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ABSTRACT. We show that there is essentially a unique elliptic curve E defined over a cubic
Galois extension K of Q with a K-rational point of order 13 and such that E is not defined
over Q.

1 Introduction

Let K be a number field and let E be an elliptic curve over K. The question what the possible
orders of torsion points in E(K) are (or, more generally, which finite abelian groups occur as
the group of K-rational torsion points of some E) has received much attention in the recent
past. Mazur [18] famously solved this problem for K = Q. Kenku and Momose [17] and
Kamienny [15,16] dealt with quadratic number fields. Merel [20] proved that for fields K
of given degree d, there are only finitely many possibilities for the order of a torsion
point (and therefore also for the torsion subgroup). Jeon, with various coauthors [9, 14]
determined which torsion structures occur infinitely often for cubic fields. Najman [21]
found a sporadic example with a point of order 21 over a cubic field (with the curve defined
over Q); this is not on Jeon et al.’s list. The second author together with Etropolski, van
Hoeij, Morrow and Zureick-Brown [4], building on the results of Parent [22, 23], proved
that Z/21Z is actually the only torsion structure that occurs finitely often over cubic fields.
Jeon [8] also determined which torsion structures occur infinitely often over cyclic cubic
fields. The second author and Najman [5] classified all torsion groups that occur over cyclic
cubic fields. There are similar results by Jeon and coauthors for quartic fields [10–13].
Results on which prime numbers can occur as the order of a torsion point over a field of
degree d ≤ 7 can be found in a forthcoming paper by Kamienny, Stein and the last two
authors of this note [6].

In this note, we consider the cubic case. More precisely, we complete the classification of
elliptic curves over cyclic cubic fields that have a point of order 13. Jeon in [8] already
found an infinite family (with parameter space an open subset of the projective line) of
such curves. They are obtained by pulling back rational points under a cyclic degree 3
Galois cover X1(13) → P1, which is derived from the action of the diamond operators
on X1(13). This implies that the target P1 is a modular curve itself, and all the curves in
the family are in fact already defined over Q (and acquire a point of order 13 over a cyclic
cubic extension). We show that outside this family, there is essentially one other example,
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which is an elliptic curve that cannot be defined over Q. This can be seen as a complement
to [5], where similar results are obtained for points of order 16 and 20.
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2 The result

Our goal is to classify all elliptic curves E defined over a cyclic cubic extension K of Q such
that E(K) contains points of order 13. The main result is as follows.

Theorem 1. Let K be a cubic Galois extension of Q and let E be an elliptic curve defined over K
with E(K)[13] 6= 0. Then either E can be defined over Q, or else K = Q(α) with

α3 − α2 − 82α+ 64 = 0

and E is isomorphic to a Galois conjugate of the curve

E0 : y
2 + (1− c)xy− by = x3 − bx2 ,

where

b =
10α2 + 90α− 1936

19773
and c =

6α2 + 50α− 208

1521
.

To obtain this result, we find all degree 3 morphisms X1(13) → P1 that are defined over Q
and determine all their fibers above rational points that give rise to a cyclic cubic extension
of Q. There are exactly 13 such morphisms (up to automorphisms of P1). One of these
is obtained by dividing by a subgroup of order 3 of the group generated by the diamond
operators on X1(13). All its fibers are cyclic or split; this gives rise to the family of elliptic
curves over Q with points of order 13 defined over a cyclic cubic field found by Jeon [8].
Explicitly, this family can be obtained as

Et : y
2 = x3 − 27A(t)x+ 54(t2 + 1)B(t)

with

A(t) =
t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t+ 1

t4 − t3 + 5t2 + t+ 1
and

B(t) =
t12 − 8t11 + 25t10 − 44t9 + 40t8 + 18t7 − 40t6 − 18t5 + 40t4 + 44t3 + 25t2 + 8t+ 1

(t4 − t3 + 5t2 + t+ 1)2
.

A point of order 13 on Et is given by

Pt =
(36tw+ 3(t6 − 3t5 + 4t4 − 6t3 − 8t2 + 3t+ 1)

t4 − t3 + 5t2 + t+ 1
,
108t((t+ 1)w− t)

t4 − t3 + 5t2 + t+ 1

)
,
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where
w3 + (−t3 + t2 − 3t+ 1)w2 + (−t3 + 2t2 − 2t)w+ t2 = 0 .

