.e., given by homogeneous polynomials of degree d). Then by general theory (see,
e.g., [HS00, Thm. B.2.5]) |hstd(ϕ(P )) − dhstd(P )| is bounded on V (K). We write ϕ◦n

for the n-fold iteration of ϕ. Then the canonical height

ĥ(P ) = lim
n→∞

d−nhstd(ϕ◦n(P ))

exists (and satisfies ĥ(ϕ(P )) = dĥ(P )) [HS00, Thm. B.4.1]. Let h be any height on Pm.

Since |h − hstd| is bounded, we can replace hstd by h in the definition of ĥ without
changing the result. We can then play the usual telescoping series trick in our more
general setting.

Lemma 2.4. Let ϕ
(
(x1 : . . . : xm+1)

)
=
(
ϕ1(x) : . . . : ϕm+1(x)

)
with homogeneous

polynomials ϕj ∈ K[x1, . . . , xm+1] of degree d. We have

ĥ(P ) = h(P )−
∑
v∈MK

µ̃v(P ) ,

where

µ̃v(P ) =
∞∑
n=0

d−(n+1)ε̃v(ϕ
◦n(P ))

and, when P = (x1 : . . . : xm+1) and x = (x1, . . . , xm+1),

ε̃v(P ) = dhv(x)− hv
(
ϕ1(x), . . . , ϕm+1(x)

)
.

Proof. Note that ε̃v is well-defined: scaling x by λ adds |λ|v to hv(x) and d|λ|v to

hv(ϕ1(x), . . . , ϕm+1(x)). Let x be projective coordinates for P and write x(n) for the

result of applying (ϕ1, . . . , ϕm+1) n times to x = x(0). Then

ĥ(P ) = lim
n→∞

d−nh(ϕ◦n(P ))

= h(P ) +

∞∑
n=0

d−(n+1)
(
h(ϕ◦(n+1)(P ))− dh(ϕ◦n(P ))

)
= h(P ) +

∞∑
n=0

d−(n+1)
∑
v∈MK

(
hv(x

(n+1))− dhv(x(n))
)

= h(P )−
∑
v∈MK

∞∑
n=0

d−(n+1)ε̃v(ϕ
◦n(P ))

= h(P )−
∑
v∈MK

µ̃v(P ) . �

We call the functions µ̃v : Pm(Kv)→ R local height correction functions.

Note that when Kv is a discretely valued field such that |x|v = exp(−cvv(x)) for x ∈ K×
with a constant cv > 0 (and where we abuse notation and write v : K×v � Z also for the
normalized additive valuation associated to the place v) and h = hstd, then we have

µ̃v(P ) = cvµv(P ) and ε̃v(P ) = cvεv(P ) ,

where

µv(P ) =
∞∑
n=0

d−(n+1)εv(P )

and
εv(P ) = min

{
v(ϕ1(x)), . . . , v(ϕm+1(x))

}
− dmin{v(x1), . . . , v(xm+1)} ,
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if x = (x1, . . . , xm+1) are homogeneous coordinates for P . This is the situation that we
will study in some detail in Part II of this paper, for the special case when V ⊂ P3 is
the Kummer surface associated to a curve of genus 2 and its Jacobian J and ϕ is the
duplication map (then d = 4).

To deal with Problem 1.1, we work with the standard height hstd. We use our detailed
results on the local height correction functions to deduce a bound on the denominator
of µv (its values are rational) in terms of the valuation of the discriminant of the curve.
This is the key ingredient that leads to our new factorization-free and fast algorithm for
computing ĥ, see Part III.

To deal with Problem 1.2, we use the flexibility in choosing the (naive) height h and
modify the standard height in such a way that the sum

∑
v∈MK

sup µ̃v(J(Kv)) that

bounds the difference h − ĥ is as small as we can make it. The local height functions
we use are as in Example 2.3 above, with lv(x1, x2, x3, x4) = x4/sv for certain sv ∈ K×v
in most cases. Every height function of this type has the property that for any point
P = (x1 : x2 : x3 : x4) ∈ P3(K) different from (0 : 0 : 0 : 1) we have

0 ≤ hstd

(
(x1 : x2 : x3)

)
≤ h(P ) .

This is relevant, since we can fairly easily enumerate all points P as above that are on
the Kummer surface and satisfy hstd

(
(x1 : x2 : x3)

)
≤ B, see Part IV. Refinements of

the standard height constructed using Arakelov theory were also used by Holmes [Hol14]
to give an ‘in principle’ algorithm for the enumeration of points of bounded canonical
height on Jacobians of hyperelliptic curves over global fields.

3. Local height correction functions for genus 2 Jacobians

Until further notice, we let k be a non-archimedean local field with additive valuation v,
normalized to be surjective onto Z. Let O denote the valuation ring of k with residue
class field k and let π be a uniformizing element of O. We consider a smooth projective
curve C of genus 2 over k, given by a Weierstrass equation

(3.1) Y 2 +H(X,Z)Y = F (X,Z)

in weighted projective space Pk(1, 3, 1), with weights 1, 3 and 1 assigned to the variables
X, Y and Z, respectively. Here

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

and
H(X,Z) = h0Z

3 + h1XZ
2 + h2X

2Z + h3X
3

are binary forms of degrees 6 and 3, respectively, such that the discriminant ∆(F,H)
of the Weierstrass equation (3.1) is nonzero. In characteristic different from 2, this
discriminant is defined as

∆(F,H) = 2−12 disc(4F +H2) ∈ Z[h0, . . . , h3, f0, . . . , f6] ,

and in general, we define it by the generic polynomial given by this formula. The curve
defined by the equation is smooth if and only if ∆(F,H) 6= 0.

For the remainder of this section we assume that F,H ∈ O[X,Z], so that equation (3.1)
defines an integral Weierstrass model C of the curve in the terminology of Section 5
below. The discriminant of this model is then defined to be ∆(C) := ∆(F,H). We
may assume that C is given by such an integral equation if k is the completion at a
non-archimedean place of a number field K and C is obtained by base change from K,
since we can choose a globally integral Weierstrass equation for the curve. But also in
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general, we can always assume that C is given by an integral equation after applying
a transformation defined over k, since we know from Corollary 4.6 in the next section
how the local height correction function µ defined in Definition 3.1 below behaves under
such transformations.

We now generalize the definition of ε given in [Sto02] to our more general setting ([Sto02]
works with Weierstrass equations that have H = 0). As in the introduction, let J denote
the Jacobian of C and let KS be its Kummer surface, constructed explicitly together
with an explicit embedding into P3 in [CF96] in the case H = 0 and in [Mül10] in the
general case. Also let κ : J → P3 denote the composition of the quotient map from J
to KS with this embedding; it maps the origin O ∈ J(k) to the point (0 : 0 : 0 : 1).
A quadruple x = (x1, x2, x3, x4) ∈ k4 is called a set of Kummer coordinates on KS if
x is a set of projective coordinates for a point in KS(k); we denote the set of sets of
Kummer coordinates on KS by KSA (this is the set of k-rational points on the pointed
affine cone over KS). For x ∈ KSA we write v(x) = min{v(x1), . . . , v(x4)}, and we say
that x is normalized if v(x) = 0. If P ∈ J(k), we say that x ∈ KSA is a set of Kummer
coordinates for P if κ(P ) = (x1 : x2 : x3 : x4).

We let δ denote the duplication map on KS, which is given by homogeneous polynomials
δ1, . . . , δ4 ∈ O[x1, . . . , x4] of degree 4 such that δ(0, 0, 0, 1) = (0, 0, 0, 1). We recall that
there is a symmetric matrix B = (Bij)1≤i,j≤4, where the Bij ∈ O[x1, . . . , x4, y1, . . . , y4]
are bi-homogeneous of degree 2 in x1, . . . , x4 and y1, . . . , y4 each and have the following
properties, see [CF96, Chapter 3] and [Mül10].

(i) Let x, y ∈ KSA be Kummer coordinates for P,Q ∈ J(k). Then there are Kummer
coordinates w, z ∈ KSA for P +Q and P −Q, respectively, such that

w ∗ z := (wizj + nijwjzi)1≤i,j≤4 = B(x, y)

and hence v(w) + v(z) = v
(
B(x, y)

)
; here nij = 1 if i 6= j and nij = 0 if i = j.

(ii) If x ∈ KSA, then B(x, x) = δ(x) ∗ (0, 0, 0, 1).

We specialize the notions introduced in Section 2 to our situation: we consider the
Kummer surface KS ⊂ P3 with the duplication map δ of degree d = 4. We use the
standard local height on P3.

Definition 3.1. Let x ∈ KSA be a set of Kummer coordinates on KS. Then we set

ε(x) = v(δ(x))− 4v(x) ∈ Z and µ(x) =

∞∑
n=0

1

4n+1
ε(δ◦n(x)) ,

where δ◦n denotes the n-fold composition δ ◦ . . . ◦ δ.
Because δ is given by homogeneous polynomials of degree 4, ε(x) does not depend on
the scaling of x, so it makes sense to define ε(P ) = ε(x) for points P ∈ KS(k), where
x ∈ KSA is any set of Kummer coordinates for P , and to define ε(P ) = ε(κ(P )) for
points P ∈ J(k). We likewise extend the definition of µ. Then we have

µ(2P )− 4µ(P ) = −ε(P ) for all P ∈ J(k).

Note that our assumption F,H ∈ O[X,Z] implies that ε ≥ 0. If k is a local field (as we
assume here), then KS(k) is compact in the v-adic topology, and ε is continuous, so ε is
bounded.

Remark 3.2. More generally, if k is a field with a discrete valuation and not of charac-
teristic 2, then the arguments in [Sto99] show that when H = 0, ε ≤ v(24 disc(F )), so ε
is bounded also for these more general fields.
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If k is any field with a discrete valuation, then one can still conclude that ε is bounded,
by making use of the fact that the duplication map is well-defined on KS, which implies
that the ideal generated by the δj and the polynomial δ0 defining KS contains a power of
the irrelevant ideal. So for some N > 0, one can express every xNj as a linear combination

of δ0(x), . . . , δ4(x) with coefficients that are homogeneous polynomials of degree N − 4
with coefficients in k. The negative of the minimum of the valuations of these coefficients
then gives a bound for ε.

Remark 3.3. If k is the completion of a global field at a place v, then for α ∈ k×,
v(α)/ log ‖α‖v = −cv is a negative constant. So for P ∈ J(k) we have ε(P ) = cv ε̃v(P )
and µ(P ) = cvµ̃v(P ), where ε̃v and µ̃v are as defined in the introduction.

We will also have occasion to use the following function. Let x, y ∈ KSA and define

(3.2) ε(x, y) = v(B(x, y))− 2v(x)− 2v(y).

In the same way as for ε(x) above, we can extend this to points in KS(k) and J(k).

Lemma 3.4. Let x, y, w, z ∈ KSA be Kummer coordinates satisfying w ∗ z = B(x, y).
Then we have

δ(w) ∗ δ(z) = B(δ(x), δ(y)) .

Proof. The proof carries over verbatim from the proof of [Sto02, Lemma 3.2]. �

We deduce the following:

Lemma 3.5. Let x, y, w, z ∈ KSA be Kummer coordinates satisfying w ∗ z = B(x, y).
Then we have

ε
(
δ(x), δ(y)

)
+ 2ε(x) + 2ε(y) = ε(w) + ε(z) + 4ε(x, y) .

Proof. Using Lemma 3.4, relation (3.2), and property (i) above for δ(w), δ(z), δ(x)
and δ(y), we obtain

v
(
δ(w)

)
+ v
(
δ(z)

)
= v
(
B(δ(x), δ(y))

)
= ε
(
δ(x), δ(y)

)
+ 2v

(
δ(x)

)
+ 2v

(
δ(y)

)
.

Subtracting four times the corresponding relation for w, z, x and y, we get

ε(w) + ε(z) = ε
(
δ(x), δ(y)

)
− 4ε(x, y) + 2ε(x) + 2ε(y) ,

which is the claim. �

We state a few general facts on the functions ε and µ.

Lemma 3.6. For points P,Q ∈ J(k), we have the relation

µ(P +Q) + µ(P −Q)− 2µ(P )− 2µ(Q) = −ε(P,Q) .

Proof. Let x and y be Kummer coordinates for P and Q, respectively; then w and z as
in Lemma 3.5 are Kummer coordinates for P +Q and P −Q (in some order). The claim
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now follows from the formula in Lemma 3.5:

µ(P +Q) + µ(P −Q)− 2µ(P )− 2µ(Q)

=
∞∑
n=0

4−n−1
(
ε(2nP + 2nQ) + ε(2nP − 2nQ)− 2ε(2nP )− 2ε(2nQ)

)
=

∞∑
n=0

4−n−1
(
ε(δ◦n(w)) + ε(δ◦n(z))− 2ε(δ◦n(x))− 2ε(δ◦n(y))

)
=
∞∑
n=0

4−n−1
(
ε(δ◦(n+1)(x), δ◦(n+1)(y))− 4ε(δ◦n(x), δ◦n(y))

)
= −ε(x, y) = −ε(P,Q) . �

Lemma 3.7. If P ∈ J(k) satisfies µ(P ) = 0, then µ(P +Q) = µ(Q) for all Q ∈ J(k).

Proof. We apply Lemma 3.6 with P and Q replaced by Q + nP and P , respectively,
where n ∈ Z. Taking into account that µ(P ) = 0 and writing an for µ(Q + nP ), this
gives

an+1 − 2an + an−1 = −ε(P,Q+ nP ) .

As k is a non-archimedean local field, the multiples of P accumulate at the origin
O ∈ J(k). Recall that ε is locally constant. This implies that every value ε(P,Q+ nP )
occurs for infinitely many n ∈ Z, since Q+(n+N)P will be close to Q+nP for suitably
chosen N . We have for any m > 0

am+1 − am − a−m + a−m−1 =

m∑
n=−m

(an+1 − 2an + an−1) = −
m∑

n=−m
ε(P,Q+ nP ) .

Since µ is bounded, the left hand side is bounded independently of m. We also know
that ε(P,Q + nP ) ≥ 0. But if ε(P,Q + nP ) were nonzero for some n, then by the
discussion above, the right hand side would be unbounded as m → ∞. Therefore it
follows that ε(P,Q+ nP ) = 0 for all n ∈ Z. This in turn implies an+1− 2an + an−1 = 0
for all n ∈ Z. The only bounded solutions of this recurrence are constant sequences. In
particular, we have

µ(P +Q) = a1 = a0 = µ(Q) . �

Proposition 3.8. The subset U = {P ∈ J(k) : µ(P ) = 0} is a subgroup of finite index
in J(k). The functions P 7→ ε(P ) and P 7→ µ(P ) factor through the quotient J(k)/U .

Proof. Lemma 3.7 shows that U is a subgroup. We have ε(P ) = 0 for P ∈ J(k)
sufficiently close to the origin. So taking a sufficiently small subgroup neighborhood U ′

of the origin in J(k), we see that ε(2nP ) = 0 for all P ∈ U ′ and all n ≥ 0. This
implies that µ = 0 on U ′, so U ⊃ U ′. Because k is a local field, U ′ and therefore also U
have finite index in J(k). By Lemma 3.7 again, µ factors through J(k)/U , and since
ε(P ) = 4µ(P )− µ(2P ), the same is true for ε. �

We will now show that we actually have

U = {P ∈ J(k) : ε(P ) = 0}

(the inclusion ‘⊂’ is clear from the definition and Proposition 3.8.) This is equivalent to
the implication ε(x) = 0 =⇒ ε(δ(x)) = 0 and generalizes [Sto02, Thm. 4.1]. For this we
first provide a characteristic 2 analogue of [Sto02, Prop. 3.1(1)].
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We temporarily let k denote an arbitrary field. Let CF,H be a (not necessarily smooth)
curve in the weighted projective plane with respective weights 1, 3, 1 assigned to the
variables X,Y, Z that is given by an equation

(3.3) Y 2 +H(X,Z)Y = F (X,Z),

where F,H ∈ k[X,Z] are binary forms of respective degrees 6 and 3. Let KSF,H denote
the subscheme of P3 given by the vanishing of the equation defining the Kummer surface
of CF,H if CF,H is nonsingular. Then the construction of δ = (δ1, δ2, δ3, δ4) still makes
sense in this context, but we may now have δi(x) = 0 for all 1 ≤ i ≤ 4 (which we
abbreviate by δ(x) = 0) for a set x of Kummer coordinates on KSF,H . We generalize
Proposition 3.1 in [Sto02] (which assumes H = 0) to the case considered here.

Note that two equations (3.3) for CF,H are related by a transformation τ acting on an
affine point (ξ, η) by

(3.4) τ(ξ, η) =

(
aξ + b

cξ + d
,
eη + U(ξ, 1)

(cξ + d)3

)
,

where A =
(
a b
c d

)
∈ GL2(k), e ∈ k× and U ∈ k[X,Z] is homogeneous of degree 3. The

transformation τ also acts on the forms F and H by

τ∗F (X,Z) = (ad− bc)−6
(
e2FA + (eHA − UA)UA

)
τ∗H(X,Z) = (ad− bc)−3

(
eHA − 2UA

)
,

where we write

SA = S(dX − bZ,−cX + aZ)

for a binary form S ∈ k[X,Z].

Lemma 3.9. Let x ∈ KSF,H(k). If δ(δ(x)) = 0, then we already have δ(x) = 0.

Proof. If k has characteristic different from 2, we can apply a transformation so that the
new Weierstrass equation will have H = 0; the statement is then [Sto02, Prop. 3.1(1)].
So from now on, k has characteristic 2. We may assume without loss of generality that
k is algebraically closed. If the given curve is smooth, then the result is obvious, because
the situation described in the statement can never occur. If it is not smooth, we can
act on F and H using transformations of the form (3.4), so it is enough to consider only
one representative of each orbit under such transformations. This is analogous to the
strategy in the proof of [Sto02, Prop. 3.1]. We can, for example, pick the representatives
listed in Table 1.

For these representatives, elementary methods as in the proof of [Sto02, Prop. 3.1] can
be used to check that δ(x) = 0 indeed follows from δ(δ(x)) = 0. �

We can use the above to analyze the group U .

Theorem 3.10. Suppose that k is a non-archimedean local field and that J is the Ja-
cobian of a smooth projective curve of genus 2, given by a Weierstrass equation (3.1)
with integral coefficients. Then the set {P ∈ J(k) : ε(P ) = 0} equals the subgroup U in
Proposition 3.8. In particular, U is a subgroup of finite index in J(k) and ε and µ factor
through the quotient J(k)/U . Moreover we have that ε(−P ) = ε(P ) and U contains the
kernel of reduction J(k)1 with respect to the given model of J , i.e., the subgroup of points
whose image in KS(k) equals that of O.
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type H F conditions
1 0 0
2 Z3 0
3 Z3 aXZ5 a 6= 0
4 XZ2 aXZ5 a 6= 0
5 XZ2 bX3Z3 b 6= 0
6 Z3 aXZ5 + bX3Z3 ab 6= 0
7 XZ2 0
8 XZ(X + Z) 0
9 XZ(X + Z) bX3Z3 b(b+ 1) 6= 0
10 XZ(X + Z) aXZ5 + bX3Z3 a(a+ b)(a+ b+ 1) 6= 0
11 XZ2 aXZ5 + bX3Z3 ab 6= 0
12 0 XZ5

13 0 X3Z3

Table 1. Representatives in characteristic 2

Proof. The statement in Lemma 3.9 implies ε(P ) = 0 =⇒ ε(2P ) = 0 for points P ∈ J(k),
since ε(P ) = 0 is equivalent to δ(x̃) 6= 0 if x are normalized Kummer coordinates for P ,
with reduction x̃. This shows that ε(P ) = 0 implies µ(P ) = 0 (and conversely), so
{P ∈ J(k) : ε(P ) = 0} = {P ∈ J(k) : µ(P ) = 0} = U . The remaining statements
now are immediate from Proposition 3.8, taking into account that for P in the kernel of
reduction, we trivially have ε(P ) = 0. �

An algorithm for the computation of µ(P ) which is based on Theorem 3.10 (for H = 0) is
given in [Sto02, §6]. Using the relation in Lemma 3.6, we obtain the following alternative
procedure for computing µ(P ).

1. Let x be normalized Kummer coordinates for P .
Set y0 = (0, 0, 0, 1) and y1 = x.

2. For n = 1, 2, . . ., do the following.
a. Using pseudo-addition (see [FS97, §4]), compute normalized Kummer coordinates
yn+1 for nP from x, yn−1 and yn; record ε(P, nP ), which is the shift in valuation
occurring when normalizing yn+1.

b. If ε(P, nP ) = 0, check whether v(δ(yn)) = 0 (by Theorem 3.10, this is equivalent
to nP ∈ U). If yes, let N = n and exit the loop.

3. Return

µ(P ) =
1

2N

N−1∑
n=1

ε(P, nP ) .

To see that this works, note that by Lemma 3.6 we have

µ
(
(n+ 1)P

)
− 2µ(nP ) + µ

(
(n− 1)P

)
= 2µ(P )− ε(P, nP ) .

The sequence
(
µ(nP )

)
n∈Z is periodic with period N , where N is the smallest positive

integer n such that nP ∈ U (which exists according to Theorem 3.10). Taking the sum
over one period gives

2Nµ(P ) =
N−1∑
n=0

ε(P, nP ) =
N−1∑
n=1

ε(P, nP ) .
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From the periodicity we can also deduce the possible denominators of µ(P ). As ε has
integral values, we see that µ(P ) ∈ 1

2NZ if N is a period of
(
µ(nP )

)
n∈Z. In fact, we can

show a little bit more.

Corollary 3.11. Let P ∈ J(k) and N = min{n ∈ Z>0 : µ(nP ) = 0}. Then

µ(P ) ∈ 1

N
Z if N is odd, and

µ(P ) ∈ 1

2N
Z if N is even.

Proof. The sequence
(
ε(P, nP )

)
n∈Z has period N and is symmetric. So if N is odd, we

actually have

µ(P ) =
1

2N

N−1∑
n=1

ε(P, nP ) =
1

N

(N−1)/2∑
n=1

ε(P, nP ) ∈ 1

N
Z . �

Analyzing the possible denominators of µ(P ) will play a key role in Section 12, where
we discuss another algorithm for the computation of µ(P ).

