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FOR HYPERELLIPTIC JACOBIANS OF GENUS THREE
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Abstract. We develop an explicit theory of Kummer varieties associated to
Jacobians of hyperelliptic curves of genus 3, over any field k of characteristic 6= 2.
In particular, we provide explicit equations defining the Kummer variety K as a
subvariety of P7, together with explicit polynomials giving the duplication map
on K. A careful study of the degenerations of this map then forms the basis
for the development of an explicit theory of heights on such Jacobians when k
is a number field. We use this input to obtain a good bound on the difference
between naive and canonical height, which is a necessary ingredient for the
explicit determination of the Mordell-Weil group. We illustrate our results with
two examples.

1. Introduction

The goal of this paper is to take up the approaches used to deal with Jacobians
and Kummer surfaces of curves of genus 2 by Cassels and Flynn [CF] and by
the author [Sto1, Sto3] and extend them to hyperelliptic curves of genus 3. We
always assume that the base field k has characteristic 6= 2. A hyperelliptic curve C
over k of genus 3 is then given by an equation of the form y2 = f(x), where f
is a squarefree polynomial of degree 7 or 8 with coefficients in k; we take C to
be the smooth projective curve determined by this affine equation. We denote
the Jacobian variety of C by J . Identifying points with their negatives on J , we
obtain the Kummer variety of J . It is known that the morphism J → P7 given
by the linear system |2Θ| on J (where Θ denotes the theta divisor) induces an
isomorphism of the Kummer variety with the image of J in P7; we denote the
image by K ⊂ P7. Our first task is to find a suitable basis of the Riemann-Roch
space L(2Θ) and to give explicit equations defining K, thereby completing earlier
work by Stubbs [Stu], Duquesne [Duq] and Müller [Mü1, Mü3]. To this end,
we make use of the canonical identification of J with X = Pic4(C) and realize
the complement of Θ in X as the quotient of an explicit 6-dimensional variety V
in A15 by the action of a certain group Γ. This allows us to identify the ring of
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regular functions on X \ Θ with the ring of Γ-invariants in the coordinate ring
of V . In this way, we obtain a natural basis of L(2Θ), and we find the quadric
and the 34 quartics that define K; see Section 2. We give the relation between
the coordinates chosen here and those used in previous work and discuss how
transformations of the curve equation induced by the action of GL(2) on (x, z)
act on our coordinates; see Section 3. We then give a recipe that allows to decide
whether a k-rational point on K comes from a k-rational point on J (Section 4).

The next task is to describe the maps K → K and Sym2K → Sym2K induced by
multiplication by 2 and by {P,Q} 7→ {P +Q,P −Q} on J . We use the approach
followed in [Sto1]: we consider the action of a double cover of the 2-torsion sub-
group J [2] on the coordinate ring of P7. This induces an action of J [2] itself on
forms of even degree. We use the information obtained on the various eigenspaces
and the invariant subspaces in particular to obtain an explicit description of the
duplication map δ and of the add-and-subtract map on K. The study of the ac-
tion of J [2] is done in Sections 5 and 6; the results on the duplication map and
on the sum-and-difference map are obtained in Sections 7 and 8, respectively. In
Section 9, we then study the degeneration of these maps that occur when we allow
the curve to acquire singularities. This is relevant in the context of bad reduction
and is needed as input for the results on the height difference bound.

We then turn to the topic motivating our study, which is the canonical height ĥ on
the Jacobian, and, in particular, a bound on the difference h−ĥ between naive and
canonical height. Such a bound is a necessary ingredient for the determination
of generators of the Mordell-Weil group J (k) (where k now is a number field;
in practice, usually k = Q), given generators of a finite-index subgroup. The

difference h− ĥ can be expressed in terms of the local ‘loss of precision’ under δ at
the various primes of bad reduction and the archimedean places of k. In analogy
with [Sto1], we obtain an estimate for this local ‘loss of precision’ in terms of the
valuation of the discriminant of f . This is one of the main results of Section 10,
together with a statement on the structure of the local ‘height correction function’,
which is analogous to that obtained in [Sto3, Theorem 4.1]. These results allow
us to obtain reasonable bounds for the height difference. We illustrate this by
determining generators of the Mordell-Weil group of the Jacobian of the curve
y2 = 4x7−4x+1. We then use this result to determine the set of integral solutions
of the equation y2 − y = x7 − x, using the method of [BM+]; see Section 11.

In addition, we show in Section 12 how one can obtain better bounds (for a
modified naive height) when the polynomial defining the curve is not primitive.
As an example, we determine explicit generators of the Mordell-Weil group of the
Jacobian of the curve given by the binomial coefficient equation(

y

2

)
=

(
x

7

)
.
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We have made available at [Data] files that can be read into Magma [BCP] and
provide explicit representations of the quartics defining the Kummer variety, the
matrices giving the action of 2-torsion points, the polynomials defining the dupli-
cation map and the matrix of bi-quadratic forms related to the ‘sum-and-difference
map’.

Acknowledgments. I would like to thank Steffen Müller for helpful comments
on a draft version of this paper and for pointers to the literature. The necessary
computations were performed using the Magma computer algebra system [BCP].
At [Data] we have made available the file Kum3-verification.magma, which, when
loaded into Magma, will perform the computations necessary to verify a number
of claims made throughout the paper. These claims are marked by a star, like
thisF.

2. The Kummer Variety

We consider a hyperelliptic curve of genus 3 over a field k of characteristic different
from 2, given by the affine equation

C : y2 = f8x
8 + f7x

7 + · · ·+ f1x+ f0 = f(x),

where f is a squarefree polynomial of degree 7 or 8. (We do not assume that C
has a Weierstrass point at infinity, which would correspond to f having degree 7.)
Let F (x, z) denote the octic binary form that is the homogenization of f ; F is
squarefree. Then C has a smooth model in the weighted projective plane P2

1,4,1

given by y2 = F (x, z). Here x and z have weight 1 and y has weight 4. We denote
the hyperelliptic involution on C by ι, so that ι(x : y : z) = (x : −y : z).

As in the introduction, we denote the Jacobian variety of C by J . We would like
to find an explicit version of the map

J −→ P7

given by the linear system of twice the theta divisor; it embeds the Kummer
variety J /{±1} into P7. We denote the image by K.

We note that the canonical class W on C has degree 4. Therefore J = Pic0
C is

canonically isomorphic to X = Pic4
C, with the isomorphism sending D to D + W.

Then the map induced by ι on X corresponds to multiplication by −1 on J . There
is a canonical theta divisor on Pic0

C whose support consists of the divisor classes of
the form [(P1) + (P2)]−m, where m is the class of the polar divisor (x)∞; we have
W = 2m. The support of the theta divisor is the locus of points on X that are not
represented by divisors in general position, where an effective divisor D on C is in
general position unless there is a point P ∈ C such that D ≥ (P ) + (ιP ). This
can be seen as follows. The image on X of a point [(P1) + (P2)]−m on the theta
divisor is represented by all effective divisors of the form (P1) + (P2) + (P ) + (ιP )
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for an arbitrary point P ∈ C. If P2 6= ιP1, then the Riemann-Roch Theorem
implies that the linear system containing these divisors is one-dimensional, and so
all divisors representing our point on X have this form; in particular, there is no
representative divisor in general position. If P2 = ιP1, then the linear system has
dimension 2 and consists of all divisors of the form (P ) + (ιP ) + (P ′) + (ιP ′), none
of which is in general position.

We identify J and X , and we denote the theta divisor on J and its image on X
by Θ. We write L(nΘ) for the Riemann-Roch space L(X , nΘ) ∼= L(J , nΘ), where
n is an integer. It is known that dimL(nΘ) = n3. Since Θ is symmetric, the
negation map acts on L(nΘ) (via φ 7→ (P 7→ φ(−P ))), and it makes sense to speak
of even and odd functions in L(nΘ) (with respect to this action). We write L(nΘ)+

for the subspace of even functions. It is known that dimL(nΘ)+ = n3/2 + 4 for
n even and dimL(nΘ)+ = (n3 + 1)/2 for n odd.

We can parameterize effective degree 4 divisors in general position as follows. Any
such divisor D is given by a binary quartic form A(x, z) specifying the image of D
on P1 under the hyperelliptic quotient map π : C → P1, (x, y) 7→ x, together with
another quartic binary form B(x, z) such that y = B(x, z) on the points in D,
with the correct multiplicity. (Note that by the ‘general position’ condition, y
is uniquely determined by x and z for each point in the support of D.) More
precisely, we must have that

(2.1) B(x, z)2 − A(x, z)C(x, z) = F (x, z)

for a suitable quartic binary form C(x, z). We then have a statement analogous
to that given in [CF, Chapter 4] for Pic3 of a curve of genus 2, which we formulate
as a lemma.

We let Q be the ternary quadratic form x2
2 − x1x3. We write

(2.2) D =

 0 0 −1
0 2 0
−1 0 0

 ,

for the associated symmetric matrix (times 2) and

Γ = SO(Q) = {γ ∈ SL(3) : γDγ> = D};

then −Γ = O(Q) \ SO(Q), and ±Γ = O(Q). We have the following elements in Γ
(for arbitrary λ and µ in the base field):

tλ =

λ 0 0
0 1 0
0 0 λ−1

 , nµ =

1 µ µ2

0 1 2µ
0 0 1

 and w =

0 0 1
0 −1 0
1 0 0

 ;

these elements generate Γ.
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Lemma 2.1. Two triples (A,B,C) and (A′, B′, C ′) satisfying (2.1) specify the
same point on X if and only if (A′, B′, C ′) = (A,B,C)γ for some γ ∈ Γ. They
represent opposite points (with respect to the involution on X induced by ι) if and
only if the relation above holds for some γ ∈ −Γ.

Proof. We first show that two triples specifying the same point are in the same
Γ-orbit. Let D and D′ be the effective divisors of degree 4 given by A(x, x) = 0,
y = B(x, z) and by A′(x, z) = 0, y = B′(x, z), respectively. By assumption,
D and D′ are linearly equivalent, and they are both in general position. If D
and D′ share a point P in their supports, then subtracting P from both D and D′,
we obtain two effective divisors of degree 3 in general position that are linearly
equivalent. Since such divisors are non-special, they must be equal, hence D = D′.
So A and A′ agree up to scaling, and B′ −B is a multiple of A:

A′ = λA, B′ = B + µA, C ′ = λ−1(C + 2µB + µ2A);

then (A′, B′, C ′) = (A,B,C)nµtλ. So we can now suppose that the supports of D
and D′ are disjoint. Then, denoting by ιD′ the image of D′ under the hyperelliptic
involution, D+ιD′ is a divisor of degree 8 in general position, which is in twice the
canonical class, so it is linearly equivalent to 4m. Since the Riemann-Roch space
of that divisor on C is generated by (in terms of the affine coordinates obtained
by setting z = 1) 1, x, x2, x3, x4, y, there is a function of the form y− B̃(x, 1) with
B̃ homogeneous of degree 4 that has divisor D+ ιD′− 4m. Equivalently, D+ ιD′

is the intersection of C with the curve given by y = B̃(x, z). This implies that
B̃2 − F is a constant times AA′. Up to scaling A′ and C ′ by λ and λ−1 for a
suitable λ (this corresponds to acting on (A′, B′, C ′) by tλ ∈ Γ), we have

B̃2 − AA′ = F,

so that (A, B̃, A′) corresponds to D and (A′,−B̃, A) corresponds to D′. The
argument above (for the case D = D′) shows that (A,B,C) and (A, B̃, A′) are in
the same Γ-orbit, and the same is true of (A′, B′, C ′) and (A′,−B̃, A). Finally,

(A′,−B̃, A) = (A, B̃, A′)w.

Conversely, it is easy to see that the generators of Γ given above do not change
the linear equivalence class of the associated divisor — the first two do not even
change the divisor, and the third replaces D by the linearly equivalent ιD′ where
D + D′ ∼ 2W is the divisor of y −B(x, z) on C.
For the last statement, it suffices to observe that (A,−B,C) gives the point op-
posite to that given by (A,B,C); the associated matrix is −t−1 ∈ −Γ. �
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We write A, B, C as follows.

A(x, z) = a4x
4 + a3x

3z + a2x
2z2 + a1xz

3 + a0z
4

B(x, z) = b4x
4 + b3x

3z + b2x
2z2 + b1xz

3 + b0z
4

C(x, z) = c4x
4 + c3x

3z + c2x
2z2 + c1xz

3 + c0z
4

and use a0, . . . , a4, b0 . . . , b4, c0, . . . , c4 as affine coordinates on A15. We arrange
these coefficients into a matrix

(2.3) L =

a0 a1 a2 a3 a4

b0 b1 b2 b3 b4

c0 c1 c2 c3 c4

 .

Then γ ∈ ±Γ acts on A15 via multiplication by γ> on the left on L. Since there
is a multiplicative group sitting inside Γ acting by (A,B,C) · λ = (λA,B, λ−1C),
any Γ-invariant polynomial must be a linear combination of monomials having
the same number of ai and cj. Hence in any term of a homogeneous Γ-invariant
polynomial of degree d, the number of factors bi has the same parity as d. This
shows that such a Γ-invariant polynomial is even with respect to ι if d is even, and
odd if d is odd.

It is not hard to see that there are no Γ-invariant polynomials of degree 1: by the
above, they would have to be a linear combination of the bi, but the involution
(A,B,C) 7→ (C,−B,A) = (A,B,C)w negates all the bi. It is also not hard to
check that the space of invariants of degree 2 is spanned by the coefficients of the
quadratic form

B2
l − AlCl ∈ Sym2〈x0, x1, x2, x3, x4〉,

where

Al = a0x0 + a1x1 + a2x2 + a3x3 + a4x4

Bl = b0x0 + b1x1 + b2x2 + b3x3 + b4x4

Cl = c0x0 + c1x1 + c2x2 + c3x3 + c4x4

are linear forms in five variables. We write

B2
l − AlCl =

∑
0≤i≤j≤4

ηijxixj,

so that ηii = b2
i − aici and for i < j, ηij = 2bibj − aicj − ajci. Up to scaling, the

quadratic form corresponds to the symmetric matrix

(2.4) L>DL =


2η00 η01 η02 η03 η04

η01 2η11 η12 η13 η14

η02 η12 2η22 η23 η24

η03 η13 η23 2η33 η34

η04 η14 η24 η34 2η44

 ,
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and the image Q of the map q : A15 → Sym2 A5 given by this matrix consists of
the matrices of rank at most 3; it is therefore defined by the 15 different quartics
obtained as 4× 4-minors of this matrix.

Scaling x by λ corresponds to scaling aj, bj, cj by λj. This introduces another
grading on the coordinate ring of our A15; we call the corresponding degree the
weight. We then have wt(aj) = wt(bj) = wt(cj) = j and therefore wt(ηij) = i+ j.
The 15 quartics defining Q have weights

12, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 20.

We will reserve the word degree for the degree in terms of the ηij; then it makes
sense to set deg(aj) = deg(bj) = deg(cj) = 1

2
.