This last polynomial has discriminant t4(t4 − t3 + 5t2 + t + 1)2 and therefore defines, for
t ∈ Q \ {0}, a cyclic cubic number field. (Our parameter t is related to tJeon of [8] by
tJeon = − 7

72
− 1

36t
.)

The other 12 morphisms fall into two orbits under the group of diamond operators (which
is cyclic of order 6). These morphisms are not Galois coverings of P1, so their fibers usually
define S3-extensions of Q. The condition for a fiber to be cyclic is expressed by requiring
the discriminant of a cubic polynomial over Q(t) (where t is a parameter on P1; adjoining
a root of the cubic defines the covering) to be a square. This defines a hyperelliptic curve.
For one of the two orbits, we obtain a curve of genus 2, for which we can prove using
Chabauty’s method that it has exactly five rational points. Three of these points arise from
split fibers containing cusps, but one pair of points corresponds to a rational point on P1
that has a cyclic fiber above it, leading to the curve E0 in Theorem 1. The remaining orbit
leads to a curve of genus 3, for which we can prove that it has exactly three rational points;
they all correspond to ramified fibers containing cusps. The details are given in the next
section.

A more geometric way of seeing that the question reduces to the determination of the set of
rational points on some hyperelliptic curves is as follows. Points in X1(13) that are defined
over cyclic cubic fields give rise to rational points on the quotient X1(13)3/C3, where the
cyclic group C3 acts by permuting the factors. Viewing C3 = A3 as a subgroup of the
symmetric group S3, we obtain morphisms

X1(13)
3/C3

ϕ−→ X1(13)
3/S3 = X1(13)

(3) π−→ Pic3X1(13)
.

The symmetric cube in the middle parameterizes effective divisors of degree 3; π maps to
the linear equivalence class. The fiber of π above any point is a P1 (by Riemann-Roch); ϕ is
a ramified double cover, so the fibers of the composition are ramified double covers of P1,
i.e., hyperelliptic curves, unless the fiber of πmeets the branch locus of ϕ everywhere with
even multiplicity, in which case we obtain a union of two P1’s. This is what happens for
Jeon’s family; in all other cases of interest we do indeed obtain a hyperelliptic curve.

3 Proof of the theorem

In the following, we will write X for X1(13). We use the model of X given by

y2 + (x3 + x2 + 1)y = x2 + x ;

see Sutherland’s table [26]. In particular, X has genus 2 and is (therefore) hyperelliptic.
The canonical class on X is the linear equivalence class of divisors arising by pulling back a
point under the hyperelliptic covering map X → P1; it is the same as the class containing
the canonical divisors.

The map X = X1(13) → X0(13) obtained by sending a point of order 13 to the group it
generates is Galois over Q. Its automorphism group consists of the diamond operators and
is canonically isomorphic to (Z/13Z)×/{±1}, which is a cyclic group of order 6; we denote
this group by G.
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It is known that X(Q) consists of the six rational cusps and that the group of rational
points on its Jacobian J is cyclic of order 19; see [19]. The rational points on X form one
orbit under G; they are the two points at infinity and the points (−1,−1), (−1, 0), (0,−1)
and (0, 0) on our model of X.

Since the genus of X is 2, every rational point on J except the origin has a unique repre-
sentation as an effective divisor D of degree 2 minus the canonical class, with the points
in the support of D either rational or defined over a quadratic extension of Q and conju-
gate, where D is not in the canonical class. Since the six rational points lead to exactly 18
effective divisors of degree 2 outside the canonical class, they account for all the rational
points in J, which implies that there are no quadratic points with irrational x-coordinate.
See [2,7].

Now consider a point P ∈ X with [Q(P) : Q] = 3. The sum of P and its two Galois
conjugates is a rational effective divisor D of degree 3, so it gives a rational point on the
symmetric cube S of X. Under the canonical map π : S → Pic3(X), it maps to a rational
point on Pic3(X). The fibers of π are P1’s; this follows from the Riemann-Roch theorem.