4. Canonical local heights on Kummer coordinates

We now define a notion of canonical local height for Kummer coordinates. We keep the
notation of the previous section.

Definition 4.1. Let x ∈ KSA be a set of Kummer coordinates on KS. The canonical
local height of x is given by

λ̂(x) = −v(x)− µ(x) .

Remark 4.2. We can also define the canonical local height on an archimedean local field
in an analogous way. Then, if K is a global field and x is a set of Kummer coordinates
for a point J(K), we have

ĥ(P ) =
∑
v∈MK

1

cv
λ̂v(x) ,

where cv is the constant introduced in Remark 3.3 for a non-archimedean place v and
cv = [Kv : R]−1 if v is archimedean.

The canonical local height λ̂ on Kummer coordinates has somewhat nicer properties than
the canonical local height defined (for instance in [FS97] or, more generally, in [HS00,
§B.9]) with respect to a divisor on J .

Proposition 4.3. Let x, y, z, w ∈ KSA. Then the following hold:

(i) λ̂(δ(x)) = 4λ̂(x).

(ii) If w ∗ z = B(x, y), then λ̂(z) + λ̂(w) = 2λ̂(x) + 2λ̂(y).

(iii) λ̂(x) = − limn→∞ 4−nv
(
δ◦n(x)

)
.

(iv) If k′/k is a finite extension of ramification index e and λ̂′ is the canonical local

height over k′, then we have λ̂′(x) = e · λ̂(x).

Proof.

(i) This follows easily from the two relations

v
(
δ(x)

)
= 4v(x) + ε(x) and µ

(
δ(x)

)
= 4µ(x)− ε(x) .

(ii) This is similar, using Lemma 3.6 and ε(x, y) = v(w) + v(z)− 2v(x)− 2v(y).
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(iii) This follows from (i) and the fact that µ(x) is a bounded function, implying

λ̂(x) = 4−nλ̂
(
δ◦n(x)

)
= −4−nv

(
δ◦n(x)

)
+O(4−n) .

(iv) This is obvious from the definition of λ̂. �

The canonical local height on Kummer coordinates also behaves well under isogenies.

Proposition 4.4. Let C and C ′ be two curves of genus 2 over k given by Weierstrass
equations, with associated Jacobians J and J ′, Kummer Surfaces KS and KS′ and sets
of sets of Kummer coordinates KSA and KS′A, respectively. Let α : J → J ′ be an isogeny
defined over k. Then α induces a map α : KS→ KS′; let d denote its degree. We also get
a well-defined induced map α : KSA → KS′A if we fix a ∈ k× and require α(0, 0, 0, 1) =
(0, 0, 0, a). Then we have

λ̂
(
α(x)

)
= dλ̂(x)− v(a)

for all x ∈ KSA.

Proof. All assertions except for the last one are obvious. By the definition of λ̂, we can
reduce to the case a = 1. Using part (iii) of Proposition 4.3 it is then enough to show
that

v
(
δ◦n(α(x))

)
= dv(δ◦n(x)) +O(1) .

However, we have v(α(x))− dv(x) = O(1) by assumption, so it suffices to show that

(4.1) v
(
δ◦n(α(x))

)
= v
(
α(δ◦n(x))

)
.

But since α : J → J ′ is an isogeny, δ◦n(α(x)) and α(δ◦n(x)) represent the same point
on KS′, hence they are projectively equal. Because they also have the same degree, the
factor of proportionality is independent of x. It therefore suffices to check (4.1) for a
single x; we take x = (0, 0, 0, 1) ∈ KSA. Because we have δ(x) = x and, by assumption,
α(x) = x′, where x′ = (0, 0, 0, 1) ∈ KS′A(k), we find

δ◦n(α(x)) = x′ and α(δ◦n(x)) = x′ ,

thereby proving (4.1) and hence the proposition. �

Remark 4.5. Canonical local heights with similar functorial properties were constructed
by Zarhin [Zar95] on total spaces of line bundles (without the zero section). See
also [BG06] for an approach to canonical local heights using rigidified metrized line
bundles.

The preceding proposition is particularly useful for analyzing the behavior of the canon-
ical local height under a change of Weierstrass equation of the curve.

Recall that two Weierstrass equations for C are related by a transformation τ as in (3.4),
specified by a triple (A, e, U), where A =

(
a b
c d

)
∈ GL2(k), e ∈ k× and

U = u0Z
3 + u1XZ

2 + u2X
2Z + u3X

3 ∈ k[X,Z]

is homogeneous of degree 3. Such a transformation induces a map on KSA as follows:
Let x = (x1, x2, x3, x4) ∈ KSA. Then τ(x) is given by the following quadruple:

(ad− bc)−1
(
d2x1 + cdx2 + c2x3,

2bdx1 + (ad+ bc)x2 + 2acx3,

b2x1 + abx2 + a2x3,

(ad− bc)−2(e2x4 + l1x1 + l2x2 + l3x3)
)
,
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where l1, l2, l3 do not depend on x. More precisely, we can write

li = li,1 + li,2 + li,3 ,

where

li,1 =
e2

(ad− bc)4
l′i,1 with l′i,1 ∈ Z[f0, . . . , f6, a, b, c, d],

li,2 =
e

(ad− bc)4
l′i,2 with l′i,2 ∈ Z[h0, . . . , h3, u0, . . . , u3, a, b, c, d],

li,3 =
1

(ad− bc)4
l′i,3 with l′i,3 ∈ Z[u0, . . . , u3, a, b, c, d]

for i = 1, 2, 3. All of the l′i,j are homogeneous of degree 8 in a, b, c, d and homogeneous
in the other variables.

So we see that τ acts on k4 as a linear map τ ′ whose determinant has valuation

v(τ) := v(det(τ ′)) = 2v(e)− 3v(ad− bc) .
In this situation, Proposition 4.4 implies:

Corollary 4.6. Let τ = ([a, b, c, d], e, U) be a transformation (3.4) between two Weier-
strass equations C and C′ of a smooth projective curve C/k of genus 2 and let KS be the
model of the Kummer surface associated to C. Then we have

λ̂(τ(x)) = λ̂(x)− v(τ)

for all x ∈ KSA. In particular,

µ(x) = µ(τ(x)) + v(τ(x))− v(x)− v(τ) .

This can be used to construct a canonical local height which does not depend on the
choice of Weierstrass equation.

Definition 4.7. Let C/k be a smooth projective curve of genus 2 given by a Weierstrass
equation (3.1) with discriminant ∆ and let KS be the associated Kummer surface. We
call the function

λ̃ : KSA −→ R , x 7−→ λ̂(x) +
1

10
v(∆)

the normalized canonical local height on KSA.

Corollary 4.8. The normalized canonical local height is independent of the given Weier-
strass equation of C, in the following sense: if W and W ′ are two Weierstrass equations
for C, with associated sets of sets of Kummer coordinates KSA and KS′A and canonical

local heights λ̃ and λ̃′, respectively, and τ is a transformation (3.4) between them, then

for all x ∈ KSA we have λ̃′(τ(x)) = λ̃(x).

Proof. Let ∆ and ∆′ be the respective discriminants of W and W ′. By [Liu96, §2], we
have

(4.2) v(∆′) = v(∆) + 10v(τ) ,

so, using Corollary 4.6,

λ̃′(τ(x)) = λ̂′(τ(x)) +
1

10
v(∆′) = λ̂(x)− v(τ) +

1

10
v(∆′) = λ̂(x) +

1

10
v(∆) = λ̃(x) . �

We will not need the normalized canonical local height in the remainder of this paper.
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5. Stably minimal Weierstrass models

In this section, k continues to denote a non-archimedean local field with valuation ring O
and residue field k. We build on results established by Liu [Liu96] in the more general
context of hyperelliptic curves of arbitrary genus.

Recall that an equation of the form (3.1) defining a curve C over k of genus 2 is an
integral Weierstrass model of C if the polynomials F and H have coefficients in O.
(Note that this is slightly different from the notion of an ‘integral equation’ as de-
fined in [Liu96, Définition 2], but the difference is irrelevant for our purposes, since any
minimal Weierstrass model is actually given by an integral equation, see [Liu96, Remar-
que 4].) It is a minimal Weierstrass model of C if it is integral and the valuation of its
discriminant is minimal among all integral Weierstrass models of C [Liu96, Définition 3].
We introduce the following variant of this notion.

Definition 5.1. An integral Weierstrass model of a smooth projective curve C over k
of genus 2 is stably minimal if it is a minimal Weierstrass model for C over k′ for every
finite field extension k′ of k.

Stably minimal Weierstrass models can be characterized in terms of the multiplicities
of the points on the special fiber, where the multiplicity is defined as follows:

Definition 5.2. Only for this definition let k be an arbitrary field, and let CF,H be a
curve in Pk(1, 3, 1) given by an equation of the form (3.1) over k; we assume that CF,H
is reduced. The multiplicity m(P,CF,H) of a geometric point P ∈ CF,H(k̄) is defined as
follows:

• If P is a singular point of type An, then m(P,CF,H) = n+ 1.
• If P is fixed by the involution ι(X : Y : Z) = (X : −Y − H(X,Z) : Z) and is

nonsingular, then m(P,CF,H) = 1.
• Otherwise m(P,CF,H) = 0.

Singularities of type An were defined by Arnold over the complex numbers, and hence
for arbitrary fields of characteristic zero, see for instance [BPVdV84, §II.8]. For the
case of positive characteristic, see [GK90]. Note that if the characteristic of k is not 2,
then π(P ) is a root of multiplicity m(P,CF,H) of F 2 + 4H, where π : CF,H → P1 sends
(X : Y : Z) to (X : Z).

We will use this notion in the context of points on the special fiber of a Weierstrass
model of a curve of genus 2 over a complete local field. In this context, Definition 5.2 is
equivalent to [Liu96, Définition 9] when the curve is reduced, see [Liu96, Remarque 8].

An algorithm that computes the multiplicity was given by Liu [Liu96, §6.1]. Liu defines
further multiplicities λr(P ) [Liu96, Définition 10] for points on the special fiber of an
integral Weierstrass model (and r ≥ 1) that allow to characterize when such a model is
minimal. We note here that λr(P ) gives the value of λ(P ) = λ1(P ) after making a field
extension of ramification index r. Also, Lemme 7(e) of [Liu96] states for r sufficiently
large that λr(P ) = m(P ) if the special fiber is reduced and implies that λr(P ) ≥ r if
the special fiber is non-reduced. In the reduced case, we also have λ(P ) ≤ m(P ).

Setting λ = λ1, Corollaire 2 in [Liu96] states (for g = 2) that the model is minimal if
and only if λ(P ) ≤ 3 and λ′(P ) ≤ 4 (and is the unique minimal Weierstrass model up
to O-isomorphism, if and only if in addition λ′(P ) ≤ 3) for all k-points P on the special
fiber, where λ′(P ) is a number satisfying λ′(P ) ≤ 2dλ(P )/2e, see [Liu96, Lemme 9(c)].
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Lemma 5.3. An integral Weierstrass model of a smooth projective curve C over k of
genus 2 is stably minimal if and only if its special fiber is reduced and the multiplicity
of every geometric point on the special fiber is at most 3.

If the special fiber is reduced and all multiplicities are at most 2, then the model is
the unique minimal Weierstrass model of C over any finite extension k′ of k, up to
isomorphism over the valuation ring of k′.

Proof. First note that the multiplicity of a point is a geometric property; it does not
change when we replace k by a finite extension. If the special fiber of an integral
Weierstrass model has the given properties, then it follows from Liu’s results mentioned
above that λ(P ) ≤ m(P ) ≤ 3 and therefore λ′(P ) ≤ 4 for all points P on the special
fiber, even after replacing k by a finite extension. It follows that the model is stably
minimal.

If m(P ) ≤ 2 for all P , then λ(P ) ≤ 2 and λ′(P ) ≤ 2, so by Liu’s results, the model is
the unique minimal Weierstrass model of C over k′.

Conversely, assume that the special fiber does not have the given properties. Then
either the special fiber is non-reduced, or else there is a point P on the special fiber
of multiplicity m(P ) ≥ 4. If the special fiber is non-reduced, then after replacing k by
a sufficiently ramified extension k′, there is a point P on the special fiber such that
λ(P ) > 3 over k′ (ramification index 4 is sufficient). If the special fiber is reduced and
there is a (geometric) point P on the special fiber with m(P ) > 3, then again after
replacing k by a sufficiently large finite extension k′ (such that P is defined over the
residue field and the ramification index is at least m(P )), we have λ(P ) = m(P ) > 3
over k′. Liu’s results then show that the model is not minimal over k′. �

Lemma 5.4. If C is a smooth projective curve over k of genus 2, then there is a finite
extension k′ of k such that

(i) the minimal proper regular model of C over the valuation ring of k′ has semistable
reduction, and

(ii) each minimal Weierstrass model of C over k′ is already stably minimal.

Proof. That there is a finite extension with the first property is a special case of the
semistable reduction theorem [DM69]. After a further unramified extension, we can
assume that all geometric components of the special fiber of the minimal proper regular
model (which all have multiplicity 1) are defined over the residue field and that at
least one component has a smooth point defined over the residue field. This implies by
Hensel’s Lemma that C(k′) 6= ∅. It then follows from [Liu96, Corollaire 5] that every
minimal Weierstrass model of C over k′ is dominated by the minimal proper regular
model. Since the latter has reduced special fiber, the same is true for each minimal
Weierstrass model.

Now assume that there exists a stably minimal Weierstrass model of C over k′. Then
every minimal Weierstrass model of C over k′ must already be stably minimal, since
both models must have the same valuation of the discriminant, and the discriminant of
the stably minimal model remains minimal over any finite field extension of k′. So it is
enough to show that a stably minimal model exists.

We now consider the various possibilities for the special fiber of the minimal proper
regular model. The possible configurations are shown in Figures 1, 2, 3 and 5 (on pages
30, 30, 31 and 37). If the reduction type is [Im1−m2−m3 ] in the notation of [NU73],
then the Weierstrass model whose special fiber contains the component(s) that are not
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(−2)-curves has the property that all points on the special fiber have multiplicity at
most 2; this is then the unique minimal Weierstrass model, and it is stably minimal
by Lemma 5.3. It remains to consider reduction type [Im1 − Im2 − l]. We see that the
Weierstrass models that correspond to components in the chain linking the two polygons
and also those coming from the component of one of the polygons that is connected to
the chain satisfy the conditions of Lemma 5.3 and are thus stably minimal. On the other
hand, Weierstrass models whose special fiber does not correspond to a component in
the chain or to one of its neighbors have a point in the special fiber whose multiplicity
is at least 4 and so cannot be stably minimal. �

6. Igusa invariants

In this section we describe how we can easily distinguish between different types of
reduction using certain invariants of genus 2 curves introduced by Igusa in [Igu60]. The
results of this section are essentially due to Liu [Liu93]; see also [Mes91].

Let k be an arbitrary field of characteristic not equal to 2 and consider the invariants
J2, J4, J6, J8, J10 defined in [Igu60], commonly called Igusa invariants. Then J2i(F ) is
an invariant of degree 2i of binary sextics, and if

F (X,Z) = f0Z
6 + f1XZ

5 + f2X
2Z4 + f3X

3Z3 + f4X
4Z2 + f5X

5Z + f6X
6

is a binary sextic, then J2i(F ) ∈ Z[1
2 , f0, . . . , f6]. For example, J10(F ) = 2−12 disc(F ).

It is shown in [Igu60] that the invariants J2, J4, J6, J10 generate the even degree part of
the ring of invariants of binary sextics.

Now let F and H be the generic binary forms over Z of degrees 6 and 3, respectively,
with coefficients f0, . . . , f6 and h0, . . . , h3 as before. It turns out that J2i

(
4F +H2

)
is

an element of Z[f0, . . . , f6, h0, . . . , h3].

Definition 6.1. Let k be an arbitrary field and let H, F ∈ k[X,Z] be binary forms
of respective degrees 3 and 6 over k. Let CF,H be the curve given by the equation
Y 2 + H(X,Z)Y = F (X,Z) in the weighted projective plane Pk(1, 3, 1). For 1 ≤ i ≤ 5
we define the Igusa invariant J2i(CF,H) of CF,H as

J2i(CF,H) = J2i

(
4F +H2

)
.

Following Liu [Liu93], we also define two additional invariants, namely

I4(CF,H) = J2(CF,H)2 − 24J4(CF,H)

and

I12(CF,H) = −8J4(CF,H)3 + 9J2(CF,H)J4(CF,H)J6(CF,H)

− 27J6(CF,H)2 − J2(CF,H)2J8(CF,H) .

The following is a consequence of [Liu93, Thm. 1].

Proposition 6.2. Let k be a field and let CF,H/k be the curve given by the equation

Y 2 +H(X,Z)Y = F (X,Z)

in Pk(1, 3, 1), where H, F ∈ k[X,Z] are binary forms of degree 3 and 6, respectively.
For 1 ≤ i ≤ 5 and j ∈ {4, 12} we set J2i = J2i(CF,H) and Ij = Ij(CF,H).

(i) CF,H is smooth ⇐⇒ J10 6= 0.
(ii) CF,H has a unique node and no point of higher multiplicity
⇐⇒ J10 = 0 and I12 6= 0.



CANONICAL HEIGHTS ON GENUS TWO JACOBIANS 21

(iii) CF,H has exactly two nodes
⇐⇒ J10 = I12 = 0, I4 6= 0, and J4 6= 0 or J6 6= 0.

(iv) CF,H has three nodes ⇐⇒ J10 = I12 = J4 = J6 = 0 and I4 6= 0.
(v) CF,H has a cusp ⇐⇒ J10 = I12 = I4 = 0 and J2i 6= 0 for some i ≤ 4.
(vi) CF,H is non-reduced or has a point of multiplicity at least 4 ⇐⇒ J2i = 0 for all i.

When C is a curve of genus 2 over a non-archimedean local field, then Igusa invariants
can also be used to obtain information on the reduction type of C, see [Liu93, Thm. 1,
Prop. 2].

Proposition 6.3. Let k be a non-archimedean local field with normalized additive val-
uation v : k× � Z and valuation ring O, and let C/k be a smooth projective genus 2
curve, given by a minimal Weierstrass model with reduced special fiber. Suppose that
the minimal proper regular model Cmin of C over SpecO is semistable and has reduction
type K in the notation of [NU73]. We set J2i = J2i(C) for i ∈ {1, . . . , 5} and I4 = I4(C),
I12 = I12(C).

(i) If K = [Im−0−0], where m > 0, then m = v(J10).
(ii) If K = [Im1−m2−0], where 0 < m1 ≤ m2, then

m1 = min
{
v(I12), 1

2v(J10)
}

and m2 = v(J10)−m1 .

(iii) If K = [Im1−m2−m3 ], where 0 < m1 ≤ m2 ≤ m3, then

m1 = min
{
v(J4), 1

3v(J10), 1
2v(I12)

}
,

m2 = min
{
v(I12)−m1,

1
2(v(J10)−m1)

}
and

m3 = v(J10)−m1 −m2 .

(iv) If K = [I0 − I0 − l], then l = 1
12v(J10).

(v) If K = [Im1 − I0 − l], where m1 > 0, then

l = 1
12v(I12) and m1 = v(J10)− v(I12) .

(vi) If K = [Im1 − Im2 − l], where m2 ≥ m1 > 0 and l > 0, then

l = 1
4v(I4) ,

m1 = min
{
v(I12)− 3v(I4) , 1

2(v(J10)− 3v(I4))
}

and

m2 = v(J10)− 3v(I4)−m1 .
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Part II: Study of Local Height Correction Functions

In Part II of the paper, k will always denote a non-archimedean local field with residue
field k, valuation ring O and normalized additive valuation v : k× � Z. We let C be a
curve of genus 2 over k, given by an integral Weierstrass model C, which we consider
as a subscheme of the weighted projective plane PS(1, 3, 1), where S = Spec(O). In the
following five sections we find explicit formulas and bounds for the local height correction
function µ for the most frequent cases of bad reduction and use these to deduce a general
bound on µ. We denote the minimal proper regular model of C over S by Cmin. Let J
be the Jacobian of C; we denote its Néron model over S by J . We write Cv, Cmin

v and
Jv for the respective special fibers of C, Cmin and J .

7. The ‘kernel’ of µ

By Theorem 3.10, the set

U = {P ∈ J(k) : ε(P ) = 0}
is a group and the local height correction function µ factors through the quotient J(k)/U .
In this section we relate U to the Néron model of J when C has rational singularities.
See [Art86] for a brief account of the theory of rational singularities on arithmetic sur-
faces.

For the remainder of this section we assume that C/S is normal and reduced. We let J 0

denote the fiberwise-connected component of the identity of J . Then J 0 has generic
fiber Jk ∼= J and special fiber the connected component of the identity J 0

v of Jv. If
C′ → C is a desingularization of C, then the identity components Pic0

C′/S and Pic0
C/S of

the respective relative Picard functors of C′ and C can both be represented by separated
schemes, see [BLR90, Thm. 9.7.1]. There are canonical S-group scheme morphisms

(7.1) Pic0
C/S

// Pic0
C′/S

∼ // J 0 ;

the latter map is an isomorphism by [BLR90, Thm. 9.4.2]. Let α : Pic0
C/S → J 0 denote

the composition of the morphisms from (7.1); note that α does not depend on the choice
of the desingularization C′. We will show that if P ∈ J(k) has reduction on J in the
image of α, then ε(P ) = µ(P ) = 0. The idea is to first show that this is true for points
in the image of a certain open subscheme; we then prove that this suffices for the general
case.

Let Csm be the smooth locus of C. Following [BLR90, §9.3], we define an S-subscheme W

of the symmetric square C(2)
sm of Csm consisting of the points w ∈ C(2)

sm that satisfy the
following conditions:

• H1(C, OC(Dw)) = 0, where D is the universal Cartier divisor D ⊂ C ×S C(2)
sm

induced by the canonical map C(2)
sm → Div2

C/S .

• If w = {w1, w2} with w1, w2 geometric points on the special fiber of C, then the
hyperelliptic involution ι maps the component containing w1 to the component
containing w2.

Then W has the following properties:

(i) W is an open subscheme of C(2)
sm .

(ii) There is a strict S-birational group law on W , induced by the group law on PicC/S .