We let V ⊂ A15 be the affine variety given by (2.1). The defining equations of V
then read

b2
0 − a0c0 = η00 = f0

2b0b1 − (a0c1 + a1c0) = η01 = f1

2b0b2 + b2
1 − (a0c2 + a1c1 + a2c0) = η02 + η11 = f2

2b0b3 + 2b1b2 − (a0c3 + a1c2 + a2c1 + a3c0) = η03 + η12 = f3

2b0b4 + 2b1b3 + b2
2 − (a0c4 + a1c3 + a2c2 + a3c1 + a4c0) = η04 + η13 + η22 = f4

2b1b4 + 2b2b3 − (a1c4 + a2c3 + a3c2 + a4c1) = η14 + η23 = f5

2b2b4 + b2
3 − (a2c4 + a3c3 + a4c2) = η24 + η33 = f6

2b3b4 − (a3c4 + a4c3) = η34 = f7

b2
4 − a4c4 = η44 = f8;

in particular, the image of V under q is a linear ‘slice’W of Q, cut out by the nine
linear equations above. It is then natural to define deg(fj) = 1 and wt(fj) = j.

By Lemma 2.1, the quotient V/Γ of V by the action of Γ can be identified with
U := X \ Θ, the complement of the theta divisor in X . Since the map q is given
by ±Γ-invariants, we obtain a surjective morphism K \ κ(Θ) → W . We will see
that it is actually an isomorphism.

Functions in the Riemann-Roch space L(nΘ) will be represented by Γ-invariant
polynomials in the ai, bi, ci. Similarly, functions in the even part L(nΘ)+ of this
space are represented by ±Γ-invariant polynomials. A Γ-invariant polynomial
that is homogeneous of degree n in the ai, bi, ci will conversely give rise to a
function in L(nΘ). Modulo the relations defining V , there are six independent
such invariants of degree 2. We choose

η02, η03, η04, η13, η14, η24

as representatives. As mentioned above, invariants of even degree are ±Γ-invariant
and so give rise to even functions on X with respect to ι, whereas invariants of
odd degree give rise to odd functions on X . Together with the constant function
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1, we have found seven functions in L(2Θ) = L(2Θ)+. Since dimL(2Θ) = 23 = 8,
we are missing one function. We will see that is given by some quadratic form in
the ηij above, with the property that it does not grow faster than them when we
approach Θ.

To find this quadratic form, we have to find out what (η02 : η03 : · · · : η24) tends to
as we approach the point represented by (x1, y1) + (x2, y2) + m on X . A suitable
approximation, taking y = `(x) to be the line interpolating between the two points,

B(x, 1) = λ(x− x0)(x− x1)(x− x2) + `(x),

A0(x) = (x−x1)(x−x2), ϕ±(x) = (f(x)± `(x)2)/A0(x)2, ψ(x) = `(x)/A0(x), and

A(x, 1) = A0(x)
(
λ2(x− x0)2 +

(
2λψ(x0)− ϕ′+(x0)

)
(x− x0)− ϕ−(x0) +O(λ−1)

)
,

shows thatF

η02 = −λ2(x1x2)2 +O(λ)

η03 = λ2(x1 + x2)x1x2 +O(λ)

η04 = −λ2x1x2 +O(λ)

η13 = −λ2(x2
1 + x2

2) +O(λ)

η14 = λ2(x1 + x2) +O(λ)

η24 = −λ2 +O(1)

as λ → ∞. There are various quadratic expressions in these that grow at most
like λ3, namely

2η04η24 + η13η24 − η2
14, η03η24 − η04η14, η02η24 − η2

04,

η02η14 − η03η04, 2η02η04 + η02η13 − η2
03

(they provide five independent even functions in L(3Θ) modulo L(2Θ)) and

(2.5) η = η02η24 − η03η14 + η2
04 + η04η13,

which in fact only grows like λ2 and therefore gives us the missing basis element
of L(2Θ). We find thatF

η = λ2G(x1, x2)− 2y1y2

(x1 − x2)2
+O(λ),

where

G(x1, x2) = 2
4∑
j=0

f2j(x1x2)j + (x1 + x2)
3∑
j=0

f2j+1(x1x2)j.

(Note the similarity with the fourth Kummer surface coordinate in the genus 2
case; see [CF].)
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The map X → P7 we are looking for is then given by

(1 : η24 : η14 : η04 : η04 + η13 : η03 : η02 : η).

We use (ξ1, . . . , ξ8) to denote these coordinates (in the given order). The reason
for setting ξ5 = η04 + η13 rather than η13 is that this leads to nicer formulas later
on. For example, we then have the simple quadratic relation

(2.6) ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5 = 0.

Regarding degree and weight, we have, writing ξ = (ξ1, ξ2, . . . , ξ8), that

deg(ξ) = (0, 1, 1, 1, 1, 1, 1, 2) and wt(ξ) = (0, 6, 5, 4, 4, 3, 2, 8).

It is known that the image K of the Kummer variety in P7 of a generic hyperelliptic
Jacobian of genus 3 is given by a quadric and 34 independent quartic relations
that are not multiples of the quadric; see [Mü3, Thm. 3.3]. (For this, we can
work over an algebraically closed field, so that we can change coordinates to move
one of the Weierstrass points to infinity so that we are in the setting of [Mü3].)
The quadric is just (2.6). It is also known [Mü3, Prop. 3.1] that K is defined by
quartic equations. Since there are 36 quartic multiples of the quadric (2.6), the
space of quartics in eight variables has dimension 330 and the space L(8Θ)+ has
dimension 260, there must be at least 34 further independent quartics vanishing
on K: the space of quartics vanishing on K is the kernel of Sym4 L(2Θ)→ L(8Θ)+,
which has dimension ≥ 70. We can find these quartics as follows.

There are 15 quartic relations in (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7) coming from the quartics
definingQ. They are given by the 4×4 minors of the matrix (2.4), which restricted
to V is

(2.7) M =


2f0ξ1 f1ξ1 ξ7 ξ6 ξ4

f1ξ1 2(f2ξ1 − ξ7) f3ξ1 − ξ6 ξ5 − ξ4 ξ3

ξ7 f3ξ1 − ξ6 2(f4ξ1 − ξ5) f5ξ1 − ξ3 ξ2

ξ6 ξ5 − ξ4 f5ξ1 − ξ3 2(f6ξ1 − ξ2) f7ξ1

ξ4 ξ3 ξ2 f7ξ1 2f8ξ1

 .

Since these relations do not involve ξ8, they cannot be multiples of the quadratic
relation. We find 55 further independent quartics vanishing on K (and thence a
basis of the ‘new’ space of quartics that are not multiples of the quadratic relation)
by searching for polynomials of given degree and weight that vanish on V when
pulled back to A15. Removing those that are multiples of the invariant quadric,
we obtain quartics with the following 34 pairs of degree and weight:

deg = 4: wt = 12, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 20;

deg = 5: wt = 17, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23;

deg = 6: wt = 22, 23, 24, 24, 25, 26.
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(Recall that ‘degree’ refers to the degree in terms of the original ηij.) These
quartics are given in the file Kum3-quartics.magma at [Data]. The quartics are
scaled so that their coefficients are in Z[f0, . . . , f8]. The 15 quartics of degree 4
are exactly those obtained as 4× 4-minors of the matrix M above.

Lemma 2.2. Let f0, . . . , f8 ∈ k be arbitrary. Then the 70 quartics constructed as
described above are linearly independent over k.

Proof. We can findF 70 monomials such that the 70 × 70-matrix formed by the
coefficients of the quartics with respect to these monomials has determinant ±1.

�

Note that regarding k, this is a slight improvement over [Mü3, Lemma 3.2], where
k was assumed to have characteristic 6= 2, 3, 5.

We now show that these quartics indeed give all the relations.

Lemma 2.3. The natural map Sym2 L(4Θ)+ → L(8Θ)+ is surjective.

Proof. Mumford shows [Mum, §4, Thm. 1] that Sym2 L(4Θ)→ L(8Θ) is surjective.
The proof can be modified to give the corresponding result for the even subspaces,
as follows (we use the notations of [Mum]). We work with the even functions
δa+b + δ−a−b and δa−b + δ−a+b. This gives∑

η∈Z2

l(η)(δa+b+η + δ−a−b−η) ∗ (δa−b+η + δ−a+b−η)

=
(∑
η∈Z2

l(η)q1(b+ η)
)(∑

η∈Z2

l(η)(δa+η + δ−a−η)
)

+
(∑
η∈Z2

l(η)q1(a+ η)
)(∑

η∈Z2

l(η)(δb+η + δ−b−η)
)
.

We fix the homomorphism l : Z2 → {±1} and the class of a mod K(δ). By (*)
in [Mum, p. 339] there is some b in this class such that

∑
η l(η)q(b+η) 6= 0. Taking

a = b, we see that

∆(b) :=
∑
η

l(η)(δb+η + δ−b−η)

is in the image. Using this, we see that for all other a in the class, ∆(a) is also
in the image. Inverting the Fourier transform, we find that all δa + δ−a are in the
image, which therefore consists of all even functions. �

Corollary 2.4. The natural map Sym4 L(2Θ)→ L(8Θ)+ is surjective.

Proof. Note that L(2Θ) = L(2Θ)+, so the image of Sym4 L(2Θ) → L(8Θ) is
contained in the even subspace. Since there is exactly one quadratic relation, the
map Sym2 L(2Θ)→ L(4Θ)+ is not surjective, but has a one-dimensional cokernel.
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We will see below in Section 7 that this cokernel is generated by the image of
a function Ξ such that ξiξjΞ (for all i, j) and Ξ2 can be expressed as quartics in
the ξi. This implies that the image of the map in the statement contains the image
of Sym2 L(4Θ)+, and surjectivity follows from Lemma 2.3. Note that once we have
found Ξ explicitly, the assertions relating to it made above can be checked directly
and without relying on the considerations leading to the determination of Ξ. �

Theorem 2.5. Let k be a field of characteristic different from 2 and let F ∈ k[x, z]
be homogeneous of degree 8 and squarefree. Then the image K in P7 of the Kummer
variety associated to the Jacobian variety of the hyperelliptic curve y2 = F (x, 1)
is defined by the quadric (2.6) and the 34 quartics constructed above.

Proof. By Corollary 2.4 the dimension of the space of quartics vanishing on K
is 70. By Lemma 2.2 the quadric and the 34 quartics give rise to 70 independent
quartics vanishing on K. By [Mü3, Prop. 3.1] K can be defined by quartics, so the
claim follows. �

This improves on [Mü3, Thm. 3.3] by removing the genericity assumption (and
allowing characteristic 3 or 5).

To conclude this section, we determine the images of some special points on J
under the map to K.

The discussion on page 8 shows that on a point [(x1, y1) + (x2, y2) + m] ∈ Θ, the
map restricts to

(
0 : 1 : −(x1 + x2) : x1x2 : x2

1 + x1x2 + x2
2

: −(x1 + x2)x1x2 : (x1x2)2 :
2y1y2 −G(x1, x2)

(x1 − x2)2

)
.

If we write (X − x1)(X − x2) = σ0X
2 + σ1X + σ2, then this can be written as

(0 : σ2
0 : σ0σ1 : σ0σ2 : σ2

1 − σ0σ2 : σ1σ2 : σ2
2 : ξ8),
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where, rewriting
(
(x1 − x2)2ξ8 −G(x1, x2)

)2
= 4F (x1, 1)F (x2, 1), we have that

(σ2
1−4σ0σ2)ξ2

8

+ (4f0σ
4
0 − 2f1σ

3
0σ1 + 4f2σ

3
0σ2 − 2f3σ

2
0σ1σ2 + 4f4σ

2
0σ

2
2

− 2f5σ0σ1σ
2
2 + 4f6σ0σ

3
2 − 2f7σ1σ

3
2 + 4f8σ

4
2)ξ8

+ (−4f0f2 + f 2
1 )σ6

0 + 4f0f3σ
5
0σ1 − 2f1f3σ

5
0σ2 − 4f0f4σ

4
0σ

2
1

+ (−4f0f5 + 4f1f4)σ4
0σ1σ2 + (−4f0f6 + 2f1f5 − 4f2f4 + f 2

3 )σ4
0σ

2
2

+ 4f0f5σ
3
0σ

3
1 + (8f0f6 − 4f1f5)σ3

0σ
2
1σ2 + (8f0f7 − 4f1f6 + 4f2f5)σ3

0σ1σ
2
2

+ (−2f1f7 − 2f3f5)σ3
0σ

3
2 − 4f0f6σ

2
0σ

4
1 + (−12f0f7 + 4f1f6)σ2

0σ
3
1σ2

+ (−16f0f8 + 8f1f7 − 4f2f6)σ2
0σ

2
1σ

2
2 + (8f1f8 − 4f2f7 + 4f3f6)σ2

0σ1σ
3
2

+ (−4f2f8 + 2f3f7 − 4f4f6 + f 2
5 )σ2

0σ
4
2 + 4f0f7σ0σ

5
1

+ (16f0f8 − 4f1f7)σ0σ
4
1σ2 + (−12f1f8 + 4f2f7)σ0σ

3
1σ

2
2

+ (8f2f8 − 4f3f7)σ0σ
2
1σ

3
2 + (−4f3f8 + 4f4f7)σ0σ1σ

4
2 − 2f5f7σ0σ

5
2

− 4f0f8σ
6
1 + 4f1f8σ

5
1σ2 − 4f2f8σ

4
1σ

2
2 + 4f3f8σ

3
1σ

3
2 − 4f4f8σ

2
1σ

4
2

+ 4f5f8σ1σ
5
2 + (−4f6f8 + f 2

7 )σ6
2

= 0.

(This is similar to the quartic defining the Kummer surface in the genus 2 case.)
The image on K of the theta divisor is a surface of degree 12 in P6 = P7∩{ξ1 = 0};
the intersection of K with the hyperplane ξ1 = 0 is twice the image of Θ. (The
equation above is cubic in the middle six coordinates and ξ8, so we get three times
the degree of the Veronese surface. It is known that K has degree 24.)

When (x2, y2) approaches (x1,−y1), then the last coordinate tends to infinity,
whereas the remaining ones stay bounded, so the origin on J is mapped to

o := (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

Points in J [2] are represented by factorizations F = GH with d = degG even,
compare Section 5 below. Writing

G = gdx
d+gd−1x

d−1z+ . . .+g0z
d and H = h8−dx

8−d+h7−dx
7−dz+ . . .+h0z

8−d,

we see that a 2-torsion point represented by (G,H) with degG = 2 maps to

(2.8) (0 : g2
2 : g1g2 : g0g2 : g2

1 − g0g2 : g0g1 : g2
0 : g3

0h6 + g2
0g2h4 + g0g

2
2h2 + g3

2h0).
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A 2-torsion point represented by (G,H) with degG = 4 maps to

(
1 : g2h4 + g4h2 : g1h4 + g4h1 : g0h4 + g4h0

(2.9)

: g0h4 + g4h0 + g1h3 + g3h1 : g0h3 + g3h0 : g0h2 + g2h0

: (g0h4 + g4h0)2 + (g0h2 + g2h0)(g2h4 + g4h2) + (g1h0 − g0h1)(g4h3 − g3h4)
)
;

this is obtained by taking (A,B,C) = (G, 0, H) in our original parameterization.