Since Pic3(X) is isomorphic to J (note that X has rational points), it has exactly 19 rational
points. Therefore D lies in the fiber of π above one of these points. Six of the rational
points on Pic3(X) arise as a rational point on X plus the canonical class. This implies that
all divisors in the corresponding fiber contain this rational point and can therefore never
contain a cubic point.

For the remaining 13 rational points on Pic3(X), the corresponding line bundle L is base-
point-free. In this case, the fiber of π above the point can be identified with the target
of the morphism X → P1 defined by the two-dimensional space of global sections of the
line bundle L. This implies that each cubic point on X lies in the fiber of one of these
morphisms X→ P1 above a rational point of P1.

These 13 rational points on Pic3(X) consist of one point that is fixed by G and two orbits
of size 6 under G. It clearly suffices to determine the cyclic cubic points in the fibers of the
degree 3 morphisms X→ P1 associated to one representative of each orbit.

Let G ′ be the subgroup of order 3 of G. The quotient X/G ′ is a curve of genus 0, so the map
X→ X/G ′ must show up in our list. Since this quotient is unique, the map must correspond
to the point in Pic3(X)(Q) that is fixed by G. Since X → X/G ′ is a Galois covering, all its
fibers over rational points are either ramified, split, or cyclic. The modular curve X/G ′ is a
double cover of X0(13); viewing G ′ as the group of diamond operators {〈1〉, 〈3〉, 〈9〉}, we see
that X/G ′ is a fine moduli space outside the branch locus of X→ X/G ′ (the image in X/G ′

of the zero locus of x2 + x + 1 in our model of X.) Since the cubic points arising in fibers
of X → X/G ′ map to rational points on X/G ′ outside this branch locus, the elliptic curves
they represent are defined over Q. This accounts for the first alternative in Theorem 1.
(We have made this one-parameter family explicit in the previous section.)

One representative of one of the other two orbits of degree 3 morphisms to P1 is given by
the y-coordinate map of our model of X. The discriminant with respect to x of the equation
defining X is

d1(y) = (y+ 1)(−27y5 − 31y4 − 6y3 + 6y2 + 5y+ 1) ;
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the condition that this is a square then defines a hyperelliptic curve D1 of genus 2. A quick
search finds five rational points onD1: one point with y = −1 and two each with y = 0 and
y = − 4

13
. So there are three fibers of the y-coordinate map with Galois group contained

in A3. The first two contain rational points on X, but the fiber above − 4
13

really consists
of three conjugate points defined over the cyclic extension K; they and the other points in
their G-orbits give rise to the curve E0 and its Galois conjugates mentioned in 1. (It can
be easily checked that the point (0, 0) on E0 indeed has order 13. The discriminant of K is
(13 · 19)2.)
Using the Magma implementation of 2-descent on hyperelliptic Jacobians as described
in [24], we find that the Mordell-Weil rank of the Jacobian of D1 is at most 1. From the
rational points we have found on D1, we can easily construct a rational point of infinite
order on the Jacobian. A combination of Chabauty’s method with the Mordell-Weil sieve
as explained in [3] and implemented in Magma then quickly proves that the five points we
found are indeed all the rational points on D1.

A representative of the remaining orbit is X→ P1 given by y+1
x

. Writing t for the parameter
on P1, we have y = xt−1. Plugging this into the equation of X and taking the discriminant
with respect to x gives

d2(t) = t(t+ 1)
3(−4t5 + 5t4 − t3 − 25t2 − 23t− 4) .

Setting d2(t)/(t + 1)2 equal to a square gives a hyperelliptic curve D2 of genus 3. It has
three obvious rational Weierstrass points at infinity and with t = −1 or 0. We do not find
any other rational point. Using 2-descent again, we can show that the Mordell-Weil rank
of the Jacobian is 0. A minimal model of D2 is

v2 + (u3 + u2)v = u7 − 8u5 − 13u4 − 7u3 − 2u2 − u ;

from this we see that D2 has good reduction at 2. The reduction has exactly three F2-
points, which are the images of the three rational points we had found. Since their residue
disks are fixed by the hyperelliptic involution, we know that each of the three residue disks
contains an odd number of rational points. Since the Mordell-Weil group is finite, all 2-
adic integrals