(iii) Pic0
C/S is the S-group scheme associated with this strict S-birational group law.
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For (ii) and (iii) see the discussion preceding [BLR90, Thm. 9.3.7].

Let Pic
(2)
C/S be the open subfunctor of PicC/S whose elements have total degree 2. Let

ρ : W → Pic
(2)
C/S be the canonical map induced by D; by [BLR90, Lemma 9.3.5] it is an

open immersion. Replacing S by the spectrum of the valuation ring of a finite unramified
extension of k, if necessary, we can find a section x0 ∈ P1

S(S) such that its pullback D0

under the covering map C → P1
S is horizontal and does not intersect the singular locus

of C. We denote by c0 the class of D0 in Pic
(2)
C/S . Let w = {P1, P2} ∈ W ; using the

condition on the action of ι on the components P1 and P2 lie on, we find that

ρ0(w) := ρ(w)− c0 ∈ Pic0
C/S .

In fact, ρ0 defines an open immersion ρ0 : W → Pic0
C/S , see [BLR90, Lemma 9.3.6].

Lemma 7.1. Suppose that the residue characteristic of k is not 2. Let P ∈ J(k) such
that the reduction of P on Jv is in α(ρ0(W )). Then ε(P ) = 0.

Proof. We may assume that C : Y 2 = F (X,Z). Let JF denote the model of J in P15

constructed in [CF96, Chapter 2] and let JF /S denote the model it defines over S.
Following [BS10, §5], we denote by J 0

F the fiberwise-connected component of the identity
of the smooth locus of JF , so that the generic fiber is JF and the special fiber J 0

F,v is
the connected component of the identity of the smooth locus of the special fiber JF,v.
We have a morphism ψ : C(2)

sm → J 0
F , defined using the expressions for the coordinates

on JF in [CF96, Chapter 2], see the proof of [BS10, Lemma 5.7]. We also denote the
restriction of this morphism to W by ψ.

The Néron mapping property yields a natural map ϕ : J 0
F → J . In general, its image can

be a proper subset of J 0. Nevertheless, the following diagram of S-scheme morphisms
is commutative by [Liu02, Prop. 3.3.11], since W is reduced, J 0 is separated and the
diagram is commutative when restricted to generic fibers:

(7.2) W

ρ0

��

ψ // J 0
F

ϕ

��
Pic0
C/S

α // J 0

It follows from [BS10, Prop. 5.10] that a point P ∈ J(k) satisfies ε(P ) = 0 if and only
if P reduces to J 0

F,v(k). So if P has reduction in α(ρ0(W )), then the commutativity of

the diagram (7.2) shows that ε(P ) = 0. �

If the residue characteristic is 2, then no explicit analogue of the group scheme JF is
known. Instead, we have to work with explicit expressions to prove a result analogous
to Lemma 7.1.

Let F̃ and H̃ be the reductions of F and H, respectively. In analogy with [BS10,

Definition 5.1], we define the subscheme D̃ of A3
k × A4

k × A5
k consisting of all triples

(A,B,C) =
(
(a0, a1, a2), (b0, b1, b2, b3), (c0, c1, c2, c3, c4)

)
∈ A3

k × A4
k × A5

k

such that

AC = F̃ −B2 −BH̃ ,
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type condition additional m(∞) m(0) m(1)
1 x4 = 0
2 x4 = 0 6
3 x4 = 0 x1 = 0 5
4 x4 = 0 x1 = 0 4
5 x1x3 = x4 = 0 3 2
6 x1 = x4 = 0 3
7 x4 = 0 4 2
8 x4 = 0 2 2 2
9 x1x3 = x4 = 0 2 2
10 x1 = x4 = 0 2
11 x1 = x4 = 0 3
12 x4 = 0 x1 = 0 5
13 x4 = 0 x1x3 = 0 3 3

Table 2. Conditions for the vanishing of δ(x)

where

A = a0Z
2 + a1XZ + a2X

2,

B = b0Z
3 + b1XZ

2 + b2X
2Z + b3X

3,

C = c0Z
4 + c1XZ

2 + c2X
2Z2 + c3X

3Z + c4X
4.

Moreover, we set D := (π2 × id)
(
pr12(D̃)

)
, where pr12 is the projection onto the first

two factors and π2 is the canonical map A3
k \ {(0, 0, 0)} → P2

k .

Note that if the curve Cv defined by Y 2 +H̃(X,Z)Y = F̃ (X,Z) in Pk(1, 3, 1) is nonsingu-
lar, then D(k) is in bijective correspondence with the possible Mumford representations
of effective divisors of degree 2 on Cv.
In general, this correspondence still holds for the subset D′ of all (A,B) ∈ D such that A
does not vanish at the image in P1 of a singular point of Cv, and those effective divisors

with support in the smooth locus of Cv. More precisely, we get a map ζ : D′ → C
(2)
v such

that if ζ((A,B)) = {P̃1, P̃2}, then there are representatives (Xi, Yi, Zi) of P̃i (i = 1, 2)
satisfying

(i) A(X,Z) = (Z1X −X1Z)(Z2X −X2Z);
(ii) Yi = B(Xi, Zi) for i = 1, 2.

If Cv is nonsingular, and (A,B) ∈ D, then we can compose the natural surjection
D → Jac(Cv) \ {O} with the quotient map Jac(Cv) → KSF̃ ,H̃ . In the general case one

can also define a surjection ω : D → KSF̃ ,H̃ \{(0 : 0 : 0 : 1)} with the following property:

If P = [(P1) − (P2)] ∈ J(k) is such that the reductions P̃1 and P̃2 are both smooth

points on Cv, and if (A,B) ∈ D′ is such that ζ((A,B)) = {P̃1, ˜ι(P2)}, then the reduction
of κ(P ) on KSF̃ ,H̃ is ω((A,B)). The image of a pair (A,B) ∈ D under ω is of the form

(a0 : −a1 : a2 : x4).

Lemma 7.2. Suppose that the residue characteristic of k is 2. Let P ∈ J(k) such that
the reduction of P on J is in α(ρ0(W )). Then ε(P ) = 0.

Proof. Let (A,B) ∈ D′
F̃ ,H̃

such that ζ((A,B)) = {P̃1, P̃2} ∈ W . By the discussion

preceding the lemma, it suffices to show that we have δ(x) 6= 0 for x = ω((A,B)).
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Changing the given model, if necessary, we can assume that H̃ and F̃ are as in the list of
representatives 1–13 in Table 1. Table 2 contains conditions on x which are equivalent
to the vanishing of δ(x) for each representative and additional conditions which a point
x = (x1 : x2 : x3 : x4) ∈ P3 satisfying δ(x) = 0 must satisfy in order to lie on KSF̃ ,H̃ .

Finally, we have listed the multiplicities m(∞), m(0), m(1) that Cv has at the points
with (X : Z) = (1 : 0), (X : Z) = (0 : 1) and (X : Z) = (1 : 1), respectively, in case the
multiplicities there are greater than 1. Note that we do not have to treat type 1, as Cv
is assumed to be reduced.

Since A(X,Z) does not vanish at the image in P1 of a singular point, we get x1 6= 0 and, if
(0, 0) is a singular point, also x3 6= 0. Using Table 2, this already implies that δ(x) 6= 0
whenever Cv is irreducible. In the reducible cases 2, 7 and 8, Cv has two irreducible
components, and one checks easily that x4 does not vanish because, by definition of W ,
ι maps the component containing P̃1 to the component containing P̃2. Hence δ(x) 6= 0
by Table 2. �

The next proposition follows from Lemmas 7.1 and 7.2.

Proposition 7.3. Let α : Pic0
C/S → J 0 be the canonical homomorphism. If the reduc-

tion of P ∈ J(k) on Jv is in the image of α, then ε(P ) = µ(P ) = 0.

Proof. If T is an S-scheme and x ∈ Pic0
C/S(T ), then by property (ii) and (iii) of W ,

there is an étale cover T ′/T and w1, . . . , wn ∈W (T ′) such that

x = ρ0(w1) + . . .+ ρ0(wn) ,

where the sum is taken with respect to the group law on Pic0
C/S . In fact we can take

n = 2; this follows from [BLR90, Lemma 5.1.4] and the discussion following [BLR90,
Lemma 5.2.4]. Using this and Theorem 3.10, it suffices to show that ε(P ) = 0 when
the reduction of P on Jv is in α(ρ0(W )). Hence the result follows from Lemmas 7.1
and 7.2. �

Let J0(k) denote the subgroup of J(k) consisting of points whose image on the special
fiber of J is in J 0(k). By [BL99, Lemma 2.1] the group Φ(k) of k-rational points in the
component group Φ of J satisfies

Φ(k) ∼= J(k)/J0(k) .

We can now give a criterion for when ε and µ factor through Φ(k).

Theorem 7.4. Let C be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C with rational singu-
larities. Then ε and µ factor through Φ(k).

Proof. First note that if C has rational singularities, then C is normal and reduced.
Moreover, according to [BLR90, Thm. 9.7.1], the homomorphism α is an isomorphism
if and only if C has rational singularities. This implies that the image of α, restricted to
the generic fiber, is J0(k). By Proposition 7.3, we have ε(P ) = µ(P ) = 0 for P in the
image of α. Theorem 3.10 implies that µ and ε factor through Φ(k). �

Remark 7.5. A non-minimal Weierstrass model cannot have rational singularities. More-
over, there are minimal (even stably minimal) Weierstrass models of curves of genus 2
that have non-rational singularities. See Example 10.4 for a stably minimal Weierstrass
model having µ(P ) 6= 0 for some points P ∈ J0(k).

This behavior cannot occur for elliptic curves; here µ always factors through Φ(k),
provided the given Weierstrass model is minimal, see [Sil88]. This is crucial for the
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usual algorithms to compute canonical heights on elliptic curves. Note that a Weierstrass
model of an elliptic curve is minimal if and only if it has rational singularities by [Con05,
Corollary 8.4].

8. Néron functions and reduction graphs

Our next goal is to derive a formula for µ(P ) in the case when the minimal proper
regular model of C is semistable and µ factors through Φ(k). To this end, we need the
notion of Néron functions. The following result is due to Néron; see [Lan83, §11.1].

Proposition 8.1. Let A be an abelian variety defined over a local field k. Then we can
associate to any divisor D ∈ DivA(k̄) a function λD : A(k̄) \ supp(D)→ R such that the
following conditions are satisfied, where we write λ ≡ λ′ mod const. to indicate that the
functions λ and λ′ differ by a constant.

(1) If D,E ∈ DivA(k̄), then λD+E ≡ λD + λE mod const.
(2) If D = div(f) ∈ DivA(k̄) is principal, then λD ≡ v̄ ◦ f mod const., where v̄ is the

extension of v to k̄.
(3) If D ∈ DivA(k̄) and TP : A → A is the translation map by a point P ∈ A(k̄), then

we have λT ∗PD ≡ λD ◦ TP mod const.

Also, λD is uniquely determined up to adding a constant.

We call a function λD as in Proposition 8.1 a Néron function associated with D.

We can use local heights on Kummer coordinates to construct Néron functions on the
Jacobian J of our genus 2 curve C. If P0 ∈ C(k̄), then we have an embedding Ck̄ → Jk̄
(defined over k̄) that maps P ∈ C(k̄) to the divisor class [(P )− (P0)] ∈ Pic0

C(k̄) = J(k̄).
Its image is the theta divisor ΘP0 . We set Θ±P0

= ΘP0 + Θι(P0); then Θ±P0
is symmetric

and in the linear equivalence class of 2Θ (where Θ is a theta divisor coming from taking
a Weierstrass point as base-point). For the following, fix a point ∞ ∈ C(k̄) at infinity.
For i ∈ {1, . . . , 4}, we set

Di = Θ±∞ + div

(
κi
κ1

)
and we define a function λ̂i : J(k) \ supp(Di)→ R by

λ̂i(P ) = λ̂

(
κ(P )

κi(P )

)
.

Lemma 8.2. Let ∞ ∈ C(k̄) be a point at infinity as above and let i ∈ {1, . . . , 4}. Then

Di is defined over k and the function λ̂i is a Néron function associated with Di.

Proof. If ∞ /∈ C(k), then we have ∞ ∈ C(k′) for some quadratic extension k′ of k and
the nontrivial element of the Galois group Gal(k′/k) maps ∞ to ι(∞), proving the first
assertion. For a proof of the second assertion, see [Uch11, Thm. 5.3]. �

Definition 8.3. Assume that C has semistable reduction over k. Let C ′ = Cmin
v,̄k

denote

the special fiber of the minimal proper regular model Cmin of C, considered over the
algebraic closure of the residue field k. The reduction graph R(C) of C is a graph with
vertex set the set of irreducible components of C ′; two vertices Γ1 and Γ2 are connected
by n edges, where n is the number of intersection points of Γ1 and Γ2 if Γ1 6= Γ2, and
n is the number of nodes of Γ1 if Γ1 = Γ2. The Galois group of k acts on R(C) in a
natural way.
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We consider R(C) as a metric graph by giving each edge length 1. For two vertices
Γ1 and Γ2, we define r(Γ1,Γ2) as the resistance between the vertices, when R(C) is
considered as an electric network with unit resistance along every edge.

Remark 8.4. We can compute r(Γ1,Γ2) as follows. Order the vertices of R(C) in some
way and let M be the intersection matrix with respect to this ordering. Since all
components of the special fiber have multiplicity one, the kernel of M is spanned by the
‘all-ones’ vector and the image of M consists of the vectors whose entries sum to zero.
Let v be the vector with entries zero except that the entry corresponding to Γ1 is 1 and
the entry corresponding to Γ2 is −1. Then there is a vector g with rational entries such
that Mg = v, and

r(Γ1,Γ2) = −g · v
is, up to sign, the standard inner product of the two vectors. (Note that g is not
unique, but adding a vector in the kernel of M to it will not change the result.) See for
instance [Cin11, Lemma 6.1].

Note that the linear map given by M on the space of functions on the vertices can be
interpreted as the discrete Laplace operator on the graph R(C). It is then easy to see
that g, viewed as a function on the vertices, is piecewise linear along sequences of edges
not containing Γ1, Γ2 or a vertex of degree at least 3. This makes it quite easy to find g
and to compute r(Γ1,Γ2).

The reduction graph is unchanged when we replace k by an unramified extension. If
we base-change to a ramified extension k′ of k with ramification index e, then the new
reduction graph is obtained by subdividing the edges of R(C) into e new edges. We can
give these new edges length 1/e; then the underlying metric space remains the same.
In particular, r(Γ1,Γ2) does not depend on k′. This allows us to replace k by a finite
extension if necessary. The scaling of the length corresponds to extending the valuation
v : k× � Z to k̄× → Q instead of considering the normalized valuation on k′. All notions
defined in terms of the valuation (for example, intersection numbers) are then scaled
accordingly.

Proposition 8.5. We assume that Cmin is semistable. Let P = [(P1) − (P2)] ∈ J(k),
with P1, P2 ∈ C(k) mapping to components Γ1 and Γ2, respectively, of the special fiber
of Cmin. We make the following further assumptions.

(i) If Q1, Q2 ∈ C(k) map to Γ1 and Γ2, respectively, then µ(P ) = µ([(Q1)− (Q2)]).
(ii) There is a constant µ1 ∈ Q such that µ([(Q1)− (Q′1)]) = µ1 for all Q1, Q

′
1 ∈ C(k)

mapping to Γ1 such that the images of Q1 and Q′1 on the special fiber of Cmin are
distinct.

(iii) There is a constant µ2 ∈ Q such that µ([(Q2)− (Q′2)]) = µ2 for all Q2, Q
′
2 ∈ C(k)

mapping to Γ2 such that the images of Q2 and Q′2 on the special fiber of Cmin are
distinct.

Then we have

µ(P ) = r(Γ1,Γ2) +
µ1 + µ2

2
.

Proof. By the discussion preceding the statement of the theorem, we can assume that k
is sufficiently large for C(k) to contain all points we might be interested in.

Let P0 ∈ C(k). The embedding with respect to P0 is obtained from the ‘difference map’
ψ : C × C → J that sends a pair of points (P1, P2) to [(P1) − (P2)] by specializing the
second argument to P0. One easily checks that

ψ∗ΘP0 = ∆C + ({ι(P0)} × C) + (C × {P0}) ,
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where ∆C denotes the diagonal and ι is the hyperelliptic involution on C. We then have

ψ∗Θ±P0
= 2∆C + pr∗1D0 + pr∗2D0 ,

where D0 = (P0) + (ι(P0)). By the results in [Hei04] this implies that, taking λ0 to be
a Néron function associated to Θ±P0

,

λ0

(
[(P1)− (P2)]

)
= 2〈P1, P2〉+ 〈P1 + P2, P0 + ι(P0)〉+ c

for all points P1, P2 ∈ C(knr) with P1 6= P2 and {P1, P2} ∩ {P0, ι(P0)} = ∅, where 〈·, ·〉
is the pairing in [Hei04, Thm. 4.4] and c ∈ R is a constant.

If Cmin has semistable reduction, then, by [Hei04, Remark 4.6], the pairing 〈·, ·〉 coincides
with Zhang’s admissible pairing (·, ·)a defined in [Zha93] in terms of harmonic analysis
on the reduction graph R(C). In these terms, we have for Q,Q′ ∈ C(knr):

〈Q,Q′〉 = (Q,Q′)a = i(Q,Q
′
) + gν(Γ,Γ′) ,

where i(Q,Q
′
) is the intersection multiplicity of the sections Q,Q

′ ∈ Cmin(Onr) induced
by Q and Q′, respectively, and gν(Γ,Γ′) is the Green’s function associated to a certain
measure ν on R(C), with Γ and Γ′ being the respective components of the special fiber
of Cmin that Q and Q′ reduce to. See [Zha93, §4]. We extend gν to a bilinear map on
the free abelian group generated by the vertices of R(C).

Lemma 8.2 gives, for P0 =∞ and P = [(P1)−(P2)] with normalized Kummer coordinates
x(P ) = (x1(P ), . . . , x4(P )),

µ(P ) = v(x1(P ))− λ̂1(P )

= v(x1(P ))− 2i(P 1, P 2)− i(P 1 + P 2, P 0 + ι(P0))

− 2gν(Γ1,Γ2)− gν(Γ1 + Γ2,Γ0 + Γ′0)− c ,

where Γ1 and Γ2 are the respective components that P1 and P2 reduce to, and Γ0 and Γ′0
are the respective components that P0 and ι(P0) reduce to. We assume for a moment
that the images of P1 and P2 on the special fiber of the original model C are distinct
from the images of the points at infinity. By assumption (i), µ(P ) is unchanged when
we replace the points P1 and P2 by other points still mapping to Γ1 and Γ2, respectively.
We can therefore assume that the images of P1 and P2 on the special fiber of Cmin are
distinct from each other and also from the images of P0 and ι(P0). This implies that
v(x1(P )) = 0 and that the intersection numbers in the formula above are zero. We can
choose further points Q1 and Q2 that also reduce to Γ1 and Γ2 with reductions on the
special fiber of C distinct from those of P0 and ι(P0) and such that P1, P2, Q1 and Q2

all reduce to distinct points on the special fiber of Cmin. Using assumptions (ii) and (iii),
we obtain the following relations.

−1
2µ1 = −1

2µ
(
[(P1)− (Q1)]

)
= gν(Γ1,Γ1) + gν(Γ1,Γ0 + Γ′0) + 1

2c

µ(P ) = µ
(
[(P1)− (P2)]

)
= −2gν(Γ1,Γ2)− gν(Γ1 + Γ2,Γ0 + Γ′0)− c

−1
2µ2 = −1

2µ
(
[(P2)− (Q2)]

)
= gν(Γ2,Γ2) + gν(Γ2,Γ0 + Γ′0) + 1

2c

Adding them together gives

µ(P )− 1
2(µ1 + µ2) = gν(Γ1 − Γ2,Γ1 − Γ2) = r(Γ1,Γ2) ,

as desired. See [Zha93, §3] for the last equality.

If our assumption that the images of P1 and P2 on the special fiber of the original
model C are distinct from the images of the points at infinity is not satisfied, then we
choose another point P0 for which the assumption is satisfied. We can then perform a
change of coordinates τ over O that moves P0 to infinity and apply the result above. By
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Corollary 4.6 (note that v(τ) = 0 in this case) and the fact that v(τ(x)) = v(x), µ(P ) is
unchanged by τ . �

Remark 8.6. We see from the proof that for two points Q,Q′ both having image on
a component Γ, but with distinct reductions that are also distinct from those of P0

and ι(P0), we always have

µ([(Q)− (Q′)]) = −2gν(Γ,Γ)− 2gν(Γ,Γ0 + Γ′0)− c .
So the assumption that this value does not depend on the choice of Q and Q′ is not
really necessary.

Theorem 8.7. Let C be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model. Let J be the Jacobian
of C and J its Néron model over S = SpecO. Assume that the minimal proper regular
model Cmin of C over S is semistable and that µ factors through the component group Φ(k)
of J . Let P ∈ J(k) be such that its image in Φ(k) is [Γ1 − Γ2], where Γ1 and Γ2 are
components of the special fiber of Cmin. Then we have

µ(P ) = r(Γ1,Γ2) .

Proof. Since µ factors through Φ(k), it follows that µ([(P1) − (P2)]) vanishes when P1

and P2 map to the same component on the special fiber of Cmin and in general depends
only on the components P1 and P2 map to. This shows that assumptions (i) to (iii) in
Proposition 8.5 are satisfied with µ1 = µ2 = 0. The claim follows. �

9. Formulas and bounds for µ(P ) in the nodal reduction case

In this section and the next, we will deduce explicit formulas for µ(P ) when we have
a stably minimal Weierstrass model C. Recall that Cmin denotes the minimal proper
regular model of C. In the following, when we speak of components, points, and so on,
of the special fiber of C or Cmin, we always mean geometric components, points, and so
on.

In this section we shall use Theorem 8.7 and Remark 8.4 to find explicit formulas for
µ(P ) whenever C/k has nodal reduction, i.e., the special fiber Cv of C is reduced and
all multiplicities are at most 2. In this case C is semistable and therefore it has rational
singularities. Let ∆ = ∆(C) denote the discriminant of C; we assume that there is at
least one node, so that v(∆) > 0.