3. Transformations

We compare our coordinates for the Kummer variety with those of Stubbs [Stu],
Duquesne [Duq] and Müller [Mü1] in the special case f8 = 0. In this case there
is a rational Weierstrass point at infinity, and we can fix the representation of a
point outside of Θ by requiring that A vanishes at infinity and that degB(x, 1) <
degA(x, 1). For a generic point P on J , degA(x, 1) = 3; let (xj, yj) for j = 1, 2, 3
be the three points in the effective divisor D such that P = [D−3·∞]. Generically,
the three points are distinct. Then

A(x, 1) = (x− x1)(x− x2)(x− x3)

and B(x, 1) is the interpolation polynomial such that B(xj, 1) = yj for j = 1, 2, 3.
We obtain the cj from C = (B2 − F )/A by polynomial division. This leads toF

ξ1 = κ1

ξ2 = −f7κ2

ξ3 = f7κ3

ξ4 = −f7κ4

ξ5 = f4κ1 + f5κ2 + 2f6κ3 + 3f7κ4 − κ5

ξ6 = f3κ1 + f4κ2 + f5κ3 − κ6

ξ7 = f2κ1 − f4κ3 − 3f5κ4 − κ7

ξ8 = −f2f7κ2 − f3f7κ3 − f4f7κ4 + f7κ8

where κ1, κ2, . . . , κ8 are the coordinates used by the other authors.

We consider the effect of a transformation of the curve equation. First suppose that
F̃ (x, z) = F (x + λz, z) (corresponding to a shift of the x-coordinate in the affine
equation). A point represented by a triple (A(x, z), B(x, z), C(x, z)) of polynomials
will correspond to the point (Ã(x, z), B̃(x, z), C̃(x, z)) with Ã(x, z) = A(x+λz, z)
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and analogously for B̃ and C̃. We obtainF

ξ̃1 = ξ1

ξ̃2 = ξ2 + 3λf7ξ1 + 12λ2f8ξ1

ξ̃3 = ξ3 + 2λξ2 + 3λ2f7ξ1 + 8λ3f8ξ1

ξ̃4 = ξ4 + λξ3 + λ2ξ2 + λ3f7ξ1 + 2λ4f8ξ1

ξ̃5 = ξ5 + λ(2f5ξ1 + 3ξ3) + λ2(6f6ξ1 + 3ξ2) + 17λ3f7ξ1 + 34λ4f8ξ1

ξ̃6 = ξ6 + λ(3ξ4 + ξ5) + λ2(f5ξ1 + 3ξ3) + λ3(2f6ξ1 + 2ξ2) + 5λ4f7ξ1 + 8λ5f8ξ1

ξ̃7 = ξ7 + λ(f3ξ1 + 2ξ6) + λ2(2f4ξ1 + 3ξ4 + ξ5) + λ3(4f5ξ1 + 2ξ3)

+ λ4(6f6ξ1 + ξ2) + 9λ5f7ξ1 + 12λ6f8ξ1

ξ̃8 = ξ8 + λ(f3ξ2 + 2f5ξ4 + 3f7ξ7)

+ λ2(3f3f7ξ1 + 2f4ξ2 + f5ξ3 + 6f6ξ4 + 3f7ξ6 + 12f8ξ7)

+ λ3((12f3f8 + 6f4f7)ξ1 + 4f5ξ2 + 4f6ξ3 + 17f7ξ4 + f7ξ5 + 16f8ξ6)

+ λ4((24f4f8 + 11f5f7)ξ1 + 8f6ξ2 + 12f7ξ3 + 46f8ξ4 + 6f8ξ5)

+ λ5((44f5f8 + 18f6f7)ξ1 + 16f7ξ2 + 32f8ξ3)

+ λ6((68f6f8 + 29f 2
7 )ξ1 + 32f8ξ2) + 148λ7f7f8ξ1 + 148λ8f 2

8 ξ1

For the transformation given by F̃ (x, z) = F (z, x), we have

ãj = a4−j, b̃j = b4−j, c̃j = c4−j

and therefore

(ξ̃1, ξ̃2, ξ̃3, ξ̃4, ξ̃5, ξ̃6, ξ̃7, ξ̃8) = (ξ1, ξ7, ξ6, ξ4, ξ5, ξ3, ξ2, ξ8).

More generally, consider an element

σ =

(
r s
t u

)
∈ GL(2)

acting by (x, z) 7→ (rx + sz, tx + uz). Let Σ ∈ GL(5) be the matrix whose
columns are the coefficients of (rx + sz)j(tx + uz)4−j, for j = 0, 1, 2, 3, 4 (this is
the matrix giving the action of σ on the fourth symmetric power of the standard
representation of GL(2)). Recall the matrix L from (2.3) whose rows contain the
coefficients of A, B and C. Then the effect on our variables ai, bi, ci is given by
L 7→ LΣ>. With D as in (2.2), we have L>DL = M with M as in (2.7). So the

effect of σ on M is given by M 7→ ΣMΣ>. Note that ξ̃1 = ξ1 and that we can
extract ξ̃2, . . . , ξ̃7 from M ; to get ξ̃8 when ξ1 is not invertible, we can perform a
generic computation and then specialize.
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This allows us to reduce our more general setting to the situation when there is a
Weierstrass point at infinity: we adjoin a root of F (x, 1), then we shift this root
to zero and invert. This leads to an equation with f8 = 0. This was used to
obtain the matrix representing the action of an even 2-torsion point, see below in
Section 5.

4. Lifting points to the Jacobian

Let P ∈ K(k) be a k-rational point on the Kummer variety. We want to decide if
P = κ(P ′) for a k-rational point P ′ on the Jacobian J . Consider an odd function h
on J (i.e., such that h(−Q) = −h(Q) for Q ∈ J ) such that h is defined over k;
then h(P ′) ∈ k (or h as a pole at P ′). Since h2 is an even function, it descends to
a function on K, and we must have that h2(P ) = h2(P ′) = h(P ′)2 is a square in k.
Conversely, any non-zero odd function h on J will generically separate the two
points in the fiber of the double cover J → K, so if h2(P ) is a non-zero square
in k, then this implies that P lifts to a k-rational point on J .

So we will now exhibit some odd functions that we can use to decide if a point
lifts. Since L(2Θ) consists of even functions only, we look at L(3Θ), which has
dimension 33 = 27. Its subspace of even functions has dimension 14 and is spanned
by ξ1, . . . , ξ8, the five quadratics ξ2(ξ4 + ξ5)− ξ2

3 , ξ2ξ6− ξ3ξ4, ξ2ξ6− ξ2
4 , ξ3ξ6− ξ4ξ7,

(ξ4 + ξ5)ξ7 − ξ2
6 and a further function, which can be taken to beF

2(2f0ξ
2
2 − f1ξ2ξ3 + 2f2ξ2ξ4 − f3ξ2ξ6 + 2f4ξ2ξ7 − f5ξ3ξ7 + 2f6ξ4ξ7 − f7ξ6ξ7 + 2f8ξ

2
7)

− 7ξ2ξ4ξ7 + ξ2ξ5ξ7 + ξ2ξ
2
6 + ξ2

3ξ7 + 4ξ3ξ4ξ6 − 2ξ3ξ5ξ6 + ξ3
4 − 5ξ2

4ξ5 + 2ξ4ξ
2
5 .

The subspace of odd functions has dimension 13. We obtain a ten-dimensional
subspace of this space by considering the coefficients of Al ∧ Bl ∧ Cl, which is an
expression of degree 3, of odd degree in B and invariant even under SL(3) acting
on (A,B,C). (One can check that there are no further Γ-invariants of degree 3.)
These coefficients are given by the 3 × 3-minors of the matrix L of (2.3). If we
denote the minor corresponding to 0 ≤ i < j < k ≤ 4 by µijk, then we find

(4.1) µ2
ijk = ηiiη

2
jk + ηjjη

2
ik + ηkkη

2
ij − 4ηiiηjjηkk − ηijηikηjk.

If Lijk is the corresponding 3× 3 submatrix of L, then we have that

µ2
ijk = det(Lijk)

2 = −1
2

det(L>ijkDLijk)

with D as in (2.2). We also have that L>DL = M , where M is the matrix
corresponding to the quadratic form B2

l −AlCl given in (2.7). We can express this
by saying that µ2

ijk is −1
2

times the corresponding principal minor of M . In the

same way, one sees that µijkµi′j′k′ is −1
2

times the minor of M given by selecting
rows i, j, k and columns i′, j′, k′. This shows that if one µ2

ijk(P ) is a non-zero square

in k, then all µ2
i′j′k′(P ) are squares in k. All ten of them vanish simultaneously if
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and only if A, B and C are linearly dependent (this is equivalent to the rank of
B2
l −AlCl being at most 2). The dimension of the space spanned by A, B and C

cannot be strictly less than 2, since this would imply that F is a constant times
a square, which contradicts the assumption that F is squarefree. So we can write
A, B and C as linear combinations of two polynomials A′ and C ′, and after a
suitable change of basis, we find that F = B2 −AC = A′C ′. This means that the
point is the image of a 2-torsion point on J , and it will always lift.

So for a point P in K(k) with ξ1 = 1 (hence outside the theta divisor) to lift to
a point in J (k), it is necessary that all these expressions, when evaluated at P ,
are squares in k, and sufficient that one of them gives a non-zero square. For
points with ξ1 = 0, we can use the explicit description of the image of Θ given in
Section 2.

Geometrically, the map V → X \Θ is a conic bundle: for a point on X outside the
theta divisor, all effective divisors representing it are in general position, and the
corresponding linear system has dimension 1 by the Riemann-Roch Theorem, so
the fibers are Severi-Brauer varieties of dimension 1. If C has a k-rational point P ,
then the bundle has a section (and so is in fact a P1-bundle), since we can select
the unique representative containing P in its support. If k is a number field and C
has points over every completion of k, then all the conics in fibers above k-rational
points on X \Θ have points over all completions of k and therefore are isomorphic
to P1 over k. We can check whether a k-defined divisor representing a lift of P to
a k-rational point on J exists and find one in this case in the following way. We
assume that P is not in the image of Θ and is not the image of a 2-torsion point.
We are looking for a matrix L̃ ∈ A15(k) representing a lift P ′ ∈ J (k) of P . Since
we exclude 2-torsion, the matrix L̃ must have rank 3, and there is a minor µijk such

that µ2
ijk(P ) = µijk(P

′)2 is a non-zero square in k. The rank of M(P ) = L̃>DL̃

is also 3, so both L(P̃ ) and M(P ) have the same 2-dimensional kernel. We can
compute the kernel from M(P ) and then we find the space generated by the rows
of L̃ as its annihilator, which is simply given by rows i, j, k of M(P ). If we find
an invertible 3× 3 matrix U with entries in k such that Mijk(P ) = U>DU (where
Mijk is the principal 3 × 3 submatrix of M given by rows and columns i, j, k),

then we can find a suitable matrix L̃ whose rows are in the space generated by
rows i, j, k of M(P ) and such that L̃ijk = U . Then L̃>DL̃ = M(P ), so L̃ gives
us the desired representative. Finding U is equivalent to finding an isomorphism
between the quadratic forms given by

(x1, x2, x3)Mijk(P )(x1, x2, x3)> and 2x1x3 − 2x2
2,

for whose existence a necessary condition is that detMijk(P ) = −2µ2
ijk(P ) is a

square times detD = −2. Given this, the problem comes down to finding a point
on the conic given by the first form (which is the conic making up the fiber above P ′

or −P ′) and then parameterizing the conic using lines through the point.



HEIGHTS FOR GENUS 3 HYPERELLIPTIC JACOBIANS 17

Remark 4.1. One can checkF that the following three expressions are a possible
choice for the missing three basis elements of the odd subspace of L(3Θ):

ξ2µ012 − ξ3µ013 + ξ5µ014

ξ3µ014 − (ξ4 + ξ5)µ024 + ξ4µ123 + ξ6µ034

ξ5µ034 − ξ6µ134 + ξ7µ234

5. The action of the 2-torsion subgroup on K

We follow the approach taken in [Sto1] and consider the action of the 2-torsion
subgroup of J on K and the ambient projective space. Note that translation by
a 2-torsion point commutes with negation on J , so the translation descends to
an automorphism of K, and since 2Θ is linearly equivalent to its translate, this
automorphism actually is induced by an automorphism of the ambient P7.

We will see that this projective representation of J [2] ' (Z/2Z)6 can be lifted to
a representation of a central extension of J [2] by µ2 on the space of linear forms in
the coordinates ξ1, . . . , ξ8. This representation is irreducible. In the next section,
we consider this representation and the induced representations on the spaces of
quadratic and quartic forms in ξ1, . . . , ξ8, whereas in this section, we obtain an
explicit description of the action of J [2] on P7.

There is a natural bijection between the 2-torsion subgroup J [2] of the Jacobian
and the set of unordered partitions of the set Ω ⊂ P1 of zeros of F into two subsets
of even cardinality. The torsion point T corresponding to a partition {Ω1,Ω2} is[∑

ω∈Ω1

(ω, 0)

]
− #Ω1

2
m =

[∑
ω∈Ω2

(ω, 0)

]
− #Ω2

2
m.

Since #Ω = 8 is divisible by 4, the quantity ε(T ) = (−1)#Ω1/2 = (−1)#Ω2/2 is
well-defined. We say that T is even if ε(T ) = 1 and odd if ε(T ) = −1. By
definition, the even 2-torsion points are the 35 points corresponding to a partition
into two sets of four roots, together with the origin, and the odd 2-torsion points
are the 28 points corresponding to a partition into subsets of sizes 2 and 6. The
Weil pairing of two torsion points T and T ′ represented by {Ω1,Ω2} and {Ω′1,Ω′2},
respectively, is given by

e2(T, T ′) = (−1)#(Ω1∩Ω′1).

It is then easy to check that

(5.1) e2(T, T ′) = ε(T )ε(T ′)ε(T + T ′).

Note that Pic0
C is canonically isomorphic to Pic2

C (by adding the class of m), which
contains the theta characteristics. (D ∈ Pic2

C is a theta characteristic when 2D =
W.) In this way, the theta characteristics are identified with the 2-torsion points,
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and the odd (resp., even) theta characteristics correspond to the odd (resp., even)
2-torsion points.

Using the transformations described in Section 3 and the matrices obtained by
Duquesne [Duq] representing the translation by a 2-torsion point, we find the
corresponding matrices in our setting for an even nontrivial 2-torsion point. The
matrices corresponding to odd 2-torsion points can then also be derived. For each
factorization F = GH into two forms of even degree, there is a matrix M(G,H)

whose entries are polynomials with integral coefficients in the coefficients of G
and H and whose image in PGL(8) gives the action of the corresponding 2-torsion
point. These entries are too large to be reproduced here, but are given in the file
Kum3-torsionmats.magma at [Data].

The matrices satisfy the relationsF

(5.2) M2
(G,H) = Res(G,H)I8 and detM(G,H) = Res(G,H)4,

where Res denotes the resultant of two binary forms. Let

S =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


be the matrix corresponding to the quadratic relation (2.6) satisfied by points on
the Kummer variety.

Definition 5.1. We will write 〈·, ·〉S for the pairing given by S. Concretely, for
vectors ξ = (ξ1, . . . , ξ8) and ζ = (ζ1, . . . , ζ8), we have

〈ξ, ζ〉S = ξ1ζ8 − ξ2ζ7 + ξ3ζ6 − ξ4ζ5 − ξ5ζ4 + ξ6ζ3 − ξ7ζ2 + ξ8ζ1.