∫Q
P
ω between rational points P,Q ∈ D2(Q) for regular differentials ω must

vanish. In particular, we can, for each residue class, choose a differential whose reduction
mod 2 does not vanish in the corresponding F2-point on the reduction. By [25, Section 6],
the corresponding integral vanishes for at most two points in the residue class. Since it
has to vanish at each rational point and the number of rational points in the residue class
is odd, there is only the known rational point in each of the three residue classes, which
shows that #D2(Q) = 3. These three points are all images of cusps, so we do not obtain
any further cyclic cubic points on X. This concludes the proof.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J.
Symbolic Comput. 24 (1997), no. 3-4, 235–265, DOI 10.1006/jsco.1996.0125. Computational algebra
and number theory (London, 1993). MR1484478 ↑1

[2] Johan Bosman, Peter Bruin, Andrej Dujella, and Filip Najman, Ranks of elliptic curves with prescribed tor-
sion over number fields, Int. Math. Res. Not. IMRN 11 (2014), 2885–2923, DOI 10.1093/imrn/rnt013.
MR3214308 ↑3

5



[3] Nils Bruin and Michael Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves,
LMS J. Comput. Math. 13 (2010), 272–306, DOI 10.1112/S1461157009000187. MR2685127 ↑3

[4] Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow, and David Zureick-Brown,
Sporadic Cubic Torsion, July 28, 2020. Preprint, arXiv:2007.13929, to appear in Algebra & Number
Theory. ↑1

[5] Maarten Derickx and Filip Najman, Torsion of elliptic curves over cyclic cubic fields, Math. Comp. 88
(2019), no. 319, 2443–2459, DOI 10.1090/mcom/3408. MR3957900 ↑1

[6] Maarten Derickx, Sheldon Kamienny, William Stein, and Michael Stoll, Torsion points on elliptic curves
over number fields of small degree, January 15, 2021. Preprint, arXiv:1707.00364. ↑1

[7] Maarten Derickx, Barry Mazur, and Sheldon Kamienny, Rational families of 17-torsion points of
elliptic curves over number fields, Number theory related to modular curves—Momose memorial
volume, Contemp. Math., vol. 701, Amer. Math. Soc., Providence, RI, 2018, pp. 81–104, DOI
10.1090/conm/701/14142. MR3755909 ↑3

[8] Daeyeol Jeon, Families of elliptic curves over cyclic cubic number fields with prescribed torsion, Math.
Comp. 85 (2016), no. 299, 1485–1502, DOI 10.1090/mcom/3012. MR3454372 ↑1, 2

[9] Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with
prescribed torsion subgroups, Math. Comp. 80 (2011), no. 273, 579–591, DOI 10.1090/S0025-5718-
10-02369-0. MR2728995 ↑1

[10] , Families of elliptic curves over quartic number fields with prescribed torsion subgroups, Math.
Comp. 80 (2011), no. 276, 2395–2410, DOI 10.1090/S0025-5718-2011-02493-2. MR2813367 ↑1

[11] , Infinite families of elliptic curves over dihedral quartic number fields, J. Number Theory 133
(2013), no. 1, 115–122, DOI 10.1016/j.jnt.2012.06.014. MR2981403 ↑1

[12] , Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields, J. Number
Theory 147 (2015), 342–363, DOI 10.1016/j.jnt.2014.07.014. MR3276329 ↑1

[13] Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic num-
ber fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1–12, DOI 10.1112/S0024610706022940.
MR2254548 ↑1

[14] Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic
number fields, Acta Arith. 113 (2004), no. 3, 291–301, DOI 10.4064/aa113-3-6. MR2069117 ↑1

[15] S. Kamienny, Torsion points on elliptic curves over all quadratic fields, Duke Math. J. 53 (1986), no. 1,
157–162, DOI 10.1215/S0012-7094-86-05310-X. MR835802 ↑1

[16] , Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992),
no. 2, 221–229, DOI 10.1007/BF01232025. MR1172689 ↑1

[17] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math.
J. 109 (1988), 125–149, DOI 10.1017/S0027763000002816. MR931956 ↑1

[18] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977),
33–186 (1978). MR488287 ↑1

[19] B. Mazur and J. Tate, Points of order 13 on elliptic curves, Invent. Math. 22 (1973/74), 41–49, DOI
10.1007/BF01425572. MR0347826 ↑3
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