Since there are at most three nodes in the special fiber of C, we have to consider three
different cases.

First suppose that there is a unique node in the special fiber of C and set m = v(∆). In
the notation of Namikawa and Ueno [NU73] this is reduction type [Im−0−0]. If m = 1,
then C is regular over S. In general, there is a unique component, which we denote
by A, of genus 1 in the special fiber of Cmin. As in the case of multiplicative reduction of
elliptic curves (see for example [Sil94]), the singular point on the special fiber is replaced
by a string of m−1 components of Cmin, all of genus 0 and multiplicity 1. We choose one
of the two components intersecting A and call it B1 and number the other components
B2, . . . , Bm−1 consecutively as in Figure 1.

Using [BLR90, Thm. 9.6.1], it is easy to see that the geometric component group Φ(k̄)
of the Néron model is generated by [B1 − A] and is isomorphic to Z/mZ. We have
[Bj −A] = j · [B1 −A] in Φ(k̄).

We set B0 := Bm := A. Then we have the following result.
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Figure 1. The special fiber of reduction type [Im−0−0] and its reduction graph
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Figure 2. The special fiber of reduction type [Im1−m2−0] and its reduc-
tion graph

Proposition 9.1. Suppose that there is a unique node in the special fiber of C; let m
and the notation for the components of the special fiber of Cmin be as above. If P ∈ J(k)
maps to [Bi −A] in the component group, then we have

µ(P ) =
i(m− i)

m
.

Proof. Since the given model is semistable, we can use Theorem 8.7 and Remark 8.4.
One choice of g as in Remark 8.4 is given by

g(Bj) =


−j(m− i)

m
if 0 ≤ j ≤ i,

− i(m− j)
m

if i ≤ j ≤ m.

Then

µ(P ) = r(Bi, A) = −
(
g(Bi)− g(A)

)
=
i(m− i)

m
,

as claimed. �

Remark 9.2. Proposition 9.1 resembles the formula for the canonical local height on an
elliptic curve with split multiplicative reduction given, for instance, in [Sil88].

Now suppose that there are precisely two nodes in the special fiber of C. The reduction
type is [Im1−m2−0] in the notation of [NU73], where m1,m2 ≥ 1 and m1 + m2 = v(∆).
The special fiber of Cmin is obtained by blowing up the two singular points of the
special fiber of C repeatedly and replacing them with a chain of m1 − 1 and m2 − 1
curves of genus 0, respectively. We call these components B1, . . . , Bm1−1, C1, . . . , Cm2−1,
numbered as in Figure 2, where A contains all images of points reducing to a nonsingular
point and we pick components B1 and C1 intersecting A as in the case of a unique node.
The component group Φ(k̄) is isomorphic to Z/m1Z×Z/m2Z and is generated by [B1−A]
and [C1−A]; this follows again using [BLR90, Thm. 9.6.1]. If we have m1 = 1 or m2 = 1,
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Figure 3. The special fiber of reduction type [Im1−m2−m3 ] and its re-
duction graph

then the corresponding singular point on the special fiber of C is regular and is therefore
not blown up.

We set B0 := Bm1
:= C0 := Cm2

:= A. Then every element of the component group has
a representative of the form [Bi − Cj ] with 0 ≤ i ≤ m1 and 0 ≤ j ≤ m2. The following
result expresses µ(P ) in terms of this representative.

Proposition 9.3. Suppose that there are exactly two nodes in the special fiber of C; let
m1 and m2 and the notation for the components of the special fiber of Cmin be as above.
If P ∈ J(k) maps to [Bi − Cj ] in the component group, then we have

µ(P ) =
i(m1 − i)

m1
+
j(m2 − j)

m2
.

Proof. This is an easy computation along the same lines as in the proof of Proposi-
tion 9.1. �

The final case that we have to consider is the case of three nodes in the special fiber of
C, which then has two components. We call these components A and E. The special
fiber of the minimal proper regular model is obtained using a sequence of blow-ups of the
singular points; they are replaced by a chain of mi−1 curves of genus 0 and multiplicity 1,
respectively, where v(∆) = m1 +m2 +m3. Hence the special fiber of Cmin contains the
two components A and E, connected by three chains of curves of genus 0 that we call
B1, . . . , Bm1−1, C1, . . . , Cm2−1 and D1, . . . , Dm3−1, respectively, where B1, C1 and D1

intersect A, as shown in Figure 3. The reduction type is [Im1−m2−m3 ].

By [BLR90, Prop. 9.6.10], the group Φ(k̄) is isomorphic to Z/dZ× Z/nZ, where

d = gcd(m1,m2,m3) and n =
m1m2 +m1m3 +m2m3

d
.

We set B0 := C0 := D0 := A and Bm1
:= Cm2

:= Dm3
:= E. Then it is not hard to see

that each element of Φ(k̄) can be written in one of the forms

[Bi − Cj ], [Cj −Dl] or [Dl −Bi]
with 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, 0 ≤ l ≤ m3. The following result allows us to express
µ(P ) for any P ∈ J(k) in terms of the component P maps to.

Proposition 9.4. Suppose that there are three nodes in the special fiber of C; let m1,
m2, m3 and the notation for the components of the special fiber of Cmin be as above. If
P maps to [Bi−Cj ] in the component group for some 0 ≤ i ≤ m1 and 0 ≤ j ≤ m2, then
we have

µ(P ) =
m2i(m1 − i) +m3(i+ j)(m1 − i+m2 − j) +m1j(m2 − j)

m1m2 +m1m3 +m2m3
.

The formulas for [Cj −Dl] and [Dl −Bi] are analogous.
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Proof. The proof is analogous to those of Propositions 9.1 and 9.3. To find g, use that it
is piecewise linear on the segments AB1 . . . Bi, Bi . . . Bm1−1E, AC1 . . . Cj , Cj . . . Cm2−1E
and AD1 . . . Dm3−1E and the relations at the vertices A, E, Bi and Cj . �

Remark 9.5. Using the relation ε(P ) = 4µ(P ) − µ(2P ), one can show by a somewhat
tedious computation involving a number of different cases that if the image of P in Φ(k)
is [Γ1 − Γ2], where Γ1 and Γ2 are components of the special fiber of Cmin, then ε(P ) is
the ‘distance’ between Γ1 and Γ2 in the reduction graph, where the ‘length’ of the path
between Bi and Bj (say, analogously for Ci, Cj and Di, Dj) is min{2|i − j|,m1} and
otherwise, ‘lengths’ are additive. In particular, if Φ(k) = Φ(k̄), then

γ = max{ε(P ) : P ∈ J(k)} = max{mi +mj − δij : 1 ≤ i < j ≤ 3} ,
where δij = 0 if both mi and mj are even, and δij = 1 otherwise.

Remark 9.6. In order to use the results of this section to actually compute µ(P ) for a
given point P ∈ J(k), we need to be able to find the component of Jv that P reduces
to. One approach is to find P1 and P2 ∈ C such that P = [(P1) − (P2)] and find the
reductions of P1 and P2 to Cmin

v . Another approach is to use a transformation (possibly
defined over an unramified extension of k) to move the singular points to ∞, (0, 0) and
(1, 0), respectively. Then we can (possibly after applying another transformation) read
off the component that P maps to directly from the Kummer coordinates of P .

The discussion of this section shows that we get the following results on the local height
constant β = max{µ(P ) : P ∈ J(k)}. Recall that γ = max{ε(P ) : P ∈ J(k)} and that
γ/4 ≤ β ≤ γ/3. We will see that in many cases the lower bound is attained.

Let P be a node on Cv; it is defined over a finite extension of k. We say that the
node P is split if the two tangent directions of the branches at P are defined over every
extension that P is defined over, otherwise P is non-split. We say that P is even if its
contribution mi to the valuation of the discriminant is even, and odd otherwise.

Corollary 9.7. Suppose that C/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there is a unique node in the special fiber of C
and let m = v(∆). Then we have

β =
1

2m

⌊
m2

2

⌋
≤ v(∆)

4
.

if the node is split or even, and β = 0 otherwise.

Proof. This follows from Proposition 9.1, taking into account that if m is odd and the
node is non-split, then the group Φ(k) is trivial. �

Remark 9.8. Using the relation ε(P ) = 4µ(P )− µ(2P ), one can check that

ε(P ) = 2 min{i,m− i} if P maps to [Bi −A] in Φ(k).

If m is even (and β > 0), then β = m/4 = γ/4. If m is odd, then β = (m− 1/m)/4 and
γ = m− 1, so β/γ = (1 + 1/m)/4 approaches 1/4 as m→∞, but for m = 3 (the worst
case), we have β = γ/3.

Corollary 9.9. Suppose that C/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there are exactly two nodes in the special fiber of
C. Let v(∆) = m1 +m2 as above. Then we have

β =
1

2m1

⌊
m2

1

2

⌋
+

1

2m2

⌊
m2

2

2

⌋
≤ v(∆)

4
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if each of the nodes is split or even,

β =
1

2mi

⌊
m2
i

2

⌋
if the node corresponding to mi is split or even and the other node is non-split and odd,
and β = 0 if both nodes are non-split and odd.

Proof. This follows from Proposition 9.3, taking into account the action of Frobenius
on Φ(k̄). �

If we have three nodes, then it helps to take the field of definition of the nodes into
account.

Corollary 9.10. Suppose that C/k is a smooth projective curve of genus 2 given by an
integral Weierstrass model C such that there are three nodes in the special fiber of C.
We say that C is split if the two components A and E of the special fiber of Cmin are
defined over k, otherwise C is non-split. Let v(∆) = m1 + m2 + m3 as above and set
M = m1m2 +m1m3 +m2m3.

(a) If all nodes are k-rational, C is split, and we have m1 ≥ m3 and m2 ≥ m3, then

β =
1

2M

(
m2

⌊
m2

1

2

⌋
+m3

⌊
(m1 +m2)2

2

⌋
+m1

⌊
m2

2

2

⌋)
≤ m1 +m2

4
<
v(∆)

4
.

(b) If all nodes are k-rational, but C is non-split, then

β = max{0} ∪
{mi +mj

4
: 1 ≤ i < j ≤ 3, mi and mj even

}
.

(c) If two of the nodes lie in a quadratic extension of k and are conjugate over k and
one is k-rational, then

β =


m1

M
max

{⌊
m2

1

2

⌋
+m1m3,

⌊
m2

3

2

⌋
+m1

⌊m3

2

⌋}
, if C is split,

m1

2
, if C is non-split and m1 is even,

0, otherwise.

where m3 corresponds to the rational node (and m1 = m2).
(d) If all nodes are defined over a cubic extension of k and are conjugate over k, then

m1 = m2 = m3 = v(∆)/3 and

β =


v(∆)

9
, if C is split,

0, otherwise.

Proof. The proof of (a) follows easily from Proposition 9.4.

For the other cases, note that in the non-split case, some power of Frobenius acts as
negation on the component group Φ(k̄), so the only elements of Φ(k) are elements of
order 2 in Φ(k̄), which correspond to [Bm1/2 − Cm2/2] if m1 and m2 are even (where µ
takes the value (m1 +m2)/4), and similarly with the obvious cyclic permutations.

In the situation of (c), we must have m1 = m2. If P = [(P1) − (P2)] ∈ J(k) and
P1 ∈ C(k̄) maps to one of the conjugate nodes, then P2 must map to the other, so all
P ∈ J(k) must map to a component of the form [Bi −Cj ] or [Di −Dj ]. Now the result
in the split case follows from a case distinction depending on whether m1 ≤ m3 or not.
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In the non-split case, the only element of order 2 that is defined over k is [Bm1/2−Cm1/2]
if it exists.

In the situation of (d), the group Φ(k) is of order 3 (generated by [E − A]) in the split
case and trivial in the non-split case. �

Extending the valuation v : k× � Z to v̄ : k̄× → Q, we get extensions of ε and µ to J(k̄).
Denote max{µ(P ) : P ∈ J(k̄)} by β̄ and max{ε(P ) : P ∈ J(k̄)} by γ̄. Then by the
discussion at the beginning of Section 8 and the results above, we find that

β̄ =
γ̄

4
=
v(∆)

4
,

when there are one or two nodes, and

v(∆)

6
≤ β̄ =

γ̄

4
=
v(∆)−min{m1,m2,m3}

4
<
v(∆)

4
,

when there are three nodes. (Equality is achieved as soon as the Galois action on R(C)
is trivial and the ramification index is even.)

10. Formulas and bounds for µ(P ) in the cuspidal reduction case

In this section we consider the case of a stably minimal Weierstrass model C such that
there are (one or two) points of multiplicity 3 on the special fiber. These points are either
both k-rational or they are defined over a quadratic extension of k and are conjugate
over k.

In the notation of Namikawa and Ueno [NU73], the reduction type is of the form [K1 −
K2 − l], where l ≥ 0 and Kj is an elliptic Kodaira type for j ∈ {1, 2}. We can compute
K1, K2 and l as in [Liu94, §6.1]. By [Liu94, §7], we have

Φ(k̄) ∼= Φ1(k̄)× Φ2(k̄) ,

where Φj is the component group of an elliptic curve with Kodaira type Kj . As in the
previous section, we write ∆ = ∆(C) for the discriminant of the model C.

A

2

Figure 4. The special fiber of reduction type [I0 − I∗0 − 0]

If C is not regular, then we can compute the minimal proper regular model Cmin of C
from C by a sequence of blow-ups in the singular point(s) of C, so the corresponding
morphism ζ : Cmin → C is the minimal desingularization of C.
Suppose that l > 0. Then the special fiber of Cmin consists of Kodaira types K1 and K2,
connected by a chain of l− 1 rational curves. See for example Figure 5. The desingular-
ization ζ contracts K2 to one of the singular points; in this case we say that this point
corresponds to K2. If there is another singular point in Cv(k̄), then it corresponds to K1,
otherwise we must have K1 = I0.
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Suppose now that l = 0. If both K1 and K2 are good or multiplicative, then we are in
the situation [Im1−m2−0] for some m1,m2 ≥ 0, which we have discussed in the previous
section. So we may assume that at least one of the Kj is additive, say K2. Then Cmin

v

looks like Kodaira type K2, but with one of the rational curves replaced by (see [NU73])

• a curve A of genus 1 if K1 = I0 (see Figure 4 for the case K2 = I∗0 );
• one of the rational components of K1, otherwise; the remainder of K1 is then

attached to this component.

We say that a singularity corresponds to one of the Kodaira types K1 or K2 similarly to
the case l > 0.

Lemma 10.1. Suppose that the residue characteristic of k is not 2. Let C be given by a
stably minimal Weierstrass model with reduction type [K1−K2− l]. Then after at most
a quadratic unramified extension of k there is a stably minimal Weierstrass model

C : Y 2 = F (X,Z) = f6X
6 + f5X

5Z + f4X
4Z2 +X3Z3 + f2X

2Z4 + f1XZ
5 + f0Z

6

of C, isomorphic to the given model of C, such that the elliptic curve with Weierstrass
model

E1 : Y 2Z = X3 + f2X
2Z + f1XZ

2 + f0Z
3

has Kodaira type K1 and the elliptic curve with Weierstrass model

E2 : Y 2Z = X3 + f4X
2Z + f5XZ

2 + f6Z
3

has Kodaira type K2.

Proof. After possibly making a quadratic unramified extension and applying a transfor-
mation, we can assume that there is a unique point ∞ ∈ Cv(k) at infinity on the special
fiber and that it is a cusp, corresponding to K2, see the discussion preceding the lemma.
Moreover, we can assume that if there is another singular point in Cv(k̄), then this point
is P = (0, 0) ∈ Cv(k) (in which case it must correspond to K1).

Because the residue characteristic is not 2, we may assume that C has H = 0 and that
f3 is a unit. By Hensel’s Lemma there is a factorization F = F1F2, where F2 is a cubic
form reducing to Z3. Similarly, we may assume that F1 reduces to X3 if there is a cusp
at P and to X2(X + aZ) with a 6= 0 if there is a node at P ; otherwise F1 is squarefree.
Consider the elliptic curves given by the Weierstrass models

D1 : Y 2Z = F1(X,Z) and D2 : Y 2Z = F2(Z,X) .

We first show that D1 has Kodaira type K1 and D2 has Kodaira type K2.

If D1 is not minimal, then we can apply a transformation to C which makes D1 minimal.
This decreases the valuation of the discriminant ∆(D1), but increases the valuation
of ∆(D2) by the same amount. The resulting model ist still stably minimal and the
resulting F2 still reduces to Z3. Hence we may assume that D1 is minimal.

Let Q = (0, 0) ∈ D1,v(k); then D1 is smooth outside Q. Note that F2 is a unit in OC,P ,
so that P is a smooth point if and only if Q is a smooth point, in which case D1 has
reduction type I0 = K1. More generally, C is regular at P if and only if D1 is regular
at Q, and P is a node (resp., a cusp) if and only if Q is a node (resp., a cusp). Recall
that P corresponds to K1, so that D1 has reduction type I1 (resp., II) if and only if
K1 = I1 (resp., K1 = II).

Now suppose that C is not regular at P and D1 is not regular at Q. The minimal
desingularization ξ : C′ → C in P can be computed by a sequence of blow-ups, starting
with the blow-up of C in P . The preimage of P under the latter map is contained in the
chart C1 obtained by dividing the x- and y-coordinates by the uniformizing element π.
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Similarly, in order to compute the minimal desingularization ξ1 : D′1 → D1 in Q, we
first blow up D1 in Q; then the chart D1

1 obtained by dividing the x- and y-coordinates
by π contains the preimage of Q. But because F2 reduces to Z3, the special fibers of C1

and D1
1 are identical. This continues to hold after further blow-ups (if any are necessary),

so we have ξ−1(P ) = ξ−1
1 (Q). There are no exceptional components in these preimages,

since we assumed that D1 is minimal. Therefore D′1 is in fact the minimal proper regular
model of the elliptic curve defined by D1. Since the minimal desingularization of C′ in
the point ∞ ∈ C′v(k) leads to Cmin, and since P corresponds to K1, we deduce that D1

has Kodaira type K1.

A similar argument (for which we first apply a transformation to make D2 minimal)
shows that D2 has Kodaira type K2. To complete the proof of the lemma, we therefore
only need to make sure that Ei has the same reduction type as Di for i = 1, 2. This is
certainly satisfied if the coefficients of Ei and Di agree modulo πNi+1, where Ni is the
number of blow-ups needed to construct the minimal desingularization of Di. Suppose
that F1 = a0Z

3 + a1XZ
2 + a2X

2Z + a3X
3 and F2 = b3Z

3 + b2XZ
2 + b1X

2Z + b0X
3.

Writing out the coefficients of F in terms of the coefficients of F1 and F2, we see that it
suffices to have

v(a0b2) > v(a1), v(b0a2) > v(b1), v(a0b1 + a2b2) > v(a2), v(a1b0 + a2b1) > v(b2) .

If this is not satisfied, it can be achieved by acting on the given stably minimal Weier-
strass model via a suitable element of GL2(O) as in §4. Finally, we scale the variables
to get f3 = 1. �

Remark 10.2. If the residue characteristic is 2, then it is not hard to see that one
can also construct a stably minimal Weierstrass model C and corresponding elliptic
Weierstrass models E1 and E2 as in the lemma in a similar way. The construction is
more cumbersome, since we cannot assume H = 0.

In view of Theorem 7.4 we want a condition for C to have rational singularities.

Lemma 10.3. The model C has rational singularities if and only if l = 0.

Proof. We may assume that C is as in Lemma 10.1 or Remark 10.2. Then all points in
Cv(k̄) \ {∞, P} are non-singular, where ∞ ∈ Cv(k) is the unique point at infinity, and
P = (0, 0) ∈ Cv(k). If C is regular in P , then P is a rational singularity. If not, then,
by [Art66, Thm. 3], P is a rational singularity if and only if the fundamental cycle of
ξ−1(P ) has arithmetic genus 0, where ξ is any desingularization of P . In particular, the
assertion that P is a rational singularity depends only on the configuration of ξ−1(P ),
where ξ : C′ → C is the minimal desingularization of P . Now let E1 be as in Lemma 10.1
or Remark 10.2, and let ξ1 : E ′1 → E1 denote the minimal desingularization of the singular
point Q = (0, 0) ∈ E1,v(k); then the assertion that Q is a rational singularity depends

only on the configuration of ξ−1
1 (Q). We have ξ−1(P ) = ξ−1

1 (Q) as in the proof of
Lemma 10.1 (this also works when char k = 2 and does not require minimality of E1).
In particular, P is a rational singularity if and only if Q is a rational singularity.

A similar argument proves the corresponding statement for E2. Hence C has rational
singularities if and only if both E1 and E2 have rational singularities. By [Con05, Corol-
lary 8.4] a Weierstrass model of an elliptic curve has rational singularities if and only if it
is minimal. But it is easy to see that E1 and E2 are both minimal if and only if l = 0. �

According to Lemma 10.3, not all singularities of the given stably minimal Weierstrass
model C are rational when l > 0. The following example shows that in this situation
ε(P ) 6= 0, and hence µ(P ) 6= 0, can indeed occur for P ∈ J0(k).
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Figure 5. The special fiber of reduction type [Im1 − Im2 − l] and its
reduction graph

Example 10.4. Let p be an odd prime and let C/Qp be given by

Y 2 = Z(X2 + Z2)(X3 + p5XZ2 + p8Z3) .

Let P1 = (0, p4) ∈ C(Qp) and P2 = ι(P1). The reduction type is [I0 − III − 1] and
hence #Φ(k̄) = 2. It turns out that both P1 and P2 map to the same component and
so we have P = [(P1) − (P2)] ∈ J0(k). The image of P on the Kummer surface is of
the form (x1 : 0 : 0 : x4), where v(x4) − v(x1) = 2. We get ε(P ) = ε(2P ) = 6 and
µ(P ) = µ(2P ) = 2.