One checksF that for all G,H as above,

(SM(G,H))
> = (−1)(degG)/2SM(G,H).

If T 6= 0 is even, then all corresponding matrices M(G,H) are equal; we denote
this matrix by MT . In this case, also the resultant Res(G,H) depends only on T ;
we write it r(T ), so that we have M2

T = r(T )I8. For T odd and represented by
(G,H) with degG = 2, we have M(λG,λ−1H) = λ2M(G,H). As a special case, we
have M(1,F ) = I8. For T 6= 0 even, the entry in the upper right corner of MT is 1,
for all other 2-torsion points, this entry is zero.
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For a 2-torsion point T ∈ J [2], if we denote by MT the matrix corresponding to
one of the factorizations defining T , we therefore have (using that S = S> = S−1)

(SMT )> = ε(T )SMT , or equivalently, MT = ε(T )SM>
T S.

This implies (using that MT ′MT is, up to scaling, a matrix corresponding to T+T ′)

MTMT ′ = ε(T )SM>
T S · ε(T ′)SM>

T ′S

= ε(T )ε(T ′)S(MT ′MT )>S = ε(T )ε(T ′)ε(T + T ′)MT ′MT

Using (5.1), we recover the well-known fact that

(5.3) MTMT ′ = e2(T, T ′)MT ′MT .

Since M2
T is a scalar matrix, the relation given above implies that the quadratic

relation is invariant (up to scaling) under the action of J [2] on P7:

M>
T SMT = Res(G,H)S.

6. The action on linear, quadratic and quartic forms

We work over an algebraically closed field k of characteristic different from 2. The
first result describes a representation of a central extension G of J [2] on the space
of linear forms that lifts the action on P7.

Lemma 6.1. There is a subgroup G of SL(8) and an exact sequence

0 −→ µ2 −→ G −→ J [2] −→ 0

induced by the standard sequence

0 −→ µ8 −→ SL(8) −→ PSL(8) −→ 0

and the embedding J [2] → PSL(8) given by associating to T the class of any
matrix MT .

Proof. Let T ∈ J [2] and let MT ∈ GL(8) be any matrix associated to T . Then
M2

T = cI8 with some c (compare (5.2)), and we let M̃T denote one of the two

matrices γMT where γ2c = ε(T ). Then M̃T ∈ SL(8), since (again by (5.2))

det M̃T = γ8 detMT = (ε(T )c−1)4c4 = 1.

Since any two choices of MT differ only by scaling, M̃T is well-defined up to sign.
Among the lifts of the class of MT in PSL(8) to SL(8), ±M̃T are characterized by
the relation M̃2

T = ε(T )I8. We now set

G = {±M̃T : T ∈ J [2]}.
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It is clear that G surjects onto the image of J [2] in PSL(8) and that the map
is two-to-one. It remains to show that G is a group. So let T, T ′ ∈ J [2]. Then
M̃TM̃T ′ is a matrix corresponding to T + T ′. Since (using (5.3) and (5.1))

(M̃TM̃T ′)
2 = M̃TM̃T ′M̃TM̃T ′ = e2(T, T ′)M̃2

TM̃
2
T ′

= e2(T, T ′)ε(T )ε(T ′)I8 = ε(T + T ′)I8,

we find that M̃TM̃T ′ ∈ G. �

Remark 6.2. Note that the situation here is somewhat different from the sit-
uation in genus 2, as discussed in [Sto1]. In the even genus hyperelliptic case,
the theta characteristics live in Picodd rather than in Piceven and can therefore
not be identified with the 2-torsion points. The effect is that there is no map
ε : J [2] → µ2 that induces the Weil pairing as in (5.1), so that we have to use a
fourfold covering of J [2] in SL(4) rather than a double cover.

We now proceed to a study of the representations of G on linear, quadratic and
quartic forms on P7 that are induced by G ⊂ SL(8). The representation ρ1 on the
space V1 of linear forms is the standard representation. For its character χ1, we
find

χ1(±I8) = ±8 and χ1(±M̃T ) = 0 for all T 6= 0.

This follows from the observation that T can be written as T = T ′ + T ′′ with
e2(T ′, T ′′) = −1. Since ±M̃T = M̃T ′M̃T ′′ = −M̃T ′′M̃T ′ , the trace of M̃T must be
zero. We deduce that ρ1 is irreducible. (ρ1 is essentially the representation V (δ)
in [Mum], where δ = (2, 2, 2) in our case.)

The representation ρ2 on the space V2 of quadratic forms is the symmetric square
of ρ1. Since ±I8 act trivially on even degree forms, ρ2 descends to a representation
of J [2]. Its character χ2 is given by

χ2(0) = 36 and

χ2(T ) = 1
2

(
χ1(M̃T )2 + χ1(M̃2

T )
)

= 1
2
(0 + 8ε(T )) = 4ε(T ) for T 6= 0.

Since J [2] is abelian, this representation has to split into a direct sum of one-
dimensional representations. Let χT denote the character of J [2] given by χT (T ′) =
e2(T, T ′). Then the above implies that

(6.1) ρ2 =
⊕

T : ε(T )=1

χT .

So for each even T ∈ J [2], there is a one-dimensional eigenspace of quadratic
forms such that the action of T ′ is given by multiplication with e2(T, T ′). For
T = 0, this eigenspace is spanned by the invariant quadratic (2.6).

Definition 6.3. We set

y0 = 2(ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5);
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this is the quadratic form corresponding to the matrix S in the sense that y0(ξ) =

ξSξ> = 〈ξ, ξ〉S. For nontrivial even T , we denote by yT the form in the eigenspace

corresponding to T that has coefficient 1 on ξ2
8 . We will see that this makes sense,

i.e., that this coefficient is always nonzero.

Lemma 6.4. For every nontrivial even 2-torsion point T , the matrix correspond-
ing to the quadratic form yT is the symmetric matrix SMT . In particular, if T
corresponds to a factorization F = GH into two polynomials of degree 4, then
the coefficients of yT are polynomials in the coefficients of G and H with integral
coefficients, and the coefficients of the monomials ξiξj with i 6= j are divisible by 2.

Proof. We show that M̃>
T ′(SMT )M̃T ′ = e2(T, T ′)SMT . We use that M̃2

T ′ = ε(T ′)I8,

SM̃T ′ = ε(T ′)M̃>
T ′S and the fact that the Weil pairing is given by commutators.

This gives

M̃>
T ′SMTM̃T ′ = ε(T ′)SM̃T ′MTM̃T ′ = ε(T ′)e2(T, T ′)SMTM̃

2
T ′ = e2(T, T ′)SMT

as desired, so SMT gives a quadratic form in the correct eigenspace. Since the
upper right entry of MT is 1, the lower right entry, which corresponds to the
coefficient of ξ2

8 , of SMT is 1, so that we indeed obtain yT . �

We can express yT as yT (ξ) = 〈ξ, ξM>
T 〉S.

Remark 6.5. Note that if T is an odd 2-torsion point, represented by the factor-
ization (G,H), then the same argument shows that the alternating bilinear form
corresponding to the matrix SM(G,H) is multiplied by e2(T, T ′) under the action
of T ′ ∈ J [2].

We set

(ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8) = (1,−1, 1,−1,−1, 1,−1, 1);

these are the entries occurring in S along the diagonal from upper right to lower
left.

Corollary 6.6. Let T be a nontrivial even 2-torsion point with image on K given
by

(1 : τ2 : τ3 : τ4 : τ5 : τ6 : τ7 : τ8).

Then

yT = ξ2
8 + 2

8∑
j=2

εjτjξ9−jξ8 + (terms not involving ξ8).

A similar statement is true for T = 0 if we take coordinates (0 : . . . : 0 : 1):
y0 = 2ξ1ξ8 + (terms not involving ξ8).
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Proof. The last column of MT has entries 1, τ2, . . . , τ8 (since MT maps the origin
to the image of T and has upper right entry 1). Multiplication by S from the
left reverses the order and introduces the signs εj. Since the coefficients of yT
of monomials involving ξ8 are given by the entries of the last column of SMT by
Lemma 6.4, the claim follows. �

We define a pairing on the space of bilinear forms V1⊗V1 as follows. If the bilinear
forms φ and φ′ are represented by matrices A and A′ with respect to our standard
basis ξ1, . . . , ξ8 of V1, then 〈φ, φ′〉 = 1

8
Tr(A>A′) (the scaling has the effect of giving

the standard quadratic form norm 1).

For an even 2-torsion point T , we write ỹT for the symmetric bilinear form cor-
responding to the matrix SM̃T (this is well-defined up to sign) and z̃T for the
symmetric bilinear form corresponding to SM̃>

T = M̃TS. Also, zT will denote the
form corresponding to SM>

T = MTS. Then, since S(MTS)S = SMT , we have the
relation zT (ξ) = yT (ξS); explicitly,

zT (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8) = yT (ξ8,−ξ7, ξ6,−ξ5,−ξ4, ξ3,−ξ2, ξ1).

Lemma 6.7. For all even 2-torsion points T and T ′, we have

〈z̃T , ỹT ′〉 =

{
1 if T = T ′,

0 if T 6= T ′.

Equivalently,

〈zT , yT ′〉 =

{
r(T ) if T = T ′,

0 if T 6= T ′.

Here we restrict the scalar product defined above to V2 ⊂ V1 ⊗ V1.

Proof. The claim is that Tr
(
(SM̃>

T )>(SM̃T ′)
)

is zero if T 6= T ′ and equals 8 if
T = T ′. We have

Tr
(
(SM̃>

T )>(SM̃T ′)
)

= Tr(M̃TS
2M̃T ′) = Tr(M̃TM̃T ′) = ±Tr(M̃T+T ′).

If T 6= T ′, then this trace is zero, as we had already seen. If T = T ′, then
±M̃T+T ′ = I8, so the result is 8 as desired. �

This allows us to express the ξ2
j in terms of the yT . We set r(0) = 1 and M0 = I8.

We denote the coefficient of ξiξj in a quadratic form q ∈ V2 by [ξiξj]q

Lemma 6.8. For every j ∈ {1, 2, . . . , 8}, we have

ξ2
j =

∑
T : ε(T )=1

[ξ2
9−j]yT

8r(T )
yT .
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Similarly, for 1 ≤ i < j ≤ 8, we have

2ξiξj = εiεj
∑

T : ε(T )=1

[ξ9−iξ9−j]yT
8r(T )

yT .

Proof. We have by Lemma 6.7

ξ2
j =

∑
T : ε(T )=1

〈z̃T , ξ2
j 〉ỹT =

∑
T : ε(T )=1

〈zT , ξ2
j 〉

r(T )
yT

=
∑

T : ε(T )=1

[ξ2
j ]zT

8r(T )
yT =

∑
T : ε(T )=1

[ξ2
9−j]yT

8r(T )
yT .

In the same way, we have for i 6= j that

2ξiξj =
∑

T : ε(T )=1

2〈z̃T , ξiξj〉ỹT =
∑

T : ε(T )=1

2
〈zT , ξiξj〉
r(T )

yT

=
∑

T : ε(T )=1

[ξiξj]zT
8r(T )

yT = εiεj
∑

T : ε(T )=1

[ξ9−iξ9−j]yT
8r(T )

yT .

(Note that 8〈zT , ξiξj〉 is half the coefficient of ξiξj in zT .) �

Corollary 6.9. We have∑
T : ε(T )=1

1

8r(T )
yT (ξ)yT (ζ) =

( 8∑
j=1

εjξjζ9−j

)2

= 〈ξ, ζ〉2S.

In particular, setting ζ = ξ, we obtain∑
T : ε(T )=1

1

8r(T )
y2
T = y2

0 = 4(ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5)2.

Proof. We compute using Lemma 6.8:∑
T : ε(T )=1

1

8r(T )
yT (ξ)yT (ζ)

=
8∑
i=1

ξ2
i

∑
T : ε(T )=1

[ξ2
i ]yT (ξ)

8r(T )
yT (ζ) +

∑
1≤i<j≤8

ξiξj
∑

T : ε(T )=1

[ξiξj]yT (ξ)

8r(T )
yT (ζ)

=
8∑
i=1

ξ2
i ζ

2
9−i + 2

∑
1≤i<j≤8

εiεj ξiξjζ9−iζ9−j

=
( 8∑
j=1

εj ξjζ9−j

)2

. �
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Now we consider the representation ρ4 of J [2] on the space V4 of quartic forms.
For its character χ4, we have the general formula

χ4(T ) = 1
24

(
χ1(M̃T )4+8χ1(M̃T )χ1(M̃3

T )+3χ1(M̃2
T )2+6χ1(M̃T )2χ1(M̃2

T )+6χ1(M̃4
T )
)
.

This gives us that

χ4(0) = 330 and χ4(T ) = 10 for T 6= 0.

We deduce that

(6.2) ρ4 = χ⊕15
0 ⊕

⊕
T 6=0

χ⊕5
T .

7. The duplication map and the missing generator of L(4Θ)+

We continue to work over a field k of characteristic 6= 2. We also continue to
assume that F ∈ k[x, z] is squarefree, so that C is a smooth hyperelliptic curve of
genus 3 over k.

Consider the commutative diagram

J ·2 //

κ

��

J
κ

��
K δ // K � � // P7 ,

where the map in the top row is multiplication by 2 and δ is the endomorphism
of K induced by it. Pulling back a hyperplane section to the copy of J on the
right, we obtain a divisor in the class of 2Θ. Pulling it further back to the copy on
the left, we obtain a divisor in the class of the pull-back of 2Θ under duplication,
which is the class of 8Θ (Θ is symmetric, so pulling back under multiplication
by n multiplies its class by n2). The combined map from the left J to P7 then is
given by an 8-dimensional subspace of L(8Θ)+; by Corollary 2.4 this means that δ
is given by eight quartic forms in ξ. Since δ maps o, the image of the origin on K,
to itself, we can normalize these quartics so that they evaluate to (0, . . . , 0, 1)
on (0, . . . , 0, 1). We use δ = (δ1, . . . , δ8) to denote these quartic forms; they are
determined up to adding a quartic form vanishing on K. We write E4 ⊂ V4 for
the subspace of quartics vanishing on K. Note that we can test whether a given
homogeneous polynomial in ξ vanishes on K by pulling it back to W or to A15

and checking whether it vanishes on V .

We now determine the structure of E4 as a representation of J [2] and we identify
the space generated by δ in V4/E4.

Lemma 7.1.

(1) The restriction of ρ4 to E4 splits as ρ4|E4 = χ⊕7
0 ⊕

⊕
T 6=0 χT .
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(2) The images of δ1, . . . , δ8 form a basis of the quotient V
J [2]

4 /E
J [2]
4 of invariant

subspaces.

Proof.

(1) The dimension of E4 is 70 by Theorem 2.5, and a subspace of dimension 36
is given by y0V2. The latter splits in the same way as ρ2 does. Since for the
generic curve, the Galois action is transitive on the odd 2-torsion points and
on the nontrivial even 2-torsion points, the multiplicities of all odd characters
and those of all nontrivial even characters in ρ4|E4 have to agree. The only
way to make the numbers come out correctly is as indicated.

