
ON A PROBLEM OF HAJDU AND TENGELY

SAMIR SIKSEK AND MICHAEL STOLL

Abstract. We answer a question asked by Hajdu and Tengely: The only arith-
metic progression in coprime integers of the form (a2, b2, c2, d5) is (1, 1, 1, 1).

For the proof, we first reduce the problem to that of determining the sets
of rational points on three specific hyperelliptic curves of genus 4. A 2-cover
descent computation shows that there are no rational points on two of these
curves. We find generators for a subgroup of finite index of the Mordell-Weil
group of the last curve. Applying Chabauty’s method and the Mordell-Weil
sieve, we prove that the only rational points on this curve are the obvious ones.

1. Introduction

Euler ([7, pages 440 and 635]) proved Fermat’s claim that four distinct squares
cannot form an arithmetic progression. There has recently been much interest in
powers in arithmetic progressions. For example, Darmon and Merel [6] proved that
the only solutions in coprime integers to the Diophantine equations xn + yn = 2zn

with n ≥ 3 satisfy xyz = 0 or ±1. This shows that there are no non-trivial three
term arithmetic progressions consisting of n-th powers with n ≥ 3. The result of
Darmon and Merel is far from elementary; it needs all the tools used in Wiles’
proof of Fermat’s Last Theorem and more.

An arithmetic progression (x1, x2, . . . , xk) of integers is said to be primitive if the
terms are coprime, i.e., if gcd(x1, x2) = 1. Let S be a finite subset of integers ≥ 2.
Hajdu [9] showed that if

(1.1) (a`1
1 , . . . , a`k

k )

is a non-constant primitive arithmetic progression with `i ∈ S, then k is bounded
by some (inexplicit) constant C(S). Bruin, Győry, Hajdu and Tengely [2] showed
that for any k ≥ 4 and any S, there are only finitely many primitive arithmetic
progressions of the form (1.1), with `i ∈ S. Moreover, for S = {2, 3} and k ≥ 4,
they showed that ai = ±1 for i = 1, . . . , k.

A recent paper of Hajdu and Tengely [10] studies primitive arithmetic progressions
(1.1) with exponents belonging to S = {2, n} and {3, n}. In particular, they
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show that any primitive non-constant arithmetic progression (1.1) with exponents
`i ∈ {2, 5} has k ≤ 4. Moreover, for k = 4 they show that

(1.2) (`1, `2, `3, `4) = (2, 2, 2, 5) or (5, 2, 2, 2).

Note that if (a`i
i : i = 1, . . . , k) is an arithmetic progression, then so is the reverse

progression (a`i
i : i = k, k − 1, . . . , 1). Thus there is really only one case left

open by Hajdu and Tengely, with exponents (`1, `2, `3, `4) = (2, 2, 2, 5). This is
also mentioned as Problem 11 in a list of 22 open problems recently compiled by
Evertse and Tijdeman [8]. In this paper we deal with this case.

Theorem 1. The only arithmetic progression in coprime integers of the form

(a2, b2, c2, d5)

is (1, 1, 1, 1).

This together with the above-mentioned results of Hajdu and Tengely completes
the proof of the following theorem.

Theorem 2. There are no non-constant primitive arithmetic progressions of the
form (1.1) with `i ∈ {2, 5} and k ≥ 4.

Note that the primitivity condition is crucial, since otherwise solutions abound.
Let for example (a2, b2, c2