The case of semistable reduction, corresponding to reduction type [Im1 − Im2 − l], see
Figure 5, deserves special attention. Here l ≥ 1, by the discussion above. Note that
m1 = 0 (or m2 = 0) is possible; in that case A (or E) is a curve of genus 1 and there
are no components Bi (or Di). If m1 = 1 (or m2 = 1), then A (or E) is a nodal curve
(and again there are no Bi or Di). After perhaps an unramified quadratic extension,
we can assume that all components in the ‘chain’ that connects the two polygons in the
special fiber of Cmin are defined over k. There are then l+ 1 different (meaning pairwise
non-isomorphic over O) minimal Weierstrass models of the curve, compare the proof of
Lemma 5.4. Explicitly, these models can be taken to have the form

Cj : Y 2 + (h0π
3jZ3 + h1π

jZ2X + h2π
l−jZX2 + h3π

3(l−j)X3)Y

= f0π
6jZ6 + f1π

4jXZ5 + f2π
2jX2Z4 +X3Z3(10.1)

+ f4π
2(l−j)X4Z2 + f5π

4(l−j)X5Z + f6π
6(l−j)X6

for j = 0, 1, . . . , l, where

y2 + h1xy + h0y = x3 + f2x
2 + f1x+ f0 and

y2 + h2xy + h3y = x3 + f4x
2 + f5x+ f6

are minimal Weierstrass equations of elliptic curves of reduction types Im1 and Im2 ,
respectively. Such a model corresponds to the vertex Cj of the reduction graph (where
we set C0 = A and Cl = E); the corresponding component of the special fiber of Cmin is
the one that is visible in the special fiber of Cj . The valuation of the discriminant of Cj
is m1 +m2 + 12l and does not depend on j.

A simple path in R(C) is a subgraph that is a tree without vertices of valency ≥ 3. Let
P1, P2 ∈ C(k) reduce to components Γ1 and Γ2 of the special fiber of Cmin, respectively.
Consider the model Cj of C. If there is a simple path from Γ1 to Γ2 in the reduction
graph that passes through Cj , then we say that Cj lies between P1 and P2. We denote
the µ-function computed with respect to Cj by µj .

Proposition 10.5. Assume that C has semistable reduction of type [Im1 − Im2 − l]. Let
P1, P2 ∈ C(k) be points reducing to components Γ1 and Γ2 of the special fiber of Cmin
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and let j ∈ {0, 1, . . . , l}. Define jmin and jmax to be the smallest, respectively largest,
j′ ∈ {0, 1, . . . , l} such that Cj′ lies between P1 and P2. Let P = [(P1) − (P2)] ∈ J(k).
Then

r(Γ1,Γ2) + jmax − jmin ≤ µj(P ) ≤ r(Γ1,Γ2) + |j − jmax|+ |j − jmin| .
If Cj lies between P1 and P2, then the inequalities are equalities.

Proof. First note that the last statement follows from the first, since jmin ≤ j ≤ jmax

implies jmax − jmin = |j − jmax|+ |j − jmin|.
Let B0 = Bm1 = A and D0 = Dm2 = E. We prove a number of lemmas.

Lemma 10.6. If j = jmax = jmin ∈ {0, l}, then µj(P ) = r(Γ1,Γ2).

Proof. We assume that j = jmax = jmin = l; the other case is analogous. Then Γ1

and Γ2 are both of the form Di, and we consider the model Cl. We first claim that
µ(P ) = 0 if Γ1 = Γ2, but the images of P1 and P2 on Γ1 are distinct. This is clear if
Γ1 = D0 = E, since in this case P is in the image of α, compare Lemmas 7.1 and 7.2.
Otherwise, we note that the points with nonzero multiplicity on the special fiber of Cl
have multiplicities 1, 2 and 3. Transforming the equation over O if necessary, we can
assume that its reduction is case 7 in Table 1 of [Sto02] or (if the residue characteristic
is 2) case 5 in Table 2 here.

Recall that Γ1 = Γ2 = Di, where we can assume 0 < i ≤ m2/2. Applying a transforma-
tion, we may assume that the points P1 = (ξ1 : η1 : 1) and P2 = (ξ2 : η2 : 1) both reduce
to (0 : 0 : 1) modulo π and that m2 = min{v(f0), 2v(f1)}. First suppose that i < m2/2.
We then have v(ξ1) = v(ξ2) = v(ξ1 − ξ2) = i. Normalizing the Kummer coordinates x
of P so that x1 = 1, we can check that v(x2) and v(x3) are positive, but that v(x4) = 0.
This follows because Γ1 = Di = Γ2 implies that v(f2ξ1ξ2 + 2η1η2) = 2i if char(k) 6= 2
and H = 0 and that v(ξ1η2 + ξ2η1) = 2i if char(k) = 2. By a similar argument, the
reduction of the image of P on the Kummer surface has non-vanishing last coordinate
if m2 is even and i = m2/2. According to the tables, this implies that ε(P ) = 0 and
therefore also µ(P ) = 0.

Now consider the case that Γ1 and Γ2 do not necessarily coincide. The considerations
above imply that the assumptions of Proposition 8.5 are satisfied with µ1 = µ2 = 0
(where we use Lemma 3.7 for the first assumption); the proposition then establishes the
claim. �

Lemma 10.7. Assume that Γ1 = Γ2 = Cj with 0 < j < l. Then µj(P ) = 0.

Proof. In this case, P is in the image of α, so the claim follows by Proposition 7.3. �

Note that Lemmas 10.6 and 10.7 establish the claim of Proposition 10.5 in all cases such
that j = jmin = jmax.

Lemma 10.8. Assume that both Cj and Cj+1 lie between P1 and P2, where 0 ≤ j < l.
Then µj(P ) = µj+1(P ).

Proof. Let τ : (ξ : η : ζ) 7→ (πξ : η : π−1ζ); then τ gives an isomorphism from the generic
fiber of Cj to that of Cj+1. The induced map on Kummer coordinates is

(x1, x2, x3, x4) 7−→ (π−2x1, x2, π
2x3, x4) ;

we have v(τ) = 0. Since both Cj and Cj+1 lie between P1 and P2, assuming that Γ1 is to
the left and Γ2 to the right of Cj and Cj+1, we must have that the x-coordinate of P1 on Cj
does not reduce to infinity, whereas that of P2 does. For normalized Kummer coordinates
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x = (x1, x2, x3, x4) of P on the Kummer surface associated to Cj , this implies v(x2) = 0
(the point is not in the kernel of reduction, so v(x4) ≥ min{v(x1), v(x2), v(x3)}) and
v(x1) > 0. Comparing valuations in the equation of Cj , we see that P2 = (1 : η : ζ)
must have v(ζ) ≥ 2, which implies v(x1) ≥ 2. It follows that v(τ(x)) = 0 = v(x). By

Corollary 4.6 we also have λ̂(τ(x)) = λ̂(x) (recall that v(τ) = 0). Since

−v(x)− µj(P ) = λ̂(x) = λ̂(τ(x)) = −v(τ(x))− µj+1(P ) ,

the claim follows. �

Lemma 10.9. If Cj lies between P1 and P2, then µj(P ) depends only on Γ1 and Γ2.

Proof. Let P ′1, P
′
2 ∈ C(k) be points also mapping to Γ1 and Γ2, respectively. We assume

without loss of generality that Γ1 is to the left of Γ2. By Lemmas 10.6 or 10.7, we have
that µjmin([(P1)− (P ′1)]) = 0 and µjmax([(P2)− (P ′2)]) = 0. Using Lemmas 10.8 and 3.7,
we obtain

µj
(
[(P ′1)− (P ′2)]

)
= µjmin

(
[(P ′1)− (P ′2)]

)
= µjmin

(
[(P1)− (P ′2)]

)
= µjmax

(
[(P1)− (P ′2)]

)
= µjmax

(
[(P1)− (P2)]

)
= µj(P ) . �

Lemma 10.10. Let P ′1, P
′
2 ∈ C(k) be points mapping to distinct points on the same

component of the special fiber of Cmin and let P ′ = [(P ′1) − (P ′2)] ∈ J(k). Let j0 be the
unique index such that Cj0 lies between P ′1 and P ′2. Then µj(P

′) = 2|j − j0|.

Proof. By Lemmas 10.6 and 10.7, we have µj0(P ′) = 0. Since the images of P ′1 and P ′2
on the special fiber of Cmin are distinct, P ′ is not in the kernel of reduction with respect
to Cj0 . If

x(j0) = (x
(j0)
1 , x

(j0)
2 , x

(j0)
3 , x

(j0)
4 )

are normalized Kummer coordinates for P ′ on the Kummer surface associated to Cj0 ,
we therefore have

0 = v(x(j0)) = min{v(x
(j0)
1 ), v(x

(j0)
2 ), v(x

(j0)
3 )} .

Applying a suitable power of τ (see the proof of Lemma 10.8), we find that

x(j) = (π2(j0−j)x
(j0)
1 , x

(j0)
2 , π2(j−j0)x

(j0)
3 , x

(j0)
4 )

are (not necessarily normalized) Kummer coordinates for P ′ on the Kummer surface
associated to Cj . For definiteness, assume that j > j0, the case j = j0 being clear.

Similarly to the proof of Lemma 10.8, we find that 0 = v(x(j0)) = v(x
(j0)
1 ), which implies

that v(x(j)) = −2(j − j0). In the same way as in the proof of Lemma 10.8, we deduce
µj(P

′) = 2(j − j0) = 2|j − j0|. �

To continue the proof of the proposition, we now first consider the case that Cj lies
between P1 and P2. In this case, Lemmas 10.9 and 10.10 show that the assumptions in
Proposition 8.5 hold with µ1 = 2|j − jmin| and µ2 = 2|j − jmax| or conversely. So the
statement follows from Proposition 8.5 and |j − jmax|+ |j − jmin| = jmax − jmin.

Now assume that Cj does not lie between P1 and P2. We assume for definiteness that

j > jmax. For normalized Kummer coordinates x(jmax) for P = [(P1) − (P2)] on the

Kummer surface associated to Cjmax , we have v(x
(jmax)
2 ) ≤ min{v(x

(jmax)
1 ), v(x

(jmax)
3 )},

compare the proof of Lemma 10.8 above. Then x(j) = τ j−jmax(x(jmax)) are Kummer
coordinates for [(P1)− (P2)] on the Kummer surface associated to Cj , and we have

v(x(jmax))− 2(j − jmax) ≤ v(x(j)) ≤ v(x(jmax)) .
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It follows that

µj(P )− µjmax(P )

=
(
−λ̂(x(j))− v(x(j))

)
−
(
−λ̂(x(jmax))− v(x(jmax))

)
= v(x(jmax))− v(x(j)) ∈ {0, 1, . . . , 2(j − jmax)}.

As µjmax(P ) = r(Γ1,Γ2) + jmax − jmin by the case already discussed, the result follows,
and the proof of Proposition 10.5 is finished. �

Corollary 10.11. Let C be a stably minimal Weierstrass model of C with discrimi-
nant ∆; assume that C has reduction type [Im1 − Im2 − l] with l > 0. As usual, let

β(C) = max{µ(P ) : P ∈ J(k)} and β̄(C) = max{µ(P ) : P ∈ J(k̄)} ,

where µ is computed with respect to C. Then we have

β(C) ≤ β̄(C) =
m1 +m2

4
+ 2l <

v(∆)

4
and β̄ ≥ v(∆)

6
.

Proof. The assumption on the reduction type implies that the model is equivalent to
one of the form (10.1). Proposition 10.5 then gives upper bounds for µ([(P1) − (P2)]),
with P1, P2 ∈ C(k̄), depending on the images Γ1 and Γ2 of P1 and P2 in the reduction
graph. The maximizing case occurs for Γ1 = Bm1/2 and Γ2 = Dm2/2, giving

µ([(P1)− (P2)]) = r(Bm1/2, Dm2/2) + l = 1
4m1 + l + 1

4m2 + l .

For the remaining inequalities, recall that v(∆) = m1 +m2 + 12l and that l > 0. �

We state a technical lemma, which will be needed for the proof of Theorem 10.13 below.

Lemma 10.12. Suppose that the residue characteristic of k is not 2. Consider a de-
generate Weierstrass equation of the form

C : Y 2 = f0Z
6 + f1XZ

5 + f2X
2Z4 +X3Z3

and let

E : y2 = f0 + f1x+ f2x
2 + x3

be an elliptic Weierstrass equation. If Q1 = (x1, y1) and Q2 = (x2, y2) are points in E(k),
then P1 = (x1 : y1 : 1) and P2 = (x2 : y2 : 1) are points in C(k), and if x1, x2 ∈ O, then
µC([(P1)− (P2)]) ≤ µE(Q1 −Q2).

Here µE is the height correction function for the elliptic curve E and µC denotes the
height correction function defined in the same way as µ in the smooth case in terms of
the equation C.

Proof. Let δC = (δC,1, δC,2, δC,3, δC,4) be the duplication polynomials on the Kummer
surface associated to C, and let δE = (δE,1, δE2) be the duplication polynomials for
the numerator and denominator of the x-coordinate associated to E . Then a generic
computation shows that, if (ξ1 : ξ2 : ξ3 : ξ4) is the image of [(P1)− (P2)] on the Kummer
surface, we have (ξ4 : ξ1) = x(Q1 − Q2). In addition, we find that (as polynomials in
the ξj) δC,1(ξ1, ξ2, ξ3, ξ4) = δE,2(ξ4, ξ1) and δC,4(ξ1, ξ2, ξ3, ξ4) = δE,1(ξ4, ξ1).

That P1, P2 ∈ C(k) is obvious from the equations. For the last statement, we observe
that min{v(ξ1), v(ξ2), v(ξ3), v(ξ4)} = min{v(ξ1), v(ξ4)} (this is where we use that x1
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and x2 are integral), which implies

µC([(P1)− (P2)]) = lim
n→∞

4−nv
(
δ◦nC (ξ)

)
− v(ξ)

≤ lim
n→∞

4−nv
(
δ◦nE (ξ4, ξ1)

)
−min{v(ξ1), v(ξ4)}

= µE(Q1 −Q2) . �

The following consequence is useful for practical purposes. For simplicity, we state it for
the case of residue characteristic 6= 2, but we expect that the statement remains true
for residue characteristic 2.

Theorem 10.13. Suppose that the residue characteristic of k is not 2. Let C be a stably
minimal Weierstrass model of C such that C has reduction type [K1 −K2 − l]. Then

β(C) ≤ β(K1) + β(K2) + 2l ,

where β(K) denotes the maximum of µ for an elliptic curve of reduction type K (taking
the action of Frobenius into account), see Table 1 in [CPS06].

Proof. We may assume that the point(s) of multiplicity 3 on the special fiber are defined
over k, at the cost of an at most quadratic unramified extension of k. Then we can move
these points to have x-coordinates 0 and ∞, respectively, and so we can assume that
our model C is as in Lemma 10.1. Let P ∈ J(k); we write P = [(P1) − (P2)] with
points P1, P2 ∈ C(k′) for a finite extension k′ of k such that the reduction of C over k′

is semistable. We can find C0, C = Cj and Cl as vertices in the reduction graph of the
minimal proper regular model of C over k′. Then the part of the graph to the left
of C0 corresponds to the reduction graph of E1 over k′, in the sense that we consider
a semistable model that dominates E1 (and is minimal with that property); the graph
then is either a line segment (potentially good reduction) or a line segment joined to
a circle (potentially multiplicative reduction), with E1 corresponding to the end of the
line segment joined to the remaining graph of C. Similarly, the part of the graph to the
right of Cl corresponds to the reduction graph of E2 over k′.

Now assume that both P1 and P2 map (strictly) to the left of C0 in the reduction graph.
This means that the x-coordinates of the points have positive valuation. We can then
find points P ′1 and P ′2 in E1(k′) with the same x-coordinates as P1 and P2 and nearby y-
coordinates. Then P ′1−P ′2 is in E1(k) and P ′1 and P ′2 have the same images as P1 and P2

in the reduction graph. By our previous results for the semistable case, the value of (or
at least the upper bound given in Proposition 10.5 for) µ0(P ) depends only on the part
of the graph to the left of C0. We can therefore let l tend to infinity; then Lemma 10.12
and the discussion preceding Lemma 10.3 show that µ0(P ) is bounded by the value
of µE1 on the difference P ′1 − P ′2. By the arguments in the proof of Proposition 10.5, we
have that

µC(P ) = µj(P ) ≤ µ0(P ) + 2j ≤ β(K1) + 2l .

The case that P1 and P2 both map to the right of Cl is similar.

If (say) P1 maps to the left of C0 and P2 maps to the right of C0, but not to the right
of Cl, then by the formula of Proposition 10.5, we can bound µC(P ) by µ1 + 2l, where
µ1 comes from the part of the graph between P1 and C0. By an argument similar to
the one used in the previous paragraph, µ1 can be bounded by µE1(P ′1), where P ′1 is the
point on E1 corresponding to P1 and we take the second point to be on the component
visible in C0. If P2 maps to the right of Cl, then we similarly obtain a bound of the form
µ1 + µ2 + 2l ≤ β(K1) + β(K2) + 2l. The remaining cases are similar or follow directly
from Proposition 10.5. �
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The example in Section 19 demonstrates the effect of the improved bounds on β as given
in the preceding section. For other examples the bounds established in this section will
be similarly useful.

11. General upper and lower bounds for β̄

In this section we derive an upper bound for the geometric height constant β̄(C) in the
general case by reducing to the semistable situation. We also give a lower bound of the
same order of magnitude. We note the following consequence of the results obtained so
far, see the discussion at the end of Section 9 and Corollary 10.11.

Corollary 11.1. Assume that C is a stably minimal Weierstrass model of C over k
and that the minimal proper regular model Cmin of C over k has semistable reduction.
Denoting the discriminant of C by ∆ and writing β̄(C) = max{µC(P ) : P ∈ J(k̄)}, where
µC denotes µ with respect to the model C and J is the Jacobian of C, we have

v(∆)

6
≤ β̄(C) ≤ v(∆)

4
.

When Cmin does not have semistable reduction, the idea is to pass to a suitable field
extension k′/k and apply Corollary 11.1 over k′. In order to compare the corresponding
geometric height constants β̄, we need to analyze how µ changes under minimization.
We first prove the following key lemma:

Lemma 11.2. There exists a transformation τ : C → C′, defined over k, such that C′ is
a minimal Weierstrass model and

v(τ(x)) + v(τ) ≤ v(x) for all x ∈ KSA .

Proof. If C is already minimal, then there is nothing to prove. Otherwise, [Liu96, Re-
marque 11] implies that we can compute a minimal Weierstrass model by going through
the following steps for finitely many points P on the special fiber of C.

(a) Move P to (0, 0).
(b) Scale x by 1/π.
(c) Replace C by the normalization of the resulting model.

As transformations of the form (a) do not change v(x) and have determinant of valua-
tion 0, it suffices to prove

v(τ(x)) + v(τ) ≤ v(x) for all x ∈ KSA

for a transformation τ = σ ◦ ρ, where ρ is as in (b) and σ is as in (c). Note that
such a transformation decreases the valuation of the discriminant, cf. [Liu96, Lemme 9]
and [Liu96, Corollaire 2]. By the discussion following Proposition 4.4, the transformation
ρ maps x ∈ KSA to (πx1, x2, π

−1x3, π
3x4).

Suppose v(2) = 0 and, without loss of generality, H = 0. According to [Liu96, Remar-
que 2], the normalization can be computed using the transformation σ mapping an affine
point (ξ, η) to σ(ξ, η) = (ξ, ηπ−s) for some nonnegative integer s. As v(τ) = 3− 2s, we
must have s ≥ 2, since otherwise τ would increase the valuation of the discriminant.
Because τ(x) = (πx1, x2, π

−1x3, π
3−2sx4) for x ∈ KSA, we find that v(τ(x)) ≤ v(x) + 1,

implying

v(τ(x)) + v(τ)− v(x) ≤ −2s+ 4 ≤ 0 .
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The case v(2) > 0 is slightly more complicated. Here one computes the normalization
by repeatedly applying transformations

(11.1) (ξ, η) 7→
(
ξ,
η +R(ξ, 1)

π

)
,

where R ∈ O[X,Z] is a certain cubic form, until the minimum of the valuations of the
coefficients of F+RH−R2 is equal to 1. See [Liu96, Remarque 2]. Such a transformation
maps Kummer coordinates x = (x1, x2, x3, x4) to(

x1, x2, x3, π
−2x4 + l1x1 + l2x2 + l3x3

)
and the expressions for the li given in Section 4 show that v(li) ≥ −2 for all i. As
the determinant of a transformation (11.1) has valuation −2, we need to apply at least
two such transformations, because otherwise the valuation of the discriminant would
increase. In other words, σ = σs ◦ · · · ◦σ1 where s ≥ 2 and every σi is of the form (11.1).

By the properties of the transformations (11.1), it suffices to show the desired inequality
for the case s = 2, since further applications of transformations σi will only make the
left hand side of the desired inequality smaller and will not change the right hand side.
So suppose that σ = σ2 ◦ σ1; then τ = σ ◦ ρ maps x ∈ KSA to

τ(x) =
(
πx1, x2, π

−1x3, π
−1x4 + πl1x1 + πl2x2 + πl3x3 + πl′1x1 + l′2x2 + π−1l′3x3

)
,

where the li arise from σ1 and the l′i arise from σ2. As v(τ) = −1, it clearly suffices to
prove that

(11.2) v(τ(x)) ≤ v(x) + 1.

But if (11.2) is false, then v(x) = v(x4) < min{v(x1), v(x2) + 1, v(x3) + 2}. In this
situation it follows from the lower bounds v(li) ≥ −2 and v(l′i) ≥ −2 that we get

v
(
πl1x1 + πl2x2 + πl3x3 + πl′1x1 + l′2x2 + π−1l′3x3

)
> v(x4)− 1 .

This implies (11.2) and therefore finishes the proof of the lemma. �

Theorem 11.3. Let C be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C. Then we have

β̄(C) ≤ v(∆(C))
4

.

Proof. By Lemma 5.4 there is a finite extension k′/k such that the minimal proper
regular model of C over k′ is semistable and such that all minimal Weierstrass models
of C over k′ are stably minimal. By Corollary 11.1, the claim therefore holds for any
minimal Weierstrass model of C over k′.

It follows from Lemma 11.2 that there is a transformation τ : C → C′ defined over k′

such that C′ is a minimal (and hence stably minimal) Weierstrass model over k′ and
such that

(11.3) v(τ(x)) + v(τ) ≤ v(x)

for all x ∈ KSA.