(2) Since the result of duplicating a point is unchanged when a 2-torsion point
is added to it, the images of all δj in V4/E4 must lie in the same eigenspace
of the J [2]-action. Since K spans P7 and the duplication map δ : K → K is
surjective, the images of the δj in V4/E4 must be linearly independent. So they
must live in an eigenspace of dimension at least eight. The only such eigenspace
is that of the trivial character, which has dimension exactly 8 = 15− 7 by the
first part. �

We see that the 36 quartic forms y2
T for T an even 2-torsion point are in the

invariant subspace of V4 of dimension 15. Let Teven denote the finite k-scheme
whose geometric points are the 36 even 2-torsion points (we can consider Teven as
a subscheme of J or of K), and denote by keven its coordinate ring; this is an étale
k-algebra of dimension 36. Then y : T 7→ yT can be considered as a quadratic form
with coefficients in keven and r : T 7→ r(T ) is an element of k×even.

Lemma 7.2. The 36 coefficients cii = [ξ2
i ]y, for 1 ≤ i ≤ 8, and cij = 1

2
[ξiξj]y, for

1 ≤ i < j ≤ 8, constitute a k-basis of keven.

Proof. We define further elements of keven by

c̃ii =
1

8r
[ξ2

9−i]y and c̃ij =
εiεj
8r

[ξ9−iξ9−j]y.

Lemma 6.8 can be interpreted as saying that

Trkeven/k(c̃ijci′j′) =

{
1 if (i, j) = (i′, j′),

0 otherwise.

This shows that the given elements are linearly independent over k. �

We can compute the structure constants of keven with respect to this basis and use
this to express y2 in terms of the basis again. Extracting coefficients, we obtain
36 quartic forms with coefficients in k that all lie in the 15-dimensional space of
invariants under J [2]. We checkF that they indeed span a space of this dimension
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q1 = ξ1ξ
3
8 + 2(−f2ξ2 + f3ξ3 − f4ξ4 − f4ξ5 + f5ξ6 − f6ξ7)ξ1ξ

2
8 + . . .

q2 = ξ2ξ
3
8 + (4f8(−f0ξ2 + f2ξ4 + f4ξ7)− 2f3f8ξ6 − f5f7ξ7)ξ1ξ

2
8 + . . .

q3 = ξ3ξ
3
8 + (f7(−2f0ξ2 + 2f2ξ4 + f3ξ6)

+ 2f8(−2f0ξ3 + 4f1ξ4 − 2f2ξ6 − f3ξ7))ξ1ξ
2
8 + . . .

q4 = ξ4ξ
3
8 + (−2f0f7ξ3 + (12f0f8 + f1f7)ξ4 − 2f1f8ξ6)ξ1ξ

2
8 + . . .

q5 = ξ5ξ
3
8 + ((4f0f6 − 2f1f5)ξ2 + (−2f0f7 − 2f1f6 + 2f2f5)ξ3

+ (4f0f8 + 4f1f7 + 4f2f6 − 5f3f5)ξ4

+ (−2f1f8 − 2f2f7 + 2f3f6)ξ6 + (4f2f8 − 2f3f7)ξ7)ξ1ξ
2
8 + . . .

q6 = ξ6ξ
3
8 + (f0(−2f5ξ2 − 4f6ξ3 + 8f7ξ4 − 4f8ξ6)

+ f1(f5ξ3 + 2f6ξ4 − 2f8ξ7))ξ1ξ
2
8 + . . .

q7 = ξ7ξ
3
8 + (4f0(f4ξ2 + f6ξ4 − f8ξ7)− f1f3ξ2 − 2f0f5ξ3)ξ1ξ

2
8 + . . .

q8 = ξ4
8 + 16(f1f8(f1ξ2 − f2ξ3 + f3ξ4) + f0f7(f5ξ4 − f6ξ6 + f7ξ7))ξ1ξ

2
8 + . . .

q9 = 2(f7ξ6 − 4f8ξ7)ξ1ξ
2
8 + . . .

q10 = 2(f5ξ4 − f6ξ6 + f7ξ7)ξ1ξ
2
8 + . . .

q11 = 2(f3ξ3 + 2f4ξ4 − 2f4ξ5 + f5ξ6)ξ1ξ
2
8 + . . .

q12 = 2(f1ξ2 − f2ξ3 + f3ξ4)ξ1ξ
2
8 + . . .

q13 = 2(−4f0ξ2 + f1ξ3)ξ1ξ
2
8 + . . .

q14 = (3ξ4 − ξ5)ξ1ξ
2
8 + . . .

q15 = ξ2
1ξ

2
8 + . . . = (ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5)2

Figure 1. A basis of the J [2]-invariant subspace of V4.

and that we get a subspace of dimension 7 of quartics vanishing on the Kummer
variety.

It turns outF that the quartics in V
J [2]

4 that vanish on K are exactly those that
do not contain terms cubic or quartic in ξ8. Forms spanning the complementary

space are uniquely determined modulo E
J [2]
4 by fixing the terms of higher degree

in ξ8. We take qj = ξjξ
3
8 + (degξ8 ≤ 2) for j = 1, . . . , 8. Then the qj can

be chosen so that they have coefficients in Z[f0, . . . , f8]. To fix qj completely,
it suffices to specify in addition the coefficients of ξ1ξiξ

2
8 for 1 ≤ i ≤ 7. One

possibility is to choose them as given in Figure 1, which includes q9, . . . , q15 in the
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ideal of K, where E
J [2]
4 = 〈q9, q10, . . . , q15〉. These quartics can be obtained from

Kum3-invariants.magma at [Data].

We can now identify the duplication map on K.

Theorem 7.3. The polynomials

(δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8) = (4q1, 4q2, 4q3, 4q4, 4q5, 4q6, 4q7, q8).

in V
J [2]

4 (with qj as above) have the following properties.

(1) δj ∈ Z[f0, f1, . . . , f8][ξ1, ξ2, . . . , ξ8] for all 1 ≤ j ≤ 8.

(2) (δ1, δ2, . . . , δ8)(0, 0, . . . , 0, 1) = (0, 0, . . . , 0, 1).

(3) With yT as defined earlier for an even 2-torsion point with image

(1 : τ2 : τ3 : τ4 : τ5 : τ6 : τ7 : τ8)

on K, we have

y2
T ≡ δ8 − τ2δ7 + τ3δ6 − τ4δ5 − τ5δ4 + τ6δ3 − τ7δ2 + τ8δ1 = 〈τ , δ〉S mod E

J [2]
4 ,

where τ = (1, τ2, . . . , τ8) and δ = (δ1, . . . , δ8).

(4) The δj do not vanish simultaneously on K.

(5) The map δ : K → K given by (δ1 : . . . : δ8) is the duplication map on K.

Proof.

(1) This can be verified using the explicit polynomials.
(2) This is obvious.
(3) We compare the coefficients of ξjξ

3
8 on both sides. Since by Corollary 6.6,

yT = ξ2
8 + 2ε2τ2ξ7ξ8 + 2ε3τ3ξ6ξ8 + . . .+ 2ε8τ8ξ1ξ8 + (terms not involving ξ8),

we find

y2
T = ξ4

8 + 4ε2τ2ξ7ξ
3
8 + . . .+ 4ε8τ8ξ1ξ

3
8 + (terms of degree ≤ 2 in ξ8)

and the right hand side has the same form. So the difference is a form in V
J [2]

4

of degree at most 2 in ξ8, which implies that it is in E
J [2]
4 .

(4) Let ξ ∈ k8 \ {0} be coordinates of a point in K. Then δ(ξ) = 0 implies by (3)
that yT (ξ) = 0 for all even 2-torsion points T (note that y0 vanishes on all
of K). Lemma 6.8 then shows that ξ = 0 as well, since 8r(T ) 6= 0 in k. This
contradicts our choice of ξ.

(5) By (4), δ is a morphism K → P7, and by Lemma 7.1 (2) δ differs from the
duplication map by post-composing with an automorphism α of P7. We showF

that on a generic point, δ coincides with the duplication map; this proves that
α is the identity. We use the action of GL(2) on (x, z) (and scaling on y) to
reduce to the case that F (x, 1) is monic of degree 7. A generic point P on J
can then be represented by (A,B,C) such that A(x, 1) is monic of degree 3
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and squarefree and B(x, 1) is of degree ≤ 2. After making a further affine
transformation, we can assume that A(x, 1) = x(x− 1)(x− a) for some a ∈ k.
The corresponding point on K is then

κ(P ) = (1 : −a− 1 : a : 0 : −ac3 − c1 : −c0

: (a+ 1)c0 + 2b0b2 : −(a2 + a+ 1)c0 − 2(a+ 1)b0b2),

where B(x, 1) = b0 + b1x + b2x
2, C(x, 1) = c0 + c1x + c2x

2 + c3x
3 − x4. We

compute 2P in terms of its Mumford representation using Cantor’s algorithm
as implemented in Magma and find κ(2P ). On the other hand, we com-
pute δ(κ(P )). Both points are equal, which proves the claim. �

The quartics δ = (δ1, . . . , δ8) are given in the file Kum3-deltas.magma at [Data].

The canonical map from V2 = Sym2 L(2Θ) to L(4Θ) has non-trivial one-dimen-
sional kernel, spanned by the quadric y0 vanishing on K. Since the dimension
of the even part L(4Θ)+ of L(4Θ) is 36 = dimV2, the map V2 → L(4Θ)+ has a
one-dimensional cokernel. Looking at the action of J [2] on L(4Θ)+, it is clear
that this space splits as a direct sum of the image of V2 and a one-dimensional
invariant subspace. We will identify a generator of the latter.

Lemma 7.4. The image of q1 in L(8Θ) is the square of an element Ξ ∈ L(4Θ)+

that is invariant under the action of J [2].

Proof. We pull back q1 to a polynomial function on the affine space A15 that
parameterizes the triples of polynomials (A,B,C). We findF that this polynomial
is the square of some other polynomial p that can be written as a quadratic in the
components of Al ∧Bl ∧Cl. So p is invariant under ±Γ, which means that it gives
an element Ξ of L(4Θ)+. �

To make Ξ more explicit, we note that p can be expressed as a cubic in the ξj.
Taking into account that ξ1 = 1 on the affine space, we find that (up to the choice
of a sign)

ξ1Ξ = (−8f0f4f8 + 2f0f5f7 + 2f1f3f8)ξ3
1 − 4f0f6ξ

2
1ξ2 + (−4f0f7 + 2f1f6)ξ2

1ξ3

+ (−4f0f8 + 2f1f7 − 4f2f6 + f3f5)ξ2
1ξ4 + (12f0f8 − f1f7)ξ2

1ξ5

+ (−4f1f8 + 2f2f7)ξ2
1ξ6 − 4f2f8ξ

2
1ξ7 + 6f0ξ1ξ

2
2 − 3f1ξ1ξ2ξ3 + 6f2ξ1ξ2ξ4

− f3ξ1ξ2ξ6 − 2f3ξ1ξ3ξ4 + 2f4ξ1ξ3ξ6 − f5ξ1ξ3ξ7 + 4f4ξ1ξ
2
4 − 2f4ξ1ξ4ξ5

− 2f5ξ1ξ4ξ6 + 6f6ξ1ξ4ξ7 − 3f7ξ1ξ6ξ7 + 6f8ξ1ξ
2
7 − 11ξ2ξ4ξ7 + ξ2ξ5ξ7 + 2ξ2ξ

2
6

+ 2ξ2
3ξ7 + 5ξ3ξ4ξ6 − 3ξ3ξ5ξ6 + 2ξ3

4 − 7ξ2
4ξ5 + 3ξ4ξ

2
5

We obtain similar cubic expressions for ξjΞ with j ∈ {2, 3, . . . , 8} by multiplying
the polynomial above by ξj, then adding a suitable linear combination of the
quartics vanishing on K so that we obtain something that is divisible by ξ1. These
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cubics are given in the file Kum3-Xipols.magma at [Data]. With this information,
we can evaluate Ξ on any given set ξ of coordinates of a point on K: we find an
index j with ξj 6= 0 and evaluate Ξ as (ξjΞ)/ξj.

This gives us a basis of L(4Θ)+ consisting of Ξ and the quadratic monomials in
the ξj minus one of the monomials ξjξ9−j. Alternatively, we can use the basis
consisting of Ξ and the yT for the 35 nonzero even 2-torsion points T .

8. Sum and difference on the Kummer variety

In this section, k continues to be a field of characteristic 6= 2 and F to be squarefree.

We consider the composition

J × J (+,−)−→ J × J (κ,κ)−→ K×K −→ P7 × P7 Segre−→ P63 symm.−→ P35

where ‘symm.’ is the symmetrization map that sends a matrix A to A + A> and
we identify the Segre map with the multiplication map

(column vectors)× (row vectors) −→ matrices.

Pulling back hyperplanes, we see that the map is given by sections of 4Θ× {0}+
{0} × 4Θ, hence symmetric bilinear forms on L(4Θ). The map is invariant under
negation of either one of the arguments, therefore the bilinear forms only involve
even sections. The map can be described by a symmetric matrix B of such bilinear
forms such that in terms of coordinates (wj) and (zj) of the images κ(P + Q)
and κ(P−Q) of P±Q onK, we have (up to scaling) wizj+wjzi = 2Bij(κ(P ), κ(Q)).
We normalize by requiring that B88(o, o) = 1, where o = (0, . . . , 0, 1).

We write Ṽ2 for L(4Θ)+; then B can be interpreted as an element β of Ṽ2⊗Ṽ2⊗V ∗2 .
The last factor V ∗2 is identified with the space of symmetric 8× 8 matrices (whose
entries are thought of representing 1

2
(wizj+wjzi) for coordinates w and z of points

in P7) by specifying that a quadratic form q ∈ V2 evaluates on such a matrix to
b(w, z) where b is the bilinear form such that q(x) = b(x, x). If M is the matrix
of b and B is the matrix corresponding to the unordered pair {w, z}, then the
pairing is Tr(M>B) = 8〈M,B〉. Put differently, we obtain the (i, j)-entry of the
matrix by evaluating at the quadratic form ξiξj.

The 2-torsion group J [2] acts on each factor, and β must be invariant under the
action of J [2]×J [2] such that (T, T ′) acts via (T, T ′, T +T ′) on the three factors
(shifting P by T and Q by T ′ shifts P ±Q by T + T ′).

We use the basis of Ṽ2 given by Ξ and yT for the nonzero even 2-torsion points T
(suitably extending k if necessary); for V ∗2 we use the basis dual to (yT )T even,
which is given by the linear forms

y∗T : v 7−→ 1

r(T )
〈zT , v〉.
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If T1, T2, T3 are even 2-torsion points, then the effect of (T, T ′) acting on the
corresponding basis element of the triple tensor product is to multiply it by

e2(T, T1)e2(T ′, T2)e2(T + T ′, T3) = e2(T, T1 + T3)e2(T ′, T2 + T3).

If this basis element occurs in β with a nonzero coefficient, then this factor must
be 1 for all T, T ′, which means that T1 = T2 = T3. This shows that we must have

β =
∑
T 6=0

aT (yT ⊗ yT ⊗ y∗T ) + a0(Ξ⊗ Ξ⊗ y∗0).

If we evaluate at the origin in the first component, we obtain (using that Ξ vanishes
there and that yT (o) = 1 for T 6= 0 even)

βo =
∑
T 6=0

aT (yT ⊗ y∗T ).