Then by the above we have

µ(τ(x)) ≤ v(∆(C′))
4

.
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Now using Corollary 4.6 and the relation (4.2), we find

µ(x) = µ(τ(x))− v(x) + v(τ(x))− v(τ)

≤ v(∆(C′))
4

− v(x) + v(τ(x))− v(τ)

=
v(∆(C))

4
− v(x) + v(τ(x)) +

3

2
v(τ)

≤ v(∆(C))
4

,

where we have used (11.3) and v(τ) ≤ 0. �

Remark 11.4. When the residue characteristic is not 2, then we can easily show that
β̄(C) is indeed always comparable to v(∆(C)). We can assume that H = 0 and write
F = cF0 with F0 primitive. We consider the points of order 2 on J . Such a point P
is given by a factorization F0 = G1G2 with G1 and G2 primitive of degrees 2 and 4,
respectively. An explicit computation shows that

ε(P ) = 4v(c) + 2v(R(P )) ,

where R(P ) denotes the resultant of G1 and G2, and we have 4µ(P ) = ε(P ). Since
v(∆(C)) = v(disc(F )) = 10v(c) + v(disc(F0)) and 4v(disc(F0)) is the sum of the valua-
tions of the 15 resultants R(P ), we find that

β̄(C) ≥ 1

4
max

O 6=P∈J [2]

(
4v(c) + 2v(R(P ))

)
≥ v(c) +

1

30

∑
O 6=P∈J [2]

v(R(P ))

= v(c) +
2

15
v(disc(F0)) ≥ 1

10
v(∆(C)) .

A similar statement should be true when the residue characteristic is 2.

Recall that we denote max{ε(P ) : P ∈ J(k̄)} by γ̄(C).

Corollary 11.5. Let C be a smooth projective curve of genus 2 defined over a non-
archimedean local field k, given by an integral Weierstrass model C. Then we have

γ̄(C) ≤ v(∆(C)) .
If H = 0 and char(k) 6= 2, then this can be improved to

γ̄(C) ≤ v(2−4∆(C)) .

Proof. The first inequality follows from 11.3 and from ε(P ) = 4µ(P ) − µ(2P ). The
second inequality is Theorem 6.1 of [Sto99]. �

Question 11.6. If C is a minimal Weierstrass model, does β̄(C) only depend on the
special fiber of Cmin?

Note that the corresponding statement holds for elliptic curves [CPS06]. In our situa-
tion, however, there may be several non-isomorphic minimal Weierstrass models, which
complicates the picture.
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Part III: Efficient Computation of Canonical Heights

In this part we show how to compute the canonical height ĥ(P ) efficiently for a point P
over a number field, global function field or more general field with a system of absolute
values as in Section 2. We first explain how to compute the local height correction
functions. We use M(d) to denote the time needed to multiply two d-bit integers.

12. Computing µ at non-archimedean places

In this section, k is a non-archimedean local field again, with valuation ring O, uni-
formizer π, normalized valuation v and residue class field k. Let C be an integral
Weierstrass model for a genus 2 curve C over k. We make no assumptions on the
reduction type of C. We already discussed a method for the computation of µ(P ) for
a given point P ∈ J(k) in Section 3. In this section, we provide an alternative fast
algorithm and show that its running time is � (log v(∆))M

(
(log v(∆))v(∆)(log #k)

)
,

where ∆ = ∆(C).

Lemma 12.1. Assume that M is a positive integer such that Mµ(P ) ∈ Z. Further
assume that max{ε(P ) : P ∈ J(k)} ≤ B. Then

µ(P ) =
1

M

⌈
M

blog(BM/3)/ log(4)c∑
n=0

4−n−1ε(2nP )
⌉
.

Proof. This follows from Mµ(P ) ∈ Z and from

0 ≤M
∑
n≥m

4−n−1ε(2nP ) ≤ BM

3 · 4m
. �

If we know that the reduction is nodal, then we get an upper bound B for ε(P ) and
all possible denominators of µ(P ) from the results of Section 9. More generally, if we
know the smallest positive period N of the sequence (µ(nP ))n, then we can take M = N
(respectively, M = 2N) if N is odd (respectively, even) by Corollary 3.11. Also note that
we can always take B = v(∆) (or even B = v(2−4∆) if char(k) 6= 2 and the equation of
the curve has H = 0), see Corollary 11.5.

If we only know an upper bound for the denominator of µ(P ), then the following alter-
native approach can be used. This is analogous to [MS15, Lemma 4.2].

Lemma 12.2. Assume that M ≥ 2 is an integer such that M ′µ(P ) ∈ Z for some
0 < M ′ ≤M . Assume in addition that max{ε(P ) : P ∈ J(k)} ≤ B, and set

m =
⌊ log(BM2/3)

log 4

⌋
.

Then µ(P ) is the unique fraction with denominator ≤M in the interval [µ0, µ0 +1/M2],
where

µ0 =

m∑
n=0

4−n−1ε(2nP ) .

Proof. Note that

µ0 ≤ µ(P ) ≤ µ0 +
∑
n>m

4−n−1B < µ0 + 1/M2 .

But since M ≥ 2, the interval [µ0, µ0 + 1/M2] contains at most one fraction with
denominator bounded by M ; by assumption, µ(P ) is such a fraction. �
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In order to apply Lemma 12.2, we now find a general upper bound M on the possible
denominators of µ. Let J denote the Néron model of J over S = Spec(O) and write Φ
for the component group of J .

Proposition 12.3. Let N denote the exponent of Φ(k̄) and let P ∈ J(k). Then we have

µ(P ) ∈ 1

2N
Z .

If N is odd or if C has a knr-rational Weierstrass point, then we have

µ(P ) ∈ 1

N
Z .

Proof. Let i ∈ {1, . . . , 4} be such that κi(P ) 6= 0. Recall from Lemma 8.2 that the

function λ̂i = λ̂ ◦ κ
κi

is a Néron function with respect to the divisor Di. As P /∈ suppDi,
we find

µ(P ) ≡ λ̂(x) ≡ λ̂i(P ) (mod Z)

for any set of Kummer coordinates x for P . It follows from the results of [Nér65]
and [Lan83, §11.5] that

λ̂i(P ) ≡ j(Di, (P )− (O)) (mod Z) ,

where j( , ) denotes Néron’s bilinear j-pairing, defined in [Nér65, §III.3].

By [Nér65, Prop. III.2], the values of the j-pairing lie in 1
2N ′Z, where N ′ = #Φ(k̄) It is

easy to see that we can replace N ′ by the exponent N in the proof of [Nér65, Prop. III.2],
so the first statement of the proposition follows.

For the second statement, note that the j-pairing takes values in 1
NZ if N is odd, again

by [Nér65, Prop. III.2] and its proof. If C has a knr-rational Weierstrass point P0, then
the divisor Di is linearly equivalent over knr to 2ΘP0 , where ΘP0 is the theta divisor
with respect to P0. The Néron model does not change under unramified extensions, and
µ(P ) mod Z does not depend on the Weierstrass model of C by Corollary 4.6. Hence
we can assume that i = 1 and D1 = 2ΘP0 , so the linearity of the j-pairing in the first
variable proves the claim. �

Remark 12.4. In the notation of Namikawa-Ueno [NU73], the only reduction types for
which Proposition 12.3 does not show that µ(P ) ∈ 1/NZ (where N is the exponent
of Φ(k̄)), are [2III − l] and [2III∗ − l] for l ≥ 0; [2I∗n − l] for n, l ≥ 0; and [2In − l] for
n > 0 even and l ≥ 0. We have not found an example where µ(P ) /∈ 1/NZ.

We can compute the group Φ(k̄) in practice using [BLR90, §9.6]. For this we need to
know the intersection matrix of the special fiber of a regular model of C over S. This
is implemented in Magma, but can be rather slow. If the residue characteristic is not 2,
then we can apply Liu’s algorithm [Liu94] to compute the reduction type and read
off Φ(k̄).

In general, an upper bound for the exponent of Φ(k̄) suffices to apply Lemma 12.2. We
give a bound which only depends on the valuation of the discriminant ∆ = ∆(C).

Lemma 12.5. The exponent of Φ(k̄) is bounded from above by

M := max

{
2,

⌊
v(∆)2

3

⌋}
.

Moreover, the denominator of µ(P ) is bounded from above by M for all P ∈ J(k).

Proof. This follows from a case-by-case analysis, using the list of groups Φ(k̄) from [Liu94,
§8] for all reduction types in [NU73], and Proposition 12.3. �
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Remark 12.6. By going through all reduction types, it is possible to obtain better upper
bounds for the denominator M ′ of µ(P ) from the Igusa invariants discussed in Section 6.
First note that if the special fiber of C is non-reduced, then we have

(i) M ′ ≤ 4 if v(∆) ≤ 12;
(ii) M ′ ≤ max{12, v(∆)− 15} otherwise.

Suppose that C is reduced; then, by Proposition 6.2, we can use the Igusa invariants of
the special fiber to distinguish between the multiplicities of its singularities.

(i) If all points on the special fiber of C have multiplicity at most 2, then we can bound
M ′ using Proposition 6.3 (i–iii) and Propositions 9.1, 9.3, 9.4.

(ii) If there is a point of multiplicity 3 on the special fiber, then we have
• M ′ ≤ min{6, v(∆) + 1} if v(∆) ≤ 10;
• M ′ ≤ 12, if v(∆) ≤ 20;

• M ′ ≤
⌊

(v(∆)−12)2

4

⌋
otherwise.

(iii) If there is a point of multiplicity ≥ 4 on the special fiber, then we have
• M ′ ≤ 3v(∆)− 10 if v(∆) ≤ 10;
• M ′ ≤ 4v(∆)− 20 if v(∆) > 10 and the model is minimal;

• M ′ ≤
⌊

(v(∆)−10)2

3

⌋
if the model is not minimal.

The results of this section lead to an efficient algorithm for the computation of µ(P ),
which is analogous to Algorithm 4.4 of [MS15]. We assume that the coefficients of F
and H and the coordinates of P are given to sufficient v-adic precision (in practice, they
will be given exactly as elements of a number field or function field).

1. If char(k) 6= 2 and H = 0, set B := v(2−4∆). Otherwise, set B := v(∆).
2. Set M := max

{
2, bv(∆)2/3c

}
.

3. Set m := blog(BM2/3)/ log(4)c.
4. Set µ0 := 0. Let x be normalized Kummer coordinates for P with (m+1)B+1 v-adic

digits of precision.
5. For n := 0 to m do:

a. Compute x′ := δ(x) (to (m+ 1)B + 1 v-adic digits of precision).
b. If v(x′) = 0, then return µ0.
c. Set µ0 := µ0 + 4−n−1v(x′).

d. Set x := π−v(x′)x′

6. Return the unique fraction with denominator at most M in the interval between µ0

and µ0 + 1/M2.

The fraction in the final step can be computed easily, for instance using continued
fractions.

For the complexity analysis in the following proposition, we assume that elements of O
are represented as truncated power series in π, whose coefficients are taken from a
complete set of representatives for the residue classes. Operations on these coefficients
can be performed in time � M(log #k).

Proposition 12.7. The algorithm above computes µ(P ). Its running time is

� (log v(∆))M
(
(log v(∆))v(∆)(log #k)

)
as v(∆)→∞, with an absolute implied constant.
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Proof. The following proof is analogous to the proof of [MS15, Prop. 4.5]. Corollary 11.5
shows that B is a suitable upper bound for ε and Lemma 12.5 shows that M is an upper
bound for the denominator of µ. Because M ≥ 2, the loop in step 5 computes the sum
in Lemma 12.2. Note that when v(x′) = 0 in step 5b, then µ(P ) = µ0 by Theorem 3.10.
At each duplication step, the precision loss is ε(2nP ) ≤ B, so that with our choice of
starting precision, after the m+ 1 steps in the loop the resulting x still has at least one
digit of precision. This proves the correctness of the algorithm.

Clearly the running time of the algorithm is dominated by the running time of the loop
in step 5. Step 5a consists of a fixed number of additions and multiplications of elements
of O which are given to a precision of (m + 1)B + 1 digits. Because steps 5b–5d take
negligible time compared to step 5a, each pass through the loop takes

� M
(
((m+ 1)B + 1)(log #k)

)
operations, leading to a total running time that is

� (m+ 1)M
(
((m+ 1)B + 1)(log #k)

)
� mM(mB(log #k))

� (log v(∆))M
(
(log v(∆))v(∆)(log #k)

)
as v(∆)→∞. Here we use that B � v(∆) and M � v(∆)2, so that m� log v(∆). �

Remark 12.8. In step 2, we can use Remark 12.6 to compute a sharper upper bound
for the denominator of µ. See also the discussion following Remark 12.4. Of course, if
we want to find µ(P ) for several points P , the quantities M, B and m only have to be
computed once.

Remark 12.9. We can compute µ(P ) using the algorithm above in more general situ-
ations. Suppose that k is any discretely valued field with valuation ring O and uni-
formizer π. In that case, the sequence (µ(nP ))n might not have a finite period, so the
method for the computation of µ(P ) discussed in Section 3 might not be applicable.
However, Lemma 12.1, Lemma 12.2, Proposition 12.3 and Lemma 12.5 remain valid.
If char(k) 6= 2 and if H = 0, then we have the upper bound ε(P ) ≤ v(2−4∆) (cf. Re-
mark 3.2), so the algorithm above can be used and Proposition 12.7 remains valid as
well, in the sense that the computation can be done using � log v(∆) operations with
elements of O/πnO, where n� v(∆) log v(∆). In the remaining cases, we can compute
an upper bound B on ε as in Remark 3.2, and we can apply the algorithm with this
choice of B.

13. Computing µ at archimedean places

In this section, k is an archimedean local field, so k = R or k = C. We assume
that the curve C is given by a Weierstrass equation C with H = 0. In the following,
log+ x = max{0, log x}.

Let x ∈ k4 be a set of Kummer coordinates. Recall that

ε̃(x) = −[k : R] (log ‖δ(x)‖∞ − 4 log ‖x‖∞)

and

µ̃(x) =
∞∑
n=0

4−n−1ε̃(δ◦n(x)) .
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We easily obtain a lower bound for ε̃ using the standard estimate for ‖δ(x)‖∞. Since
the coefficients of the duplication polynomials δj are universal polynomials of degree at
most 4 in the coefficients of F , this gives

−ε̃� 1 + log+ ‖F‖∞ ,
where ‖F‖∞ is the maximum norm of the coefficient vector of F . We recall that the
method described in Section 7 of [Sto99], leading to equation (7.1) there, provides an
upper bound γ̃ for ε̃ that can be explicitly computed for any given Weierstrass equation C
of the curve (provided H = 0). It is given by

γ̃ = log max
i

 ∑
{S,S′}

|ai,{S,S′}|

√√√√ 4∑
j=1

|b{S,S′},j |

2

≤ log 400 + 2 log max
i,{S,S′}

|ai,{S,S′}|+ log max
{S,S′},j

|b{S,S′},j |

with certain numbers ai,{S,S′}, b{S,S′},j , where i, j ∈ {1, 2, 3, 4} and {S, S′} runs through
the ten partitions of the set of roots of F into two sets of three. Using the formulas
in [Sto99, §10] and Mignotte’s bound (see for example [vzGG99, Cor. 6.33]), we see that

log max
{S,S′},j

|b{S,S′},j | � 1 + log+ ‖F‖∞

and

log max
i,{S,S′}

|ai,{S,S′}| � 1 + log+ ‖F‖∞ + log+ max
{S,S′}

|R(S, S′)|−1 ,

where R(S, S′) is the resultant of the two factors G, G′ of F corresponding to the
partition of the roots. Using Mignotte’s bound again, we find that

|R(S, S′)|−1 =

√
|discG| |discG′|√
|discF |

� ‖F‖2∞|∆(C)|−1/2 ,

leading finally to the estimate

|ε̃| � 1 + log+ ‖F‖∞ + log+ |∆(C)|−1 =: s(F ) .

If |ε̃(x)| ≤ η̃ for all x ∈ KSA, then we have∣∣∣∣∣∣
∑
n≥N

4−n−1ε̃(δ◦n(x))

∣∣∣∣∣∣ ≤ η̃

3
4−N ,

so we need to sum the first

N =

⌈
d

2
+

log(η̃/3)

log 4

⌉
� d+ log s(F )

terms to obtain an accuracy of 2−d. Comparing the largest term in any of the δj and

the lower bound on ‖δ(x)‖∞, we obtain a bound θ̃ on the loss of relative precision (in

terms of bits) in the computation of δ(x); we have θ̃ � s(F ). To achieve the desired
precision at the end, we therefore need to compute with an initial precision of

d+ 1 +Nθ̃ � (d+ log s(F ))s(F )

bits. The time needed for each duplication is then

� M
(
(d+ log s(F ))s(F )

)
.

A logarithm can be computed to d bits of precision in time � (log d)M(d) by one of
several quadratically converging algorithms, see for example [BB98, Chapter 7], so we
obtain the following result.
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Proposition 13.1. Given Kummer coordinates x of a point P in J(k) (or KS(k)) to
sufficient precision, we can compute µ̃(P ) to an accuracy of d bits in time

�
(
d+ log s(F )

)
(log d)M

(
(d+ log s(F ))s(F )

)
,

where

s(F ) = 1 + log+ ‖F‖∞ + log+ |∆(C)|−1 .

In the applications k will be the completion of a number field at a real or complex place.
If the number field is Q and the given equation C of C is integral, then |∆(C)| ≥ 1 and
we have s(F ) = 1 + log ‖F‖∞ = 1 + h(F ), where h(F ) denotes the (logarithmic) height
of the coefficient vector of F as a point in affine space. In general, we have the estimate
(denoting the value of s(F ) for a place v by sv(F ))∑

v|∞

sv(F ) ≤ [K : Q] +
∑
v|∞

log+ ‖F‖v +
∑
v|∞

log+ |∆(C)|−1
v

≤ [K : Q] + h(F ) + h(∆(C))� h(F )

for h(F ) large. This implies that we can compute the infinite part of the height correction
function in time

�
(
d+ log h(F )

)
(log d)M

(
(d+ log h(F ))h(F )

)
,

which is polynomial in d and h(F ).

14. Computing the canonical height of rational points

The first algorithm for computing the canonical height on a genus 2 Jacobian over Q was
introduced by Flynn and Smart [FS97]. It does not require any integer factorization,
but can be impractical even for simple examples, see the discussion in [Sto02, §1]. A
more practical algorithm was introduced by the second author in [Sto02]; here the local
height correction functions are computed separately, so some integer factorization is
required. Uchida [Uch11] later introduced a similar algorithm. De Jong and the first
author [dJM14] used division polynomials for a different approach.

Building on the Arakelov-theoretic Hodge index theorem for arithmetic surfaces due
to Faltings and Hriljac, Holmes [Hol12] and the first author [Mül14] independently
developed algorithms for the computation of canonical heights of points on Jacobians of
hyperelliptic curves of arbitrary genus over global fields. While these algorithms can be
used to compute canonical heights for genus as large as 10 (see [Mül14, Example 6.2]),
they are much slower than the algorithm from [Sto02] when the genus is 2.

In this section we now combine the results of Sections 12 and 13 into an efficient al-
gorithm for computing the canonical height of a point on the Jacobian of a curve of
genus 2 over a global field K.

When K is a function field, then there are no archimedean places and factorization is
reasonably cheap. So in this case, the best approach seems to be to first find the places v
of K such that µv(P ) is possibly non-zero (this includes the places at which the given
equation of the curve is non-integral) and then compute the corrections µv(P ) for each
place separately as in the algorithm of Proposition 12.7, if necessary changing first to an
integral model and correcting for the transformation afterwards. In fact this approach
can be used whenever K is a field with a set of absolute values that satisfy the product
formula, because the algorithm before Proposition 12.7 is applicable over any discretely
valued field, see Remark 12.9. This includes function fields such as Q(t) and C(t).
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If K is a number field, then we compute the contribution from the archimedean places as
described in Section 13. The finite part of our algorithm is analogous to our quasi-linear
algorithm for the computation of the finite part of the canonical height of a point on an
elliptic curve in [MS15]; see Proposition 14.3 below. For simplicity, we take K to be Q
in the following. We write εp and µp for the local height correction functions over Qp as
given by Definition 3.1 and µ̃∞ for the local height correction function over R as defined
in equation (1.1).

We assume that our curve is given by a model C : Y 2 = F (X,Z) with F ∈ Z[X,Z], and

we set ∆ = ∆(C). Our goal is to devise an algorithm for the computation of ĥ(P ) that
runs in time polynomial in log ‖F‖∞, h(P ) and the required precision d (measured in
bits after the binary dot). We note that h(P ) can be computed in time

� log(h(P ) + d)M(h(P ) + d) ,

since it is just a logarithm. By Proposition 13.1, the height correction function µ̃∞(P )
can be computed in polynomial time. So we only have to find an efficient algorithm for
the computation of the ‘finite part’ µ̃f(P ) :=

∑
p µp(P ) log p of the height correction.

Fix P ∈ J(Q). We call a set x of Kummer coordinates for P primitive if x ∈ Z4

and gcd(x) = 1. We set gn = gcd(δ(x(n))), where x(n) is a primitive set of Kummer
coordinates for 2nP . Then

µ̃f(P ) =
∞∑
n=0

4−n−1 log gn .

We also know by [Sto99] that gn divides D = |∆|/24 = 24|disc(F )|, which implies that
log gn ≤ logD for all n. To achieve a precision of 2−d, it is therefore enough to take the
sum up to

n = m :=

⌊
d

2
+ log

logD

3

⌋
� d+ log logD � d+ log log ‖F‖∞ .

Since at each duplication step, we have to divide by gn to obtain primitive coordinates
again, it suffices to do the computation modulo Dm+2. This leads to the following
algorithm.

1. Let D = |∆|/16 and set m := bd/2 + log logD − log 3c.
2. Let x be primitive Kummer coordinates for P .
3. Set µ := 0.
4. For n := 0 to m do:

a. Compute x′ := δ(x) mod Dm+2.
b. Set gn := gcd(D, gcd(x′)) and x := x′/gn.
c. Set µ := µ+ 4−n−1 log gn (to d bits of precision).

5. Return µ̃f(P ) ≈ µ.

Proposition 14.1. This algorithm computes µ̃f(P ) to d bits of precision in time

� (d+ log logD) log(d+ log logD)M
(
(d+ log logD) logD

)
+ h(P ) .