This corresponds to taking P = O, resulting in the pair±Q leading to {κ(Q), κ(Q)}.
So, taking ξ as coordinates of Q and using B88(o, o) = 1, the (i, j)-component of
this expression, evaluated at ξ in the (now) first component of βo, must be ξiξj,
up to a multiple of y0:

ξiξj ≡
∑
T 6=0

aTy
∗
T (ξiξj) · yT mod y0.

In other words, βo, interpreted as a linear map V2 → Ṽ2, is the canonical map;
in particular, it sends yT to yT for all even T 6= 0, and so aT = 1 for all T 6= 0.
It only remains to find a0; then β is completely determined. We consider the
image of β in Sym2 Ṽ2 ⊗ V ∗2 , which corresponds to taking P = Q. This results
in the unordered pair {2P,O}, represented (according to our normalization) by
the symmetric matrix that is zero everywhere except in the last row and column,
where it has entries 1

2
δ1, . . . ,

1
2
δ7, δ8. We obtain (recall that Ξ2 = q1 and δ1 = 4q1)

∑
T 6=0

y2
T ⊗ y∗T (ξiξj) + a0q1 ⊗ y∗0(ξiξj) =


0 if i, j < 8;
1
2
δi if i < j = 8;

δ8 if i = j = 8.

Evaluating at y0 = 2(ξ1ξ8 − ξ2ξ7 + ξ3ξ6 − ξ4ξ5), we find

a0q1 = δ1 = 4q1.

This shows that a0 = 4. (Note that if we evaluate at yT , we recover

y2
T =

7∑
j=1

1
2
δj · [ξjξ8]yT + δ8 · [ξ2

8 ]yT =
7∑
j=1

ε9−jτ9−jδj + δ8 ).

We have shown:
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Lemma 8.1. The element β ∈ Ṽ2 ⊗ Ṽ2 ⊗ V ∗2 is given by

β =
∑
T 6=0

yT ⊗ yT ⊗ y∗T + 4 Ξ⊗ Ξ⊗ y∗0.

In terms of matrices, we have

(8.1) 2B(ξ, ζ) =
∑
T 6=0

yT (ξ)yT (ζ)

4r(T )
MTS + Ξ(ξ)Ξ(ζ)S.

To get the expression for B, note that y∗T corresponds to the matrix(
y∗T (ξiξj)

)
i,j

=
1

r(T )

(
〈zT , ξiξj〉

)
i,j

=
1

8r(T )
MTS.

The resulting matrix of bi-quadratic forms corresponding to the first summand
in (8.1) has entries that can be written as elements of Z[f0, . . . , f8][ξ, ζ]. The
entries are given in the file Kum3-biquforms.magma at [Data]. More precisely, let

q = ξ1(f3f5ξ4 + f1f7ξ5) + f1ξ2ξ3 + f3ξ2ξ6 + f5ξ3ξ7 + f7ξ6ξ7 + (ξ4 + ξ5)ξ8,

then the entries of

B(ξ, ζ)− 1
2

(
q(ξ)q(ζ) + Ξ(ξ)Ξ(ζ)

)
S

are (up to addition of multiples of y0(ξ) and y0(ζ)) in Z[f0, . . . , f8][ξ, ζ]. (Note
that q ≡ Ξ mod (2, y0) so that the term in parentheses is divisible by 2.)

We can now use the matrix B to perform ‘pseudo-addition’ on K in complete
analogy to the case of genus 2 described in [FS]. This means that given κ(P ),
κ(Q) and κ(P −Q), we can find κ(P +Q). This in turn can be used to compute
multiples of points on K by a variant of the usual divide-and-conquer scheme
(‘repeated squaring’).

We can make the upper left entry of B completely explicit.

Lemma 8.2. Recall that 〈·, ·〉S denotes the bilinear form corresponding to the
matrix S. We have

B11(ξ, ζ) ≡ 〈ξ, ζ〉2S mod (y0(ξ), y0(ζ)).

Proof. This follows from 〈zT , ξ2
1〉 = [ξ2

8 ]yT = 1 (for T 6= 0) and Corollary 6.9:

B11(ξ, ζ) ≡
∑
T 6=0

yT (ξ)yT (ζ)

8r(T )
= 〈ξ, ζ〉2S. �

Corollary 8.3. For two points P,Q ∈ J with images κ(P ), κ(Q) ∈ K, we have

P ±Q ∈ Θ ⇐⇒ 〈κ(P ), κ(Q)〉S = 0.
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Proof. The bilinear form associated to S vanishes if and only if B11(κ(P ), κ(Q))
vanishes, which means that ξ1(P + Q)ξ1(P −Q) = 0, which in turn is equivalent
to P +Q ∈ Θ or P −Q ∈ Θ. �

This is analogous to the duality between the Kummer Surface and the Dual Kum-
mer Surface in the case of a curve of genus 2, see [CF, Thm. 4.3.1]. The difference
is that here the Kummer variety is self-dual.

We can now also describe the locus of vanishing of yT on K.

Corollary 8.4. Let T 6= 0 be an even 2-torsion point. Then for P ∈ J , we have
that yT (κ(P )) = 0 if and only if 2P + T ∈ Θ.

Proof. This is because y2
T = 〈κ(T ), δ〉S (up to scaling). �

For T = 0, we get that Ξ(κ(P )) = 0 if and only if 2P ∈ Θ. This is because
4Ξ2 = δ1.

9. Further properties of the duplication and the
sum-and-difference maps

With a view of considering bad reduction later, we now allow k to be any field
and F ∈ k[x, z] to be any binary form of degree 8; in particular, F = 0 is allowed.
Note that the relations deduced so far are valid over Z[f0, . . . , f8] and so can
be specialized to any k and F . In this context, K denotes the variety in P7

k

defined by the specializations of the quadric and the 34 quartics that define the
Kummer variety in the generic case, and δ denotes the rational map (which now
may have base points) from K to itself given by the quartics δ. We can also
still consider factorizations F = GH into two factors of degree 4 (if F = 0, we
take both of the factors to be the zero form of degree 4) and obtain points on K
that are specializations of the images of 2-torsion points. We will call equivalence
classes of such factorizations (up to scaling) ‘nontrivial even 2-torsion points’ for
simplicity, even though they do not in general arise from points of order 2 on some
algebraic group. If T is such a nontrivial even 2-torsion point, then we denote the
corresponding point on K by κ(T ). We normalize the coordinates of κ(T ) such
that the first coordinate is 1. We also have the associated quadratic form yT . If
F = 0, we obtain for example κ(T ) = (1 : 0 : . . . : 0) for the unique nontrivial
even 2-torsion point, with associated quadratic form yT = ξ2

8 .

We now state explicit criteria for the vanishing of δ at a point on K. We first
exhibit a necessary condition. For the following, we assume k to be algebraically
closed and of characteristic 6= 2.
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Remark 9.1. Note that in characteristic 2 we have that δ1 = . . . = δ7 = 0 and
δ8 = y2

T on K for all T , where

yT = ξ2
8 + f6f8ξ

2
7 + f4f8ξ

2
6 + f2f8ξ

2
5 + f4f6ξ

2
4 + f2f6ξ

2
3 + f2f4ξ

2
2 + f2f4f6f8ξ

2
1 ,

which is the square of a linear form over k when k is perfect. Let L denote the
hyperplane defined by this linear form. Then δ restricts to a morphism on K \ L,
which is constant with image the origin (0 : . . . : 0 : 1).

Assume for now that F 6= 0 and write

F = F 2
0F1 with F1 squarefree.

We define T (F ) to be the set of nontrivial even 2-torsion points T associated to
factorizations (G,H) with G and H both divisible by F0. So T (F ) is in bijec-
tion with the unordered partitions of the roots of F1 into two sets of equal size.
We also define T (0) to be the one-element set {T}, where T corresponds to the
factorization 0 = 0 · 0.

Lemma 9.2. With the notation introduced above, the following statements are
equivalent for a point on K with coordinate vector ξ:

(i) For all T ∈ T (F ), we have 〈κ(T ), δ(ξ)〉S = 0.
(ii) For all T ∈ T (F ), we have 〈κ(T ), ξ〉S = 0.

In particular, δ(ξ) = 0 implies 〈κ(T ), ξ〉S = 0 for all T ∈ T (F ).

Proof. By Theorem 7.3 (3), we have for all T ∈ T (F ) that yT (ξ)2 = 〈κ(T ), δ(ξ)〉S,

so (i) is equivalent to yT (ξ) = 0 for all T ∈ T (F ). When F = 0, we have yT = ξ2
8

and κ(T ) = (1 : 0 : . . . : 0) for the unique T ∈ T (F ), so yT (ξ) = 0 is equivalent
to ξ8 = 0, which is equivalent to 〈κ(T ), ξ〉S = 0. If, at the other extreme, F is

squarefree, then one checksF that the coordinate vectors of the points in T (F )
are linearly independent, which implies that (i) is equivalent to δ(ξ) = 0 and (ii)
is equivalent to ξ = 0. The claim then follows from Theorem 7.3 (4).

We now assume that F 6= 0 and write F = F 2
0F1 as above with F1 squarefree and

F0 non-constant. We check by an explicit computationF that

(*) the yT for T ∈ T (F ) form a basis of the symmetric square of the space spanned
by the linear forms 〈κ(T ), ·〉S for T ∈ T (F ).

This implies that the vanishing of the yT is equivalent to (ii). To verify (*), we can
apply a transformation moving the roots of F0 to an initial segment of (0,∞, 1, a)
(where a ∈ k \ {0, 1}). The most involved case is when degF0 = 1. We can
then take F0 = x and find that the linear forms given by the T ∈ T (F ) span
〈ξ4, ξ6, ξ7, ξ8〉 and that the 10 × 10 matrix whose rows are the coefficient vectors
of the yT with respect to the monomials of degree 2 in these four variables has
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determinant a power of two times a power of disc(F1), hence is invertible. The
other cases are similar, but simpler. �

This prompts the following definition.

Definition 9.3. We write Kgood for the open subscheme

K \ {P : 〈κ(T ), P 〉S = 0 for all T ∈ T (F )}
of K.

Lemma 9.2 now immediately implies the following.

Corollary 9.4. The rational map δ : K → K restricts to a morphism Kgood →
Kgood.

We will now consider the ‘bad’ subset K \Kgood of K in more detail, in particular
in relation to the base locus of δ, which it contains according to Corollary 9.4. We
begin with a simple sufficient condition for a point to be in the base locus.

Lemma 9.5. Assume that F (x, z) is divisible by z2. Let ξ be the coordinate vector
of a point on K such that ξ2 = ξ3 = ξ4 = ξ8 = 0. Then δ(ξ) = 0.

Proof. Plugging f7 = f8 = ξ2 = ξ3 = ξ4 = ξ8 = 0 into the expressions for the δj
gives zeroF. �

We set
L∞ = {(ξ1 : . . . : ξ8) ∈ P7 : ξ2 = ξ3 = ξ4 = ξ8 = 0}.

Using the formulas given in Section 3 for the action on ξ, one sees easily that
L∞ is invariant under scaling of x and also under shifting (x, z) 7→ (x+ λz, z) (if
f7 = f8 = 0), which together generate the stabilizer of ∞ in PGL(2).

For F with a multiple root at some point a ∈ P1, let F̃ be the result of acting
on F by a linear substitution φ that moves a to ∞; then F̃ is divisible by z2. We
write La ⊂ P7 for the image of L∞ under the automorphism of P7 induced by φ−1.
Since the stabilizer of∞ in PGL(2) leaves L∞ invariant, this definition of La does
not depend on the choice of φ. For example,

L0 = {(ξ1 : . . . : ξ8) ∈ P7 : ξ4 = ξ6 = ξ7 = ξ8 = 0}.
We write A(F ) ⊂ P1 for the set of multiple roots of F . This is all of P1 when
F = 0. Otherwise, A(F ) consists of the roots of F0 when F = F 2

0F1 with F1

squarefree.

Corollary 9.6. If P ∈ K ∩ La for some a ∈ A(F ), then δ(P ) = 0.

Proof. This follows from Lemma 9.5 by applying a suitable automorphism of P1.
�
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So the base locus of δ contains K ∩
⋃
a∈A(F ) La. When F is not a nonzero square,

we can show that this is exactly the ‘bad set’ K \ Kgood.

Lemma 9.7. Assume that F is not of the form F = H2 with H 6= 0. Let P be in
the ‘bad set’ K \ Kgood. Then P ∈ La for some a ∈ A(F ). In particular,

Kgood = K \
⋃

a∈A(F )

La,

and K \ Kgood = K ∩
⋃
a∈A(F ) La is the base locus of δ.

Proof. Let ξ be a coordinate vector for P . We write F = F 2
0F1 with F1 squarefree.

We split the proof into various cases according to the factorization type of F0. If
F0 is constant, there is nothing to prove. Otherwise we move the roots of F0 to
an initial segment of (0,∞, 1).

1. F0 = x. In this case the assumption is equivalent to ξ4 = ξ6 = ξ7 = ξ8 = 0
(compare the proof of Lemma 9.2), so that P ∈ L0.

2. F0 = x2. The assumption is ξ7 = ξ8 = 0; using the equations defining K this
impliesF ξ4 = ξ6 = 0, so P ∈ L0.

3. F0 = x3. The assumption is ξ8 = 0, which in turn impliesF ξ7 = ξ6 = ξ4 = 0,
so P ∈ L0.

4. F0 = xz. In this case the assumption is ξ4 = ξ8 = 0, which then impliesF

ξ6 = ξ7 = 0 or ξ2 = ξ3 = 0, and so P ∈ L0 or P ∈ L∞.
5. F0 = x2z. The assumption is ξ8 = 0, which leads toF P ∈ L0 or P ∈ L∞.
6. F0 = xz(x− z). A similar computation showsF that P ∈ L0 ∪ L1 ∪ L∞.
7. F = 0. Here the assumption is ξ8 = 0. The intersection K∩{ξ8 = 0} is definedF

by the 2× 2-minors of the matrixξ2 ξ3 ξ4

ξ3 ξ4 + ξ5 ξ6

ξ4 ξ6 ξ7

 ,

which therefore has rank 1 when evaluated on any point in K ∩ {ξ8 = 0}. If
ξ2 = 0, then this implies that ξ3 = ξ4 = 0 as well, so that P ∈ L∞. Otherwise,
we can make a transformation shifting x/z by λ as in Section 3 that makes

ξ̃7 = 0 (ξ̃7 is a polynomial of degree 4 in λ with leading coefficient ξ2, so we can
find a suitable λ, since k is assumed to be algebraically closed). Then we get

that ξ̃8 = ξ̃7 = ξ̃6 = ξ̃4 = 0, so the image point is in L0, hence P ∈ Lλ.

The last statement follows, since Corollary 9.4 shows that the base scheme of δ is
contained in K \ Kgood and Corollary 9.6 shows that it contains the intersection
of K with the union of the La. �

We now consider the case F = F 2
0 6= 0. Then the curve y2 = F (x, z) = F0(x, z)2

splits into the two components y = ±F0(x, z). The points on K correspond to
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linear equivalence classes of effective divisors of degree 4, modulo the action of the
hyperelliptic involution. So there are three distinct possibilities how the points
can be distributed among the two components: two on each, one and three, or all
four on the same component. In the last case, we have B ≡ ±F0 mod A, and we
can change the representative so that B = ±F0, which makes C = 0. So the two
components of Pic4(C) consisting of classes of divisors whose support is contained
in one of the two components of C map to a single point ω ∈ K, which one can
checkF coincides with κ(T ) for the single T ∈ T (F ); it satisfies δ(ω) = 0.