Proof. The discussion preceding the algorithm shows that it is correct. The duplication
in step 4a can be computed in time � M((m + 2) logD) � M

(
(d + log logD) logD

)
,

while the gcd in step 4b can be computed in time

� M((m+ 2) logD) log
(
(m+ 2) logD

)
� log(d+ log logD)M

(
(d+ log logD) logD

)
;
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the division is even faster, since gn is small. The computation of the logarithm takes
time � log(d + logD)M(d + logD); this is dominated by the time for computing the
gcd. This gives a time complexity of

� (d+ log logD) log(d+ log logD)M
(
(d+ log logD) logD

)
+ h(P ) ,

where the last term comes from processing the input x. �

Note that logD � log ‖F‖∞, so this bound is similar to (and even better by a factor
of log d than) the complexity for computing µ̃∞(P ).

Remark 14.2. We note that an alternative way to proceed is to compute x′ = δ◦(m+1)(x)
mod Dm+2 (without dividing out gcd’s in between) and then use µ = 4−m−1 log gcd(x′).
The advantage of the algorithm above is that we can actually work mod Dm+2−n, which
makes the computation more efficient. The advantage of the alternative is that it can
also be used when working over a number field with non-trivial class group (replacing
log gcd(x′) by the logarithm of the ideal norm of the ideal generated by x′). The resulting
complexity is similar, with the implied constant depending on the base field.

We now show that we can in fact do quite a bit better than this, by using the strat-
egy already employed in [MS15]. Note that µ̃f(P ) is a rational linear combination of
logarithms of positive integers. We can compute such a representation exactly and effi-
ciently by the following algorithm. We again assume that x is a set of primitive Kummer
coordinates for P .

1. Set x′ := δ(x), g0 := gcd(x′) and x := x′/g0.
2. Set D := gcd(24 disc(F ), g∞0 ) and B := blogD/ log 2c.
3. If B ≤ 1, return 0.

Otherwise, set M := max{2, b(B + 4)2/3c} and m := blog(B3M2/3)/ log 4c.
4. For n := 1 to m do:

a. Compute x′ := δ(x) mod Dm+1g0.
b. Set gn := gcd(D, gcd(x′)) and x := x′/gn.

5. Using the algorithm in [DJB04] (or in [DJB05]), compute a sequence (q1, . . . , qr) of
pairwise coprime positive integers such that each gn (for n = 0, . . . ,m) is a product
of powers of the qi: gn =

∏r
i=1 q

ei,n
i .

6. For i := 1 to r do:
a. Compute a :=

∑m
n=0 4−n−1ei,n.

b. Let µi be the simplest fraction between a and a+ 1/(B2M2).
7. Return

∑r
i=1 µi log qi (a formal linear combination of logarithms).

Proposition 14.3. The preceding algorithm computes µ̃f(P ) in time

� (log logD)2 M
(
(log logD)(logD)

)
+ M(h(P ))(log h(P )) .

Note that D ≤ |∆|/16 and logD � log ‖F‖∞.

Proof. If B ≤ 1 in step 3, then we either have g0 = 1 and µ̃f(P ) = 0, or we have
D ∈ {2, 3}. In the latter case, g0 is a power of p = 2 or 3 and vp(∆) = 1, which would
imply that εp(P ) = 0 by [Sto02, Prop. 5.2], so g0 = 1, and we get a contradiction.

If a prime p does not divide g0, then εp(P ) = 0, implying µp(P ) = 0. Suppose now
that p divides g0; then we have vp(D) ≤ B and vp(∆) ≤ B + 4, so B, M and m are
suitable values for Lemma 12.2. We have vp(gn) = εp(2

nP ) for all n ≤ m, because

p(m+1)vp(D)+1 |Dm+1g0 (compare the proof of Proposition 12.7). All the gn are power
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products of the qi, so there will be exactly one i = i(p) ∈ {1, . . . , r} such that p | qi(p).
Setting bp = vp(qi(p)) and a =

∑m
n=0 4−n−1ei(p),n, we have

m∑
n=0

4−n−1εp(2
nP ) =

m∑
n=0

4−n−1vp(gn) = bpa ,

implying

µp(P ) =
∞∑
n=0

4−n−1εp(2
nP ) = bpa+

∞∑
n=m+1

4−n−1εp(2
nP ) .

Here the last sum is in [0, 1/(B2M2)] by the definition of m (compare the proof of
Lemma 12.2). Therefore

a ≤ µp(P )/bp ≤ a+ 1/(bpB
2M2) ≤ a+ 1/(B2M2) .

Since the denominator of µp(P ) is at most M and since we have bp ≤ vp(D) ≤ B, the
denominator of µp(P )/bp is at most BM . Hence µp(P )/bp is the unique fraction in
[a, a+ 1/(B2M2)] with denominator bounded by BM , so µp(P )/bp = µi(p) by Step 6b.
Now ∑

p

µp(P ) log p =
∑
p

µi(p)bp log p =

r∑
i=1

µi
∑
p|qi

bp log p =

r∑
i=1

µi log qi ,

so the algorithm is correct.

The complexity analysis is as in the proof of [MS15, Prop. 6.1]. Namely, the com-
putations in step 1 can be done in time � M(h(P )) log h(P ). The computations in
steps 2 and 3 take negligible time. Each pass through the loop in step 4 takes time
� log

(
(m+ 2) logD

)
M
(
(m+ 2) logD

)
, so the total time for step 4 is

� mM(m logD) log(m logD)� (log logD)2 M((log logD)(logD)) ,

because m� log logD. The coprime factorization algorithm in [DJB04] (or in [DJB05])
computes suitable qi for a pair (a, b) of positive integers in time � (log ab)(log log ab)2.
We iterate this algorithm, applying it first to g0 and g1, then to each of the resulting
qi and g2, and so on. There are always � logD terms in the sequence of qi’s and we
have gn ≤ D for all n. Hence step 5 takes time � logD(log logD)3. Because this is
dominated by the time for the loop and because the remaining steps take negligible
time, the result follows. �

Note that the complexity of the algorithm above is quasi-linear in logD and h(P ). In
practice, the efficiency of this approach can be improved somewhat:

• We can split off the contributions of all sufficiently small primes p by choosing a
suitable bound T and trial factoring ∆ up to T ; the corresponding µp can then be
computed using the algorithm of Proposition 12.7; see also Remark 12.8. In step 3, we
can then set B := blogD′/ log T c, where D′ is the unfactored part of D, and replace
B + 4 by B in the definition of M . If the coefficients of F are sufficiently large, then
this trial division can become quite expensive (even for small values of T ). So when
h(F ) is large, it is usually preferable to avoid trial division altogether.
• We can update the qi after each pass through the loop in step 4 using the new gn; we

can also do the computation in step 4a modulo suitable powers of the qi instead of
modulo Dm+1g0. Moreover, it is possible to use separate values of B, M and m for
each qi; these will usually be smaller than the one computed in step 2 and 3. In this
way, we can integrate steps 4, 5 and 6 into one loop.
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Remark 14.4. Over a more general number field K in place of Q the algorithm as stated
does not quite work, since we cannot always divide out greatest common divisors. In this
case we first compute x(1) = δ(x) and the ideal g0 generated by D and the entries of x(1).

Then we compute x(2) = δ(x(1)), . . . , x(m+1) = δ(x(m)) modulo the ideal Dm+1g0. Let

Gj be the ideal generated by the entries of x(j) and Dm+1 and set

g1 = g−4
0 G2, g2 = G−4

2 G3, g3 = G−4
3 G4, . . . , gm = G−4

m Gm+1 .

The coprime factorization algorithms in [DJB04] and [DJB05] also work for ideals. In
the final result, log qi has to be replaced by logN(qi), where N(qi) is the norm of the
ideal qi. This should result in a complexity similar to that over Q (with the implied
constant depending on K), or at least one that is dominated by the complexity of
computing the naive height and the contributions from the archimedean places. Un-
fortunately, no complexity analysis for standard operations with ideals in number fields
seems to be available in the literature; this prevents us from making a precise statement.
Alternatively, we can take the approach described in Remark 14.2.

Combining this with the results for archimedean places, we obtain an efficient algorithm
for computing the canonical height ĥ(P ) of a point P ∈ J(Q). As mentioned above, we
expect a similar result to hold for any number field K in place of Q, with the implied
constant depending on K.

Theorem 14.5. Let C be given by the model Y 2 = F (X,Z) with F ∈ Z[X,Z] and let
P ∈ J(Q) be given by primitive Kummer coordinates x (i.e., the coordinates are coprime

integers). We can compute ĥ(P ) to d bits of precision in time

� log(d+ h(P ))M(d+ h(P ))

+ (d+ log log ‖F‖∞)(log d+ log log ‖F‖∞)M
(
(d+ log log ‖F‖∞) log ‖F‖∞

)
.

Proof. The first term comes from computing h(P ). The second term dominates both
the complexity bound for µ̃∞(P ) from Proposition 13.1 and the complexity of com-
puting µ̃f(P ) using the algorithm of Proposition 14.3, since we have D ≤ |∆|/16 and
logD � log ‖F‖∞. The time for the numerical evaluation of the logarithms log qi to
d bits of precision is also dominated by this term. �

Note that the complexity is quasi-linear in log ‖F‖∞ and in h(P ), and quasi-quadratic
in d. The latter is caused by the (only) linear convergence of the computation of µ̃∞(P ).
For elliptic curves one can use a quadratically convergent algorithm due to Bost and
Mestre [BM93], see also [MS15]; such an algorithm in the genus 2 case would lead to a
complexity that is quasi-linear in d as well.

In Section 15 below we illustrate the efficiency of our algorithm by applying it to a
family of curves and points with the property that the number g0 above is large, so that
the previously known algorithms have problems factoring it.

15. Examples

We have implemented our algorithm using the computer algebra system Magma [BCP97].
For the factorization into coprimes we have implemented a simple quadratic algorithm
due to Buchmann and Lenstra [BL94, Prop. 6.5] instead of the quasi-linear, but more
complicated, algorithms of [DJB04] or [DJB05]

Since the estimates for the required precision in the computation of the archimedean
contribution as given in Section 13 are too wasteful in practice, we instead compute this
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contribution repeatedly using a geometrically increasing sequence of digits of precision
until the results agree up to the desired number of bits.

We now compare our implementation with Magma’s built-in CanonicalHeight (ver-
sion 2.21-2), which is based on [FS97] and the second author’s paper [Sto02], for a
family of genus 2 curves. In CanonicalHeight, the duplication on the Kummer surface
is done using arithmetic over Q, making the implementation slow when points with large
coordinates show up during the computation. No factorization of the discriminant is
required. However, to find a set of primes such that µp(P ) 6= 0 for every prime p not in
the set, CanonicalHeight factors the integer gcd(δ(x)), where x are primitive Kummer
coordinates for P .

Example 15.1. For an integer a 6= 0, consider the curve Ca of genus 2 defined by the
integral Weierstrass model

y2 = x5 + a2x+ a2 .

Let Ja denote the Jacobian of Ca. Then the point P = [((0, a)) − (∞)] ∈ Ja(Q) is
non-torsion. A set of primitive Kummer coordinates is given by x = (0, 1, 0, 0) and we
have δ(x) = (4a2, 0, 0, a4). Hence CanonicalHeight needs to factor a2.

We choose this family of curves because (a) there is an obvious rational point P on
the Jacobian that is generically non-torsion and (b) gcd(δ(x)) involves a large integer,
where x is a set of primitive integral Kummer coordinates for P . For a random sextic
polynomial in Z[x], very likely the discriminant will have a large square-free part, and
so gcd(δ(x)) will be fairly small. Of course, the advantages of our algorithm show most
clearly when gcd(δ(x)) is too large to be factored quickly.

Consider a = 5807658604988570942160367122286824505787920190639678196072209904446815339845301407936102

37063603282, with partial factorization 2 ·7 ·643 ·804743 ·a′, where a′ has 89 decimal digits,
and its smallest prime factor has 34 decimal digits. Our implementation computes ĥ(P )
in 0.51 seconds, whereas Magma’s CanonicalHeight needs about 15 minutes.

Next, we look at a = 200403772956059488950289789507853617719701760528626768445669337185652379002740

2225238543540575431528468305556200069359999066088091821746622820780762863572550314577271857779581968920 .
This factors as a = 23 · 5 · 17 · a′, where a′ has 178 decimal digits and no prime divisor
with less than 50 decimal digits. Here, our implementation took 1.04 seconds to compute
ĥ(P ), whereas Magma did not terminate in 8 weeks.

For a = p · q, where p (respectively, q) is the smallest prime larger than 10200 (re-
spectively, 10250), the canonical height of P was computed in 5.87 seconds using our
implementation.

For the computations in these examples, we used a single core Xeon CPU E7-8837 having
2.67GHz. All heights were computed to 30 decimal digits of precision.

We conclude this part with an example over the rational function field Q(t).

Example 15.2. Consider the curve C/Q(t) given by the equation

y2 = x6 − 2t(t+ 1)x5 + (t+ 1)(t3 − 5t2 + 4t− 2)x4 + 2t(t+ 1)2(3t2 + 1)x3

− (t+ 1)(3t4 − 2t2 + 4t− 1)x2 − 4t2(t+ 1)3(t2 + 2t− 1)x+ 4t4(t+ 1)4 .

It has the points

P1 = (1 : 1 : 0), P2 =
(
0,−2t2(t+ 1)2

)
, P3 =

(
t+ 1, 2t(t− 1)(t+ 1)

)
(and also points with x-coordinate t(t + 1) and a Weierstrass point (−t − 1, 0)). Let
Q = [(P1)− 2(P2) + (P3)] ∈ J(Q(t)). Its image on the Kummer surface has coordinates

(1 : −t+ 1 : −2t2(t+ 1) : 0) .
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Applying the duplication polynomials and looking at the gcd of the result, we see that
we have to compute the height correction functions at the places given by t = 0, t = 1
and t = −1. We also have to consider the place at infinity, since our model of C is not
integral there. We use the algorithms of Section 12. Consider the place t = 0. From
the valuations of the Igusa invariants (see Section 6) we can deduce that the reduction
type is [I7−3−2], which gives us M = 41 for the exponent of the component group and
a bound B = 10 for ε. We follow Lemma 12.1 and compute

µ0(Q) =
1

41

⌈
41

3∑
n=0

4−n−1ε0(2nQ)
⌉

=
1

41

⌈
41
(8

4
+

4

42
+

7

43
+

6

44

)⌉
=

98

41
.

At t = 1, the model is not stably minimal. We can deduce from the Igusa invariants
that there is a stably minimal model over an extension of ramification index 4, which
has reduction type [I12−2−2]. This shows that the denominator of µ1 is divisible by
4 · 26 = 104. With M = 104 and B = 9 we get m = 4 in Lemma 12.1; we obtain

µ1(Q) =
1

104

⌈
104

4∑
n=0

4−n−1ε1(2nQ)
⌉

=
1

104

⌈
104
(4

4
+

4

42
+

3

43
+

2

44
+

2

45

)⌉
=

17

13
.

At t = −1, the situation is similar. There is a stably minimal model over an extension
with ramification index 4 again, which has reduction type [I20−0−0]. This leads to
M = 4 · 20 = 80 and B = 20, so m = 4, and

µ−1(Q) =
1

80

⌈
80

4∑
n=0

4−n−1ε−1(2nQ)
⌉

=
1

80

⌈
80
(7

4
+

10

42
+

8

43
+

10

44
+

8

45

)⌉
=

51

20
.

Finally, at the infinite place, there is a stably minimal integral model over an extension
with ramification degree 2, which has reduction type [I8−0−0]. In a similar way as for
t = −1 and taking into account a shift of −8 coming from making the model integral,
we obtain µ∞(Q) = 19/4− 8 = −13/4. This results in

ĥ(Q) = h(Q)− µ0(Q)− µ1(Q)− µ−1(Q)− µ∞(Q) = 3− 98

41
− 17

13
− 51

20
+

13

4
=

11

5330
.

To our best knowledge, the point Q is the point of smallest known nonzero canonical
height on the Jacobian of a curve of genus 2 over Q(t). The curve was found by Andreas
Kühn (a student of the second author) in the course of a systematic search for curves
with many points mapping into a subgroup of rank 1 in the Jacobian.
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Part IV: Efficient Search for Points With Bounded Canonical
Height

16. Bounding the height difference at archimedean places

We now describe two approaches for getting a better upper bound β̃ on µ̃ than the one
coming from the bound on ε̃ given in [Sto99, Equation (7.1)], when k is an archimedean
local field and C/k is a smooth projective curve of genus 2, given by a Weierstrass
equation Y 2 = F (X,Z) in PK(1, 3, 1).

We write ‖x‖∞ = max{|x1|, |x2|, |x3|, |x4|} for the maximum norm.

16.1. Bounding ε̃ closely.

For the first approach we assume that k = R. We describe how to approximate
max{ε̃(P ) : P ∈ J(R)} to any desired accuracy, which gives us an essentially optimal
bound γ̃. Recall that

ε̃(P ) = − log
max{|δ1(x1, x2, x3, x4)|, . . . , |δ4(x1, x2, x3, x4)|}

max{|x1|, |x2|, |x3|, |x4|}4
,

where (x1 : x2 : x3 : x4) is the image of P ∈ J(R) on the Kummer surface. We can
normalize the Kummer coordinates in such a way that ‖x‖∞ = 1 and one of the coordi-
nates is 1. We then have to minimize max{|δ1|, . . . , |δ4|} over four three-dimensional unit
cubes, restricted to the points on the Kummer surface that are in the image of J(R).
This means that the relevant points satisfy the equation defining the Kummer surface
and in addition the value of (at least) one of four further auxiliary polynomials is pos-
itive. (In general, the values of these polynomials are squares if the point comes from
the Jacobian, and the converse holds for any one of the polynomials when its value is
non-zero. One can choose four such polynomials in such a way that they do not vanish
simultaneously on the Kummer surface.)

The idea is now to successively subdivide the given cubes. For each small cube, we check
if it may contain points in the image of J(R), by evaluating the various polynomials at
the center of the cube and bounding the gradient on the cube. If it can be shown that
the defining equation cannot vanish on the cube or that one of the auxiliary polynomials
takes only negative values on the cube, then the cube can be discarded. Otherwise, we
find upper and lower estimates for max{|δ1|, . . . , |δ4|} in a similar way. If the lower
bound is larger than our current best upper bound for the minimum, the cube can also
be discarded. (At the beginning, we have a trivial upper bound of 1 for the minimum,
coming from the origin.) Otherwise, we keep it and subdivide it further. We continue
until the difference of the upper and lower bounds for ε̃ on the cube with the smallest
lower bound for max{|δ1|, . . . , |δ4|} becomes smaller than a specified tolerance. The

upper bound for ε̃ on that cube is then our bound γ̃, and we take (as before) β̃ = γ̃/3.

We have implemented this approach in Magma [BCP97]. After a considerable amount
of fine-tuning, our implementation usually takes a few seconds to produce the required
bound. In many cases the new bound, which is essentially optimal as a bound on ε̃, is
considerably better than the bound of [Sto99, (7.1)], but there are also cases for which
it turns out that the old bound is actually pretty good.

We used the following tricks to get the implementation reasonably fast.

• We keep the polynomials shifted and rescaled so that the cube under consideration is
[−1, 1]3.
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• The shifting and scaling is done using linear algebra (working with vectors of coeffi-
cients and matrices) and not using polynomial arithmetic.
• The coordinates of the centers and vertices of all cubes are dyadic fractions. We scale

everything (by 24 = 16 at each subdivision step — note that the polynomials involved
are of degree 4) so that we can compute with integers instead.

16.2. Iterating Stoll’s bound.

We now describe a different approach that also works for complex places. Instead of
trying to get an optimal bound on ε̃, we aim at a bound on µ̃ by iterating the bound
obtained from equation (7.1) in [Sto99]. We recall how this bound was obtained. There
is an elementary abelian group scheme G of order 32 that maps onto J [2] and acts on the
space of quadratic forms in the coordinates of the P3 containing the Kummer surface.
This representation splits into a direct sum of ten one-dimensional representations that
correspond to the ten partitions {S, S′} of the set of ramification points of the double
cover C → P1 into two sets of three. We write y{S,S′} for suitably normalized generators
of these eigenspaces ([Sto99] gives explicit formulas in the case H = 0). We can then
express the squares x2

i as linear combinations of these quadratic forms:

x2
i =

∑
{S,S′}

ai,{S,S′}y{S,S′}(x)

for certain complex numbers ai,{S,S′} that can be explicitly determined. On the other

hand, y2
{S,S′} is a quartic form invariant under the action of J [2] (the representation

of G on quartic forms descends to a representation of J [2]) and is therefore a linear
combination of the duplication polynomials δj and the quartic defining the Kummer
surface. So there are complex numbers b{S,S′},j that can also be explicitly determined
such that

y{S,S′}(x)2 =
4∑
j=1

b{S,S′},jδj(x)

if x is a set of Kummer coordinates. Taking absolute values and using the triangle
inequality, we obtain

|xi|4 ≤

 ∑
{S,S′}

|ai,{S,S′}||y{S,S′}(x)|

2

≤

 ∑
{S,S′}

|ai,{S,S′}|

√√√√ 4∑
j=1

|b{S,S′},j ||δj(x)|

2

for all (x1 : x2 : x3 : x4) ∈ KS(C). This gives a bound for ε̃ in terms of the ai,{S,S′}
and b{S,S′},j as in equation (7.1) of [Sto99].

We refine this as follows. Define a function

ϕ : R4
≥0 −→ R4

≥0, (d1, d2, d3, d4) 7−→


√√√√√ ∑
{S,S′}

|ai,{S,S′}|

√√√√ 4∑
j=1

|b{S,S′},j |dj


1≤i≤4

.

Lemma 16.1. Define a sequence (bn)n in R4
≥0 by

b0 = (1, 1, 1, 1) and bn+1 = ϕ(bn) .

Then (bn) converges to a limit b and we have

µ̃(P ) ≤ 4N

4N − 1
log ‖bN‖∞

for all N ≥ 1 and all P ∈ J(C). In particular, sup µ̃(J(C)) ≤ log ‖b‖∞.
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Proof. By our previous considerations, it is clear that |δj(x)| ≤ dj for all j implies
|xi| ≤ ϕi(d1, d2, d3, d4) for all i. We deduce by induction on N that

log ‖x‖∞ ≤ log ‖bN‖∞ + 4−N log ‖δ◦N (x)‖∞
for all N ≥ 1. Writing

µ̃(P ) = −
∞∑
m=0

4−mN
(
log ‖κ(2mNP )‖∞ − 4−N log ‖δ◦N (κ(2mNP ))‖∞

)
,

we obtain an upper bound of log ‖bN‖∞ for each of the terms in parentheses, which gives
the desired bound.

To see that (bn) converges, we consider Φ(x) =
(
logϕi(exp(x1), . . . , exp(x4))

)
1≤i≤4

. It

is easy to see that the partial derivatives ∂Φi
∂xj

are positive and that for each i, summing

them over j gives 1
4 . (This comes from the fact that ϕi is homogeneous of degree 1

4 .)

This implies that ‖Φ(x′)−Φ(x)‖∞ ≤ 1
4‖x

′−x‖∞, so that Φ is contracting with contrac-

tion factor ≤ 1
4 . The Banach Fixed Point Theorem then guarantees the existence of a

unique fixed point of Φ, which every iteration sequence converges to. This implies the
corresponding statement for ϕ. �

If we are dealing with a real place, then we may gain a little bit more by making use of
the fact that the δj(x) are real, while some of the coefficients b{S,′S},j may be genuinely
complex. This can lead to a better bound on |y{S,S′}|.
For example, considering the curve with the record number of known rational points, we
get an improvement from 7.726 to 0.973 for the upper bound on −µ̃ using Lemma 16.1.
See Section 19 for more details. In practice it appears that this second approach is at
the same time more efficient and leads to better bounds than the approach described in
Section 16.1 above.

The approach described here can also be applied in the context of heights on genus 3
hyperelliptic Jacobians, see [Sto14].

17. Optimizing the naive height

We now consider an arbitrary local field k, with absolute value |·|. Let C be given by
an equation

Y 2 = F (X,Z) ,

and let W be the canonical class on C. The first three coordinates of the image of a point
P = [(X1 : Y1 : Z1)+(X2 : Y2 : Z2)]−W ∈ J on the Kummer surface are given by Z1Z2,
X1Z2 + Z1X2, X1X2, whereas the fourth coordinate is homogeneous of degree 1 in the
coefficients fj of F (if we consider Y1 and Y2 to be of degree 1/2). This has the effect that
the fourth coordinate usually differs by a factor of about ‖F‖ := max{|f0|, |f1|, . . . , |f6|}
from the other three, which gives this last coordinate a much larger (when ‖F‖ is large;
this is usually the case when k is archimedean) or smaller (this may occur when k is
non-archimedean) influence on the local contribution to the naive height when k = Kv

and K is a global field. This imbalance tends to increase the difference hstd− ĥ between
naive and canonical height. This observation suggests to modify the naive height in the
following way, so as to give all coordinates roughly the same weight. Compare Section 2
for the general set-up. Let x be a set of Kummer coordinates over a global field K and
set

h′(x) :=
∑
v∈MK

log max
{
|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v

}
.



60 J. STEFFEN MÜLLER AND MICHAEL STOLL

This is a height as in Example 2.3.

We state the following simple result, which will help us use this modified height.

Lemma 17.1. Let F0 ∈ k[X,Z] be squarefree and homogeneous of degree 6. For c ∈ k×,

let C(c) denote the curve Y 2 = cF0(X,Z). The Kummer surfaces KS(1) of C(1) and KS(c)

of C(c) are isomorphic via

ι : KS(1) −→ KS(c), (x1 : x2 : x3 : x4) 7−→ (x1 : x2 : x3 : cx4) .

We abuse notation and write ι also for the linear map (x1, x2, x3, x4) 7→ (x1, x2, x3, cx4).

Write δ(c) for the duplication polynomials on KS(c). Then

δ(c)(ι(x)) = c3ι(δ(1)(x)) for each x ∈ KS
(1)
A .

Proof. This can be checked by an easy calculation. �

If k is non-archimedean and we use the modified local height given by

h′v(x) = log max
{
|x1|v, |x2|v, |x3|v, |x4|v/‖F‖v

}
,

then we need to change the definition of ε accordingly (compare Lemma 2.4):

ε(x) = min{v(δ1(x)), v(δ2(x)), v(δ3(x)), v(δ4(x))− v(F )}
− 4 min{v(x1), v(x2), v(x3), v(x4)− v(F )} ,

where v(F ) = v({f0, . . . , f6}). By Lemma 17.1 with c = πv(F ), where π is a uniformizer
of k, and F0 = c−1F , we then have, denoting the objects associated to F0 by δ0, ε0

and µ0,

ε(x) = v
(
ι−1(δ(x))

)
− 4v(ι−1(x)) = v

(
c3δ0(ι−1(x))

)
− 4v(ι−1(x)) = 3v(F ) + ε0(ι−1(x)) .

This implies µ(x) = v(F ) + µ0(ι−1(x)). Let C0 be the curve given by Y 2 = F0(X,Z).
We then get that

β(C) ≤ v(F ) + β̄(C0) .

Note that the Jacobians of C and C0 are in general only isomorphic over the ramified
quadratic extension k(

√
π), so we cannot necessarily use β(C0) here. If v(F ) is even,

however, then the isomorphism is defined over k, and we have β(C) = v(F ) + β(C0).

So, except for the correction term v(F ), the effect is that we use the Kummer surface
associated to the quadratic twist C0 of C, which has a primitive polynomial on the
right hand side of its equation. Note in addition that this also allows us to deal with
non-integral equations; in this case, we again implicitly scale to make the polynomial
on the right integral and primitive.

When k = Kv
∼= Q2 (say) and we can write F = 4F1 +H2 with binary forms F1 and H

with integral coefficients, then C is isomorphic to the curve C ′ given by the Weierstrass
equation

Y 2 +H(X,Z)Y = F1(X,Z) ,

and we can use the Kummer surface of the latter to define the local contribution to the
naive height. The isomorphism between the Kummer surfaces is given by (see [Mül10,
p. 53]; note that this is the inverse of the map given there)

(x1 : x2 : x3 : x4) 7−→
(
x1 : x2 : x3 : 1

4x4 + 1
2(h0h2x1 + h0h3x2 + h1h2x3)

)
.

The scaling factor this induces for the δ polynomials is 26 in this case. So defining the
local component at v of h′(x) to be

log max
{
|x1|v, |x2|v, |x3|v,

∣∣1
4x4 + 1

2(h0h2x1 + h0h3x2 + h1h2x3)
∣∣
v

}
,
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we can replace the bound for µv by the bound we get on C ′ plus 2. If we use this at
the places above 2 where it applies (instead of, or combined with, the scaling described
above), we still obtain a height as in Example 2.3.

If v is an archimedean place, then the approach described in Section 16.2 above can
easily be adapted to the modified naive height. We just have to replace b{S,S′},4 = 1

by ‖F‖v and a4,{S,S′} by a4,{S,S′}/‖F‖2v. This will usually lead to a negative upper
bound for µ̃v, which is fairly close to − log ‖F‖v, at least when F is reduced in the sense
of [SC03] and its roots are not too close together. This is because the scaled ai,{S,S′}
are now all of size ≈ ‖F‖−2

∞ and the scaled b{S,S′},j are all of size ≈ ‖F‖∞, so Φ as in

the proof of Lemma 16.1 roughly satisfies ‖Φ(x)‖∞ ≈ −3
4 log ‖F‖∞+ 1

4‖x‖∞, which has
− log ‖F‖∞ as its fixed point.

Note that for a point (0 : 0 : 0 : 1) 6= P = (x1 : x2 : x3 : x4) ∈ KS(K) we have, for all
versions h′ of the modified height,

hstd

(
(x1 : x2 : x3)

)
≤ h′(P ) .

We will therefore find all points P with h′(P ) ≤ B, if we can enumerate all P with
hstd((x1 : x2 : x3)) ≤ B. This can be done (over Q) by using the -a option of the second
author’s program j-points, which is available at [Stoa]. (This option is also available
in Magma version 2.22 or later.) In this way, enumerating all points as above with B
up to roughly log 50 000 is feasible. See the discussion in Section 18 below.

Note that it is quite possible that we end up with a bound

hstd

(
(x1 : x2 : x3)

)
≤ h′(P ) ≤ ĥ(P ) + β̃ for all P ∈ J(Q) \ {O}

with β̃ < 0. In this case −β̃ is a lower bound on the canonical height of any nontrivial
point in J(Q); in particular, the torsion subgroup of J(Q) must be trivial. To give an

indication of when we can expect β̃ to be close to zero or negative, write |24 disc(F )| =
DD′ with D and D′ coprime and D′ squarefree and odd. Then the contribution of the
finite places to β̃ can be bounded by 1

4 logD, and we get β̃ ≈ − log ‖F‖∞ + 1
4 logD.

So if D � ‖F‖4∞, we are in good shape. Note that |disc(F )| � ‖F‖10
∞, so this means

that 60% or more of log | disc(F )| comes from primes p dividing the discriminant exactly
once. For curves that are not very special this is very likely to be the case.

In Section 19 we show how this approach can be used to get a very small bound for the
height difference even for a curve with ten-digit coefficients.

18. Efficient enumeration of points of bounded canonical height

Let C : y2 = f(x) be a curve of genus 2 over Q with Jacobian J . In this section we

describe the algorithm for enumerating all points P ∈ J(Q) with ĥ(P ) ≤ B that follows
from the considerations above. We assume that f ∈ Z[x] and proceed as follows.

1. Compute the complex roots of f numerically.

2. Compute the coefficients ai,{S,S′} and b{S,S′},j from the roots and the leading coeffi-
cient of f according to the formulas given in [Sto99, Section 10].

3. Multiply all a4,{S,S′} by ‖f‖−2
∞ and multiply all b{S,S′},4 by ‖f‖∞.

4. Iterate the function ϕ from Section 17 (but using the modified coefficients) a number

of times, starting at (1, 1, 1, 1), until there is little change; let β̃∞ be the upper bound
for µ̃∞ as in Lemma 16.1.

5. Factor the discriminant of f .
Let g be the gcd of the coefficients of f .



62 J. STEFFEN MÜLLER AND MICHAEL STOLL

6. For each prime divisor p of 2 disc(f), do the following.
a. Let ep be the p-adic valuation of g and set f1 = p−epf .
b. If p = 2 and f1 = h2 + 4f2 for polynomials f2, h ∈ Z[x], set C1 : y2 +h(x)y = f2(x)

and replace g by 4g; otherwise set C1 : y2 = f1(x). Let J1 be the Jacobian of C1.
c. If ep is even, let βp be the bound for µp on J1(Qp) as obtained in Part II. Otherwise,

let βp be the bound for µp on J1(Q̄p).

7. Set β̃ = β̃∞ +
∑

p βp log p+ log g.

8. Use j-points with the -a option to enumerate all points O 6= P ∈ J(Q) such that

hstd

(
(κ1(P ) : κ2(P ) : κ3(P ))

)
≤ B + β̃.

9. Add O to this set and return it.

Note that log g is the sum of the correction terms vp(f) log p.

It follows from the discussion in the previous sections that the set returned by this
algorithm contains all points with canonical height at most B. If necessary, one can
compute the actual canonical heights using the algorithm from Part III and discard the
points whose height is too large.

The actual enumeration is done by running through all points (x1 : x2 : x3) ∈ P2 of

(standard) height at most B + β̃ and checking whether there are rational numbers x4

such that (x1 : x2 : x3 : x4) is on the Kummer surface. For each of these points on
the Kummer surface, we then check if it lifts to the Jacobian. Both these conditions
are equivalent to some expression in the coordinates (and the coefficients of f) being a
square. j-points tries to do this efficiently by using information modulo a number of
primes to filter out triples that do not lift to rational points on J . Let N = bexp(B+β̃)c.
Then j-points usually takes a couple of seconds when N = 1000, a few minutes when
N = 5 000 and a few days when N = 50 000. The running time scales with N3, but
the scaling factor depends on how effective the sieving mod p is. For Jacobians of high
rank, the program tends to take longer than for ‘random’ Jacobians.

Since the running time depends exponentially on B+ β̃, it is very important to obtain a
small bound β̃ for the difference between naive and canonical height. The improvement
at the infinite place that we can achieve by considering a modified naive height is crucial
for making the enumeration feasible also in cases when the defining polynomial has large
coefficients. This is demonstrated by the example in Section 19 below.

If the discriminant of f is too large to be factored, then one can use

β̃ = β̃∞ +
1

4
log |disc(f1)|+ log g

(or use information from small prime divisors as in the algorithm above and 1
4 logD for

the remaining primes, where D is the unfactored part of the discriminant). But note
that it is usually a great advantage to know the bad primes, since we can take βp = 0 for

primes p such that vp(disc(f)) = 1. In most cases, this leads to a much smaller bound β̃.

One of the most important applications of this enumeration algorithm is its use in
saturating a given finite-index subgroup of J(Q), which gives (generators of) the full
group J(Q). This is a necessary ingredient for the method for obtaining all integral
points on C developed in [BMS+08], for example, and for computing the regulator
of J(Q).

There are essentially two ways of performing the saturation. Let G ⊂ J(Q) denote the
known subgroup.
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(i) Let ρ be (an upper bound for) the covering radius of the lattice Λ = (G/Gtors, ĥ).
Then J(Q) is generated by G together with all points P ∈ J(Q) that satisfy

ĥ(P ) ≤ ρ2, see [Sto02, Prop. 7.1]. This approach is feasible when β̃ + ρ2 is suffi-
ciently small.

(ii) Let I = (J(Q) : G) denote the index; we assume that J(Q)tors ⊂ G. If m1, . . . ,mr

are the successive minima of Λ and there are no points P ∈ J(Q)\G with ĥ(P ) < B,
then

I ≤
√

R · γrr∏r
j=1 min{mj , B}

;

see [FS97, Section 7]. Here γr is (an upper bound for) the Hermite constant for
lattices of rank r and R is the regulator of G (i.e., the determinant of the Gram
matrix of any basis of Λ). This can be used to get a bound on I whenever B is

strictly positive, so for the enumeration we only need β̃ to be sufficiently small.
(If β̃ < 0, then we can do entirely without enumeration to get an index bound.)
In a second step, one then has to check that G is p-saturated in J(Q) (or find
the largest group G ⊂ G′ ⊂ J(Q) with (G′ : G) a power of p) for all primes p
up to the index bound. This can be done by considering the intersection of the
kernels of the maps J(Q)/pJ(Q)→ J(Fq)/pJ(Fq) for a set of good primes q (such
that the group on the right is nontrivial). If this intersection is trivial, then G
is p-saturated; otherwise it tells us where to look for points that are potentially
divisible by p. Since the index bound gets smaller with increasing B (as long as
B < mr), it makes sense to pick B in such a way as to balance the time spent in
the two steps of this approach.

19. Example

As an example that demonstrates the use of our nearly optimal upper bound for the
difference h − ĥ between naive and canonical height (which is based on the optimal
bounds for the µp obtained in Sections 9, 10 and 11 and the variation of the naive
height discussed in Section 17), we consider the curve

C : y2 = 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x+ 247747600 .

This curve is of interest, since it holds the current record for the largest number of known
rational points (which is 642 for this curve), see [Stob]. A 2-descent on its Jacobian J
(assuming GRH) as described in [Sto01] and implemented in Magma gives an upper
bound of 22 for the rank of J(Q), and the differences of the known rational points
generate a group of rank 22. The latter statement can be checked by computing the
determinant R of the height pairing matrix of the 22 points in J(Q) listed in Table 3,
which is fairly fast using the algorithm for computing canonical heights described in
Section 14. The points are given in Mumford representation (a(x), b(x)), which stands
for [(θ1, b(θ1)) + (θ2, b(θ2))] −W , where θ1, θ2 are the two roots of a(x) and W is the
canonical class. Not all of these points are differences of rational points, but they are
linear combinations of such differences.

We can easily check that J(Q) has trivial torsion subgroup by computing the order
of J(Fp) for a few good primes p.
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(x2 + x, 18868x+ 15740), (x2 − 1
3x,

216800
3 x− 15740),

(x2 + 2
3x−

1
3 ,

11747
3 x+ 21131

3 ), (x2 + 5x+ 4, 276256x+ 273128),

(x2 + 4
3x−

5
9 , 16315x+ 26195

9 ), (x2 + 53
12x+ 5

3 ,
1433669

6 x+ 371650
3 ),

(x2 − 3x− 4, 34104x+ 30976), (x2 − 4x− 5, 65987x+ 69115),

(x2 + 8
5x+ 3

5 , 67671x+ 64543), (x2 − 5x− 6, 883626
7 x+ 905522

7 ),

(x2 − 3
4x−

7
4 , 31875x+ 35003), (x2 + 5

7x−
2
7 ,

432898
49 x+ 279626

49 ),

(x2 + 29
6 x−

178
9 , 3014179

6 x− 10824742
9 ), (x2 + 19

84x−
65
84 ,

4287373
294 x+ 5207005

294 ),

(x2 + 97
42x−

37
42 ,

23742013
294 x− 5459431

294 ), (x2 − 5
11x,

1089388
121 x− 15740),

(x2 + 325
84 x−

11
21 ,

30014567
147 x− 2230444

147 ), (x2 − 683
140x−

279
140 ,

45519013
490 x+ 5478709

490 ),

(x2 − 91
769x−

584
769 ,

6911886712
591361 x+ 16665656516

591361 ), (x2 − 259
96 x+ 163

72 ,
52305719

768 x− 13101271
576 ),

(x2 − 3073
2307x−

1252
769 ,

54505985456
1774083 x+ 25990632928

591361 ), (x2 − 137
51 x+ 40

51 ,
47131040

867 x− 8471860
867 )

Table 3. Generators of the known part of J(Q).

The discriminant of C factors as

∆ = 247 · 35 · 59 · 112 · 132 · 176 · 194 · 232 · 414 · 733

· 2707 · 43579 · 108217976921 · 8723283517315751077 .

The results of [Sto99,Sto02] lead to a bound of

1

3

(
43 log 2 + 3 log 3 + 9 log 5 + 2 log 11 + 2 log 13

+ 6 log 17 + 4 log 19 + 2 log 23 + 4 log 41 + 3 log 73
)
≈ 40.1

for the contribution of the finite places to the height difference bound. When trying
to get a better bound (for γp) by essentially doing an exhaustive search over the p-adic
points of the Kummer surface, Magma gets stuck at p = 2 for a long while, but eventually
finishes with a contribution of 26.434 from the finite places and a total bound of 34.163.
This contribution turns out to be (γp/3) log p in all cases except for p = 73, where it is
2
3 log 73 instead of 1

3 log 73. Our new results from this paper give bounds on the local
contributions as shown in Table 4. Φp is the component group (ε and µ factor through
it in all cases) and ‘gain’ gives the gain in the bound on the height difference obtained
by using the optimal bound on µ versus the bound γ/3, where γ is the maximum of the
values of ε.

This now gives a bound of ≈ 20.429 for the contribution of the finite places. The
optimization of the naive height does not give any improvement at the odd finite places,
since the polynomial f defining the curve is primitive. On the other hand, we note that
f is congruent to a square mod 4, so we could use the Kummer surface of the curve
y2 + (x2 + x)y = f1(x) (where f(x) = 4f1(x) + (x2 + x)2) for the local height at 2, but
this results in no improvement, since we have already used a minimal model to get our
bound.

Now we consider the contribution of the infinite place. The bound obtained from [Sto99,
(7.1)] is 7.726. Using Lemma 16.1 with N = 10 improves this to 0.973; increasing N
further gives no significant improvement. However, modifying the local height at the
infinite place by scaling the contribution of the fourth coordinate by ‖f‖−1

∞ reduces this
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p reduction type Φp βp γp/3 gain

2 [I10−9−8] Z/242Z 2 + 1145/242 26/3 1.341

3 [I0 − IV − 0] Z/3Z 2/3 2/3 0.000

5 [I4−3−2] Z/26Z 22/13 2 0.495

11 [I2−0−0] Z/2Z 1/2 2/3 0.400

13 [I2−0−0] Z/2Z 1/2 2/3 0.427

17 [I2−2−2] Z/2Z× Z/6Z 1 4/3 0.944

19 [I2−1−1] Z/5Z 3/5 2/3 0.196

23 [I2−0−0] Z/2Z 1/2 2/3 0.523

41 [I2−1−1] Z/5Z 3/5 2/3 0.248

73 [I1−1−1] Z/3Z 1/3 1/3 0.000

Table 4. Bounds for βp.

bound drastically to µ̃∞ ≤ −19.25654 (compare this to − log ‖f‖∞ ≈ −21.59708). This
finally gives

h′(P ) ≤ ĥ(P ) + 1.17273

for our modified naive height h′.

So if we enumerate all points P ∈ J(Q) with h′(P ) ≤ logN and do not find points that
are not in the known subgroup G, then we obtain a bound for the index I = (J(Q) : G)
as follows (see the discussion at the end of Section 18).

I ≤
√

R · γ22
22∏22

j=1 min{mj , logN − 1.17273}
,

where R is the regulator of G and m1,m2, . . . ,m22 are the successive minima of the
lattice (G, ĥ), which are

8.5276, 8.5668, 8.5956, 8.8594, 9.0256, 9.0776, 9.1426, 9.1753,

9.4456, 9.7428, 9.7747, 9.9047, 9.9465, 9.9611, 9.9704, 10.1408,

10.3472, 10.3784, 10.5284, 10.5356, 10.6318, 10.9287 .

With N = 10 000 we obtain I ≤ 6842, with N = 20 000 we get I ≤ 2835 and with
N ≥ 178 245 we obtain the best possible bound I ≤ 900. We checked that there are
no unknown points P with κ(P ) = (x1 : x2 : x3 : x4) such that hstd((x1 : x2 : x3)) ≤
log 20 000 and verified that the index is not divisible by any prime p ≤ 2835. The first
computation took about two days on a single core, the second less than half a day. This
implies the following.

Proposition 19.1. Assume the Generalized Riemann Hypothesis. Let

C : y2 = 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x+ 247747600

and denote by J the Jacobian of C. Then J(Q) is a free abelian group of rank 22,
freely generated by the points listed in Table 3. In particular, J(Q) is generated by the
differences of rational points on C.
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