Now a point P on the component of K corresponding to the distribution of one
and three points on the two components, if it is not in the base scheme of δ, must
satisfy δ(P ) = ω. So for such points we have δ(δ(P )) = 0, but δ(P ) 6= 0. Let
ξ be coordinates for a point P with δ(P ) = ω = κ(T ). Then 〈κ(T ), δ(ξ)〉S =
〈κ(T ), κ(T )〉S = 0 (all points on K satisfy 〈ξ, ξ〉S = y0(ξ) = 0). By Lemma 9.2,
this is equivalent to 〈κ(T ), ξ〉S = 0. We write E for the hyperplane given by
〈κ(T ), ξ〉S = 0. So in this case Kgood = K \ E , and P ∈ K ∩ E = K \ Kgood does
not necessarily imply that δ(P ) = 0. But we still have the following.

Lemma 9.8. Assume that F = F 2
0 with F0 6= 0. If P ∈ K with δ(P ) = 0, then

P ∈ La for some a ∈ A(F ) (which here is simply the set of roots of F0).

Proof. We can again assume that the roots of F0 are given by an initial segment
of (0,∞, 1, a) (with a 6=∞, 0, 1). We consider the various factorization types of F0

in turn; they are represented by

F0 = x4, x3z, x2z2, x2z(x− z) and xz(x− z)(x− az).

The computationsF are similar to those done in the proof of Lemma 9.7. The most
involved case is when F0 has four distinct roots. To deal with it successfully, we
make use of the Klein Four Group of automorphisms of the set of roots of F0. �

We now have a precise description of the base scheme of the duplication map δ
on K, which is given by the quartic forms δ.

Proposition 9.9. Let k be an algebraically closed field of characteristic 6= 2 and
let F ∈ k[x, z] be homogeneous of degree 8. We denote by K and δ the objects
associated to F .

(1) The base locus of δ is K ∩
⋃
a∈A(F ) La.

(2) The base locus of δ ◦ δ is K \ Kgood; δ can be iterated indefinitely on Kgood.
(3) If F is not of the form F = F 2

0 with F0 6= 0, then the base locus of δ is K\Kgood.

Proof.

(1) Corollary 9.6 shows that the condition is sufficient. Conversely, if δ(P ) = 0,
then Lemmas 9.2, 9.7 and 9.8 show that P ∈ La for some multiple root a of F .
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(2) The second statement is Corollary 9.4. In view of (3), it is sufficient to consider
the case F = F 2

0 6= 0 for the first statement. If P ∈ K \ Kgood is not in the
base locus of δ, then δ(P ) = ω, which is in the base locus of δ, so P is in the
base locus of δ ◦ δ. Conversely, if P is in the base locus of δ ◦ δ, then P cannot
be in Kgood by the second statement.

(3) This follows from Corollary 9.4 and Lemma 9.7. �

We can state a property of the ‘add-and-subtract’ morphism that is similar to that
of δ given in Corollary 9.4. We write α : Sym2K → Sym2K for the map given
by the matrix B as defined in Section 8; this is defined for arbitrary F ∈ k[x, z],
homogeneous of degree 8. In general α is only a rational map.

Lemma 9.10. Let k be an algebraically closed field of characteristic 6= 2 and
let F ∈ k[x, z] be homogeneous of degree 8. We denote by K and δ the objects
associated to F . Then α restricts to a morphism Sym2Kgood → Sym2Kgood.

Proof. Note that generically, α ◦ α = Sym2 δ — this comes from the fact that

{(P +Q) + (P −Q), (P +Q)− (P −Q)} = {2P, 2Q}.

If we write ξ ∗ ξ′ for the symmetric matrix ξ>· ξ′ + ξ′
>· ξ, then this relation shows

that

(9.1) ζ ∗ ζ ′ = 2B(ξ, ξ′) =⇒ δ(ξ) ∗ δ(ξ′) = 2B(ζ, ζ ′),

up to a scalar factor, which we find to be 1 by taking ξ = ξ′ = (0, . . . , 0, 1). This
is then a relation that is valid over Z[f0, . . . , f8].

Now let ξ and ξ′ be projective coordinates of points in Kgood and write 2B(ξ, ξ′) =

ζ ∗ ζ ′ for suitable vectors ζ, ζ ′. Then by Corollary 9.4, δ(ξ) and δ(ξ′) both do

not vanish, so δ(ξ) ∗ δ(ξ′) 6= 0. This implies that ζ, ζ ′ 6= 0, which shows that

α is defined on Kgood. If the point given by ζ ∗ ζ ′ were not in Sym2Kgood, then
iterating α at most four more times would produce zero by Proposition 9.9 (2),
contradicting the fact that δ can be iterated indefinitely on the points represented
by ξ and ξ′. �

10. Heights

We now take k to be a number field (or some other field of characteristic 6= 2 with a
collection of absolute values satisfying the product formula, for example a function
field in one variable). We also assume again that F ∈ k[x, z] is a squarefree binary
octic form. Then C is a curve of genus 2 over k, and we have the Jacobian J and
the Kummer variety K associated to C. We define the naive height on J and on K
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to be the standard height on P7 with respect to the coordinates (ξ1 : . . . : ξ8). We
denote it by

h(P ) =
∑
v

nv log max{|ξ1(P )|v, . . . , |ξ8(P )|v} for P ∈ J (k) or K(k)

where v runs through the places of k, the absolute values | · |v extend the standard
absolute values on Q and nv = [Kv : Qw], where w is the place of Q lying below v,
so that we have the product formula∏

v

|α|nv
v = 1 for all α ∈ k×.

Then by general theory (see for example [HS, Part B]) the limit

ĥ(P ) = lim
n→∞

h(nP )

n2

exists and differs from h(P ) by a bounded amount. This is the canonical height
of P . One of our goals in this section will be to find an explicit bound for

β = sup
P∈J (k)

(
h(P )− ĥ(P )

)
.

We refer to [MS] for a detailed study of heights in the case of Jacobians of curves
of genus 2, with input from [Sto1] and [Sto3]. We will now proceed to obtain some
comparable results in our case of hyperelliptic genus 3 Jacobians. Most of this is
based on the following telescoping series trick going back to Tate: we write

ĥ(P ) = lim
n→∞

4−nh(2nP ) = h(P ) +
∞∑
n=0

4−(n+1)
(
h(2n+1P )− 4h(2nP )

)
and split the term h(2P )− 4h(P ) into local components as follows:

h(2P )− 4h(P ) =
∑
v

nv
(
max
j

log |δj(ξ(P ))|v − 4 max
j

log |ξj(P )|v
)

=
∑
v

nvεv(P )

with εv(P ) = maxj log |δj(ξ(P ))|v−4 maxj log |ξj(P )|v, which is independent of the
scaling of the coordinates ξ(P ) and so can be defined for all P ∈ J (kv) or K(kv).
Then εv : K(kv) → R is continuous, so (since K(kv) is compact) it is bounded. If
−γv ≤ infP∈K(kv) εv(P ), then we have that

β ≤
∑
v

nv

∞∑
n=0

4−(n+1)γv = 1
3

∑
v

nvγv.

So we will now obtain estimates for γv. We follow closely the strategy of [Sto1].
Note that writing

µv(P ) =
∞∑
n=0

4−(n+1)εv(2
nP ) = lim

n→∞
4−n max

j
log |δ◦n(ξ(P ))|v −max

j
log |ξj(P )|,
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we also have that

ĥ(P ) = h(P ) +
∑
v

nvµv(P ).

We assume that the polynomial defining the curve C has coefficients in the ring
of integers of k. Then the matrices MT defined in Section 5 for even 2-torsion
points have entries that are algebraic integers. We use O to denote the ring of all
algebraic integers. Let ξ be coordinates of a point on K. Then Theorem 7.3 (3)
tells us that for all even 2-torsion points T 6= 0, we have that

yT (ξ)2 ∈ Oδ1(ξ) +Oδ2(ξ) + . . .+Oδ8(ξ)

and Lemma 6.8 tells us that (note that the coefficient of ξ2
9−j in y0 is zero)

ξ2
j ∈

∑
T 6=0,even

1

8r(T )
OyT (ξ).

Lemma 10.1. Let v be a non-archimedean place of k. Then for P ∈ K(kv), we
have that

log |26 disc(F )|v ≤ log min
T
|26r(T )2|v ≤ εv(P ) ≤ 0,

where T runs through the non-trivial even 2-torsion points.

Proof. Let ξ be coordinates for P and write dj = δj(ξ) for j = 1, . . . , 8. Then for
all even T 6= 0,

|yT (ξ)|2v ≤ max
j
|dj|v

and

|ξj|4v ≤ max
T
|8r(T )|−2

v |yT (ξ)|2v ≤ max
T
|8r(T )|−2

v max
j
|dj|v.

So

εv(P ) = log max
j
|dj|v − 4 log max

j
|ξj|v ≥ log min

T
|26r(T )2|v.

Since r(T )2 divides the discriminant disc(F ), the first inequality on the left also
follows. The upper bound follows from the fact that the polynomials δj have
integral coefficients. �

Since εv(P ) is an integral multiple of the logarithm of the absolute value of a
uniformizer πv, we can sometimes gain a little bit by using

εv(P ) ≥ −
⌊
max
T

v
(
|26r(T )2|

)⌋
log |πv|v,

where v denotes the v-adic additive valuation, normalized so that v(πv) = 1.
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Example 10.2. For the curve

y2 = 4x7 − 4x+ 1,

over Q and v = 2, the discriminant bound givesF ε2(P ) ≥ −22 log 2, since the
discriminant of the polynomial on the right hand side (considered as a dehomog-
enized binary octic form) has 2-adic valuation 16. To get a better bound, we
consider the resultants r(T ). If we write

f(x) = 4x7 − 4x+ 1 = 4g(x)h(x)

with g and h monic of degree 3 and 4, respectively, then r(T ) = 28 Res(g, h).
From the Newton Polygon of f we see that all roots θ of f satisfy v2(θ) = −2/7.
This gives v2(r(T )) ≥ 32/7. Since the product of all 35 resultants r(T ) is the
tenth power of the discriminant, we must have equality. This gives the bound
ε2(P ) ≥ −(15 + 1

7
) log 2, which can be improved to −15 log 2, so that we get

−µ2 ≤ 5 log 2.

Corollary 10.3. Assume that k = Q. Then we have that

β ≤ 1
3

log |26 disc(F )|+ 1
3
γ∞.

To get a bound on γ∞, we use the archimedean triangle inequality. We write τj(T )
for the coordinates of a non-trivial even 2-torsion point T (with τ1(T ) = 1) and
υj(T ) for the coefficients in the formula for ξ2

j , so that we have

ξ2
j =

∑
T

υj(T )yT .

Lemma 10.4. Let v be an archimedean place of k. Then we have that

γv ≤ log max
j

∑
T

|υj(T )|v

√√√√ 8∑
i=1

|τi(T )|v

2

.

Proof. Similarly as in the non-archimedean case, we have that

|yT (ξ)|2v ≤
8∑
j=1

|τj(T )|v max
j
|dj|v

and

max
j
|ξj|2v ≤ max

j

∑
T

|υj(T )|v|yT (ξ)|v.

Combining these gives the result. �
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As in [MS, Section 16B], we can refine this result somewhat. Define a function

f : R8
≥0 −→ R8

≥0, (d1, . . . , d8) 7−→


√√√√√∑

T

|υj(T )|v

√√√√ 8∑
i=1

|τi(T )d9−i|v


1≤j≤8

.

We write ‖(x1, . . . , x8)‖∞ = max{|x1|, . . . , |x8|} for the maximum norm.

Lemma 10.5. Define a sequence (bn) in R8
≥0 by

b0 = (1, . . . , 1) and bn+1 = f(bn).

The (bn) converges to a limit b, and we have that

−µv(P ) ≤ 4N

4N − 1
log ‖bN‖∞

for all N ≥ 1 and all P ∈ J (C). In particular, sup−µv(J (C)) ≤ log ‖b‖∞.

Proof. See the proof of [MS, Lemma 16.1]. �

Example 10.6. For the curve

y2 = 4x7 − 4x+ 1,

the bound γ∞/3 is 1.15134, whereas with N = 8, we obtain the considerably better
bound −µ∞ ≤ 0.51852.

We can improve this a little bit more if kv = R, by making use of the fact that the
coordinates of the points involved are real, but the τi(T ) may be non-real. This
can give a better bound on

|y2
T |v ≤ max

|δi|≤di

∣∣∣∣∣
8∑
i=1

εiτi(T )δ9−i

∣∣∣∣∣
v

.

For the curve above, this improvesF the upper bound for −µ∞ to 0.43829.

Now we show that in the most common cases of bad reduction, there is in fact
no contribution to the height difference bound. This result is similar to [Sto3,
Proposition 5.2].

Lemma 10.7. Let v be a non-archimedean place of k of odd residue characteristic.
Assume that the reduction of F at v has a simple root and that the model of C
given by y2 = F (x, z) is regular at v. Then µv(P ) = εv(P ) = 0 for all P ∈ J (kv).

Note that the assumptions on the model are satisfied when v(disc(F )) = 1.
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Proof. We work with a suitable unramified extension K of kv, so that the reduc-
tion F̄ of F splits into linear factors over the residue field. We denote the ring
of integers of K by O. By assumption, F̄ has a simple root, which by Hensel’s
Lemma lifts to a root of F in P1(K). We can use a transformation defined over O
to move this root of F to ∞. Then we have f8 = 0 and v(f7) = 0. We can further
scale F (at the cost of at most a further quadratic unramified extension) so that
f7 = 1.

Assume that P ∈ J (K) has εv(P ) 6= 0 and let ξ be normalized coordinates for
κ(P ) ∈ K(K) (i.e., such that the coordinates are in O and at least one of them is
in O×). By Proposition 9.9, the reduction of P must lie in some La where a 6=∞
is a multiple root of F̄ . We can shift a to 0; then the coordinates ξ4, ξ6, ξ7 and ξ8

have positive valuation. We also have v(f0) = 1 (this is because the model is
regular at the point (0 : 0 : 1) in the reduction) and v(f1) ≥ 1 (since a = 0 is a
multiple root of F̄ ).

Now assume first that v(ξ1) = 0; then we can scale ξ such that ξ1 = 1. We consider
the quantity µ034 introduced in Section 4; its value on P is in K. By (4.1), we
have that

µ2
034 = η00η

2
34 + η33η

2
04 + η44η

2
03 − 4η00η33η44 − η03η04η34 = f0 + (f6 − ξ2)ξ2

4 − ξ6ξ4

(note that η44 = f8 = 0, η34 = f7 = 1, η33 = f6 − η24, η24 = ξ2, η04 = ξ4, η03 = ξ6).
Now since v(f0) = 1 and v(ξ4) ≥ 1, v(ξ6) ≥ 1, we find that 2v(µ034) = 1, a
contradiction.

So we must have v(ξ1) > 0. One can checkF that

ν1 = (ξ4 − ξ5)µ013 + ξ7µ123

ν2 = ξ3µ014 − ξ4µ024

ν3 = ξ2µ024 − ξ4µ134

are functions in L(4Θ), which are clearly odd, so their squares can be written as
quartics in the ξj by Lemma 2.3. Let I = (f0, f1, ξ1, ξ4, ξ6, ξ7, ξ8)2; then anything
in I has valuation at least 2. We findF that modulo I we have that

ν2
1 ≡ f0ξ

4
5 , ν2

2 ≡ f0ξ
4
3 , ν2

3 ≡ f0ξ
4
2 .

Since (at least) one of ξ2, ξ3, ξ5 is a unit and v(f0) = 1, we obtain a contradiction
again.

Therefore εv(P ) = 0 for all P ∈ J (K), which implies that µv(P ) = 0 as well. �

Example 10.8. The discriminant of the curve

C : y2 = 4x7 − 4x+ 1,

isF 228 ·19 ·223 ·44909. Lemma 10.7 now implies that εv(P ) = 0 for all P ∈ J (Qv)
for all places v except 2 and ∞, including the bad primes 19, 223 and 44909. So,



HEIGHTS FOR GENUS 3 HYPERELLIPTIC JACOBIANS 43

using Examples 10.2 and 10.6, we obtain the bound

h(P ) ≤ ĥ(P ) + 5 log 2 + 0.43829 ≤ ĥ(P ) + 3.90403

for all P ∈ J (Q).

To compute the canonical height ĥ(P ) for some point P ∈ J (Q) (say, for a
hyperelliptic curve C of genus 3 defined over Q), we can use any of the approaches
described in [MS], except the most efficient one (building on Proposition 14.3 in
loc. cit.), since we have so far no general bound on the denominator of µp/ log p
in terms of the discriminant. A little bit of care is needed, since contrary to the
genus 2 situation, εv = 0 and µv = 0 are not necessarily equivalent — there can
be a difference when the reduction of F is a constant times a square — so the
criterion for a point to be in the subgroup on which µv = 0 has to be taken as
κ(P ) ∈ Kgood(F), where κ(P ) is the reduction of κ(P ) at v and F is the residue
class field.

We can describe the subset on which µv = 0 and show that it is a subgroup and
that µv factors through the quotient.

Theorem 10.9. Let v be a non-archimedean place of k of odd residue character-
istic. Write J (kv)good for the subset of J (kv) consisting of the points P such that
κ(P ) reduces to a point in Kgood(F). Then J (kv)good = {P ∈ J (kv) : µv(P ) = 0}
is a subgroup of finite index of J (kv), and εv and µv factor through the quotient
J (kv)/J (kv)good.

Proof. That J (kv)good is a group follows from Lemma 9.10: If P1 and P2 are
in J (kv)good, then P1 ± P2 reduce to a point in Kgood as well. This subgroup
contains the kernel of reduction, which is of finite index, so it is itself of finite
index. That J (kv)good = {P ∈ J (kv) : µv(P ) = 0} follows from the results of
Section 9.

It remains to show that µv (and therefore also εv, since εv(P ) = 4µv(P )−µv(2P ))
factors through the quotient group. Let P, P ′ ∈ J (kv) and let ξ and ξ′ be coordi-
nate vectors for κ(P ) and κ(P ′), respectively. We can then choose coordinate vec-
tors ζ and ζ ′ for κ(P ′+P ) and κ(P ′−P ), respectively, such that ζ ∗ζ ′ = 2B(ξ, ξ′).
Iterating the implication in (9.1) then gives

δ(ζ) ∗ δ(ζ ′) = 2B
(
δ(ξ), δ(ξ′)

)
,

and we can iterate this relation further. If α is a vector or matrix, then we write
|α|v for the maximum of the v-adic absolute values of the entries of α. Define

εv(P, P
′) = log |2B(ξ, ξ′)|v − 2 log |ξ|v − 2 log |ξ′|v

(this does not depend on the scaling of the coordinate vectors) and note that
|ζ ∗ ζ ′|v = |ζ|v · |ζ ′|v (here we use that the residue characteristic is odd). We then
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see that µv(P ) = 0 implies µv(P +Q) = µv(Q) for all Q ∈ J (kv) in the same way
as in the proof of [MS, Lemma 3.7]. �

11. An application

We consider the curve
C ′ : y2 − y = x7 − x,

which is isomorphic to the curve

C : y2 = 4x7 − 4x+ 1,

which we have been using as our running example. Our results can now be used
to determine a set of generators for the Mordell-Weil group J (Q). This is the
key ingredient for the method that determines the set of integral points on a
hyperelliptic curve as in [BM+]. We carry out the necessary computations and
thence find all the integral solutions of the equation y2 − y = x7 − x.

A 2-descent on the Jacobian J of C as described in [Sto2] and implemented in
Magma [BCP] shows that the rank of J (Q) is at most 4. We have #J (F3) = 94
and #J (F7) = 911, which implies that J (Q) is torsion free (the torsion subgroup
injects into J (Fp) for p an odd prime of good reduction). We have the obvious
points (0,±1), (±1,±1), (±ω,±1), (±ω2,±1) on C, where ω denotes a primitive
cube root of unity, together with the point at infinity. We can check that the
rational divisors of degree zero on C supported in these points generate a sub-
group G of J (Q) of rank 4, which already shows that J (Q) ∼= Z4. Computing
canonical heights, either with an approach as in [MS] or with the more general
algorithms due independently to Holmes [Hol] and Müller [Mü2], we find that an

LLL-reduced basis of the lattice (G, ĥ) is given by

P1 = [(0, 1)−∞], P2 = [(1, 1)−∞], P3 = [(−1, 1)−∞],

P4 = [(1,−1) + (ω,−1) + (ω2,−1)− 3 · ∞]

with height pairing matrix

M ≈


0.17820 0.01340 −0.05683 0.08269
0.01340 0.81995 −0.34461 −0.26775
−0.05683 −0.34461 0.98526 0.37358
0.08269 −0.26775 0.37358 1.07765

 .

We can bound the covering radius ρ of this lattice by ρ2 ≤ 0.50752. Using Exam-
ple 10.8, it follows that if G 6= J (Q), then there must be a point P ∈ J (Q) \ G
satisfying

h(P ) ≤ ρ2 + β ≤ 0.50752 + 3.90403 = 4.41155,

so that we can write κ(P ) = (ξ1 : ξ2 : . . . : ξ8) ∈ K(Q) with coprime integers ξj
such that |ξj| ≤ be4.41155c = 82. We can enumerate all points in K(Q) up to
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this height bound and check that no such point lifts to a point in J (Q) that is
not in G. (Compare [Sto3, §7] for this approach to determining the Mordell-Weil
group.) We have therefore proved the following.

Proposition 11.1. The group J (Q) is free abelian of rank 4, generated by the
points P1, P2, P3 and P4.

A Mordell-Weil sieve computation as described in [BS] shows that any unknown
rational point on C must differ from one of the eleven known points

∞, (−1,±1), (0,±1), (1
4
,± 1

64
), (1,±1), (5,±559)

by an element of B · J (Q), where

B = 26 ·33 ·53 ·72 ·11·13·17·19·23·29·31·37·43·47·53·61·71·79·83·97 ≈ 1.1·1032.

In particular, we know that every rational point is in the same coset modulo 2J (Q)
as one of the known points. For each of these cosets (there are five such cosets: the
points with x-coordinate 1/4 are in the same coset as those with x-coordinate 0),
we compute a bound for the size of the x-coordinate of an integral point on C with
the method given in [BM+]. This shows that

log |x| ≤ 2 · 101229

for any such point (x, y). On the other hand, using the second stage of the Mordell-
Weil sieve as explained in [BM+], we obtain a lattice L ⊂ Z4 of index ≈ 2.3 · 102505

such that the minimal squared euclidean length of a nonzero element of L is
≈ 2.55 · 101252 and such that every rational point on C differs from one of the
known points by an element in the image of L in J (Q) under the isomorphism

Z4
∼=→ J (Q) given by the basis above. This is more than sufficient to produce a

contradiction to the assumption that there is an integral point we do not already
know. We have therefore proved:

Theorem 11.2. The only points in C(Q) with integral x-coordinate are

(−1,±1), (0,±1), (1,±1), (5,±559).

In particular, the only integral solutions of the equation

y2 − y = x7 − x

are (x, y) = (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (5, 280) and (5,−279).

12. Quadratic twists

Let F be a squarefree octic binary form over a field k not of characteristic 2 and
let c ∈ k×. Then the Kummer varieties K and K(c) associated to F and to cF ,
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respectively, are isomorphic, with an isomorphism from the former to the latter
being given by

(ξ1 : ξ2 : ξ3 : . . . : ξ7 : ξ8) 7−→ (ξ1 : cξ2 : cξ3 : . . . : cξ7 : c2ξ8).

We can therefore use K as a model for the Kummer variety associated to the
curve C(c) : y2 = cF (x, z). This will in general change the naive height of a point
P ∈ J (c)(Q), but will not affect the canonical height, which is insensitive to
automorphisms of the ambient P7. The duplication map is preserved by the iso-
morphism. This implies that the height difference bounds of Lemmas 10.1 and 10.5
for F apply to K, even when K is used as the Kummer variety of C(c). This is
because these bounds are valid for all kv-points on K, regardless of whether they
lift to points in J (kv) or not. Note, however, that the result of Lemma 10.7 does
not carry over: in the interesting case, c has odd valuation at v, and so we are in
effect looking at (certain) points on J defined over a ramified quadratic extension
of kv. Since in terms of the original valuation, the possible values of the valuation
on this larger field are now in 1

2
Z, the argument in the proof of Lemma 10.7 breaks

down.

When working with this model, one has to modify the criterion for a point to lift
to J (k) by multiplying the µijk by c.

As an example, consider the curve given by(
y

2

)
=

(
x

7

)
.

It is isomorphic to the curve

C : y2 = 70(x7 − 14x5 + 49x3 − 36x+ 630) = 70F (x, 1)

where F is the obvious octic binary form. The 2-Selmer rank of its Jacobian J
is 9, J (Q) is torsion free, and the subgroup G of J (Q) generated by differences
of the 27 small rational points on C has rank 9 with LLL-reduced basis

[(−2, 210)−∞], [(1, 210)−∞], [(3, 210)−∞],

[(2, 210)−∞], [(−3, 210)−∞], [(4, 630)−∞],

[(−5
2
,−1785

8
) + (3, 210) + (4, 630)− 3∞],

[(0, 210)−∞], [(6, 3570)−∞].

We would like to show that these points are actually generators of J (Q).

Using the Kummer variety associated to 70F , we obtain the following bound for
µv at the bad primes and infinity (using the valuations of the resultants r(T ),
Lemma 10.7 and Lemma 10.5):

µ2 ≥ −6 log 2, µ3 ≥ −10
3

log 3, µ5 ≥ −10
3

log 5, µ7 ≥ −8
3

log 7,

µ13 = 0, µ17 ≥ −2
3

log 17, µ15717742643 = 0, µ∞ ≥ −0.6152.
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The resulting bound ≈ 20.88 for h− ĥ is much too large to be useful.

However, using the Kummer variety associated to F , we find

µ2 ≥ −10
3

log 2, µ3 ≥ −10
3

log 3, µ5 ≥ −2
3

log 5, µ7 = 0,

µ13 = 0, µ17 ≥ −2
3

log 17, µ15717742643 = 0, µ∞ ≥ −0.6152.

This gives a bound of ≈ 9.55 (now for a different naive height), which is already
a lot better, but still a bit too large for practical purposes. Now one can check
that for a point P ∈ J (Qp) with p ∈ {5, 17}, we always have κ(2P ) ∈ Kgood. This
implies that we get a better estimate

h(2P ) ≤ ĥ(2P ) + 10
3

log 6 + 0.6152 ≤ ĥ(2P ) + 6.588

for P ∈ J (Q). A further study of the situation at p = 3 reveals that µ3 factors
through the component group Φ of the Néron model of J over Z3, which has the
structure Z/3Z × Z/4Z × Z/2Z, and that the minimum of µ3 on 2Φ is −5

3
log 3.

This leads to

(12.1) h(2P ) ≤ ĥ(2P ) + 4.757.

We enumerate all points P in J (Q) such that h(P ) ≤ log 2000 using a p-adic
lattice-based approach with p = 277, as follows. For each of the 10 965 233 points
κ(0) 6= Q ∈ K(Fp) that are in the image of J (Fp), we construct a sublattice LQ
of Z8 such that for every point P ∈ J (Q) such that κ(P ) reduces mod p to Q,
every integral coordinate vector for κ(P ) is in LQ and such that (Z8 : LQ) ≥ p11.
We then search for short vectors in LQ, thus obtaining all points of multiplicative
naive height ≤ 2000. Note that all these points are smooth on K over Fp, since
#J (Fp) is odd. This computation took about two CPU weeks. For points reducing
to the origin, we see that the quadratic equation satisfied by points on K forces ξ1

to be divisible by p2 > 2000, so ξ1 = 0, and every such point must be on the theta
divisor. A point P = [P1 + P2 − 2 · ∞] ∈ J (Q) reduces to the origin if and only
if the points P1 and P2 reduce to opposite points; in particular, the polynomial
whose roots are the x-coordinates of P1 and P2 reduces to a square mod p. Since
the coefficients are bounded by 7 = b2000/pc, divisibility of the discriminant by p
implies that the discriminant vanishes, so that P1 = P2, and the point P does not
reduce to the origin, after all.

We find no point P such that 0 < ĥ(P ) < ĥ(P1) ≈ 1.619, where P1 is a known
point of minimal positive canonical height, and no points P outside G such that
ĥ(P ) < 2.844 ≈ log 2000− 4.757. Since the bound (12.1) is only valid on 2J (Q),

this implies that there are no points P ∈ J (Q) with 0 < ĥ(P ) < 0.711 =: m.
Using the bound (see [FS])

I ≤

⌊√
γ9

9 det(M)

m9

⌋
≤ 1787
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for the index of the known subgroup in J (Q), where γ9 denotes the Hermite
constant for 9-dimensional lattices and M is the height pairing matrix of the basis
of the known subgroup of J (Q), we see that it suffices to rule out all primes up
to 1787 as possible index divisors. We therefore check that the known subgroup G
is in fact saturated at all those primes with the method already introduced in [FS]:
to verify saturation at p, we find sufficiently many primes q of good reduction such
that #J (Fq) is divisible by p (usually nine such primes will suffice) and check that
the kernel of the natural map

G/pG −→
∏
q

J (Fq)/pJ (Fq)

is trivial. This computation takes a few CPU days; the most time-consuming task
is to find #J (Fq) for all primes q up to q = 322 781 (which is needed for p = 1471).
This gives the following result.

Theorem 12.1. The points [Pj −∞] freely generate J (Q), where the Pj ∈ C(Q)
are the points with the following x-coordinates and positive y-coordinate:

−3, −2, −5
2
, 0, 1, 2, 3, 4, 6.

In principle, one could now try to determine the set of integral points on C with
the method we had already used for y2−y = x7−x. However, a Mordell-Weil sieve
computation with a group of rank 9 is a rather daunting task, which we prefer to
leave to the truly dedicated reader.
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[Hol] D. Holmes: Computing NéronTate heights of points on hyperelliptic Jacobians, J. Num-
ber Theory 132:6, 1295–1305 (2012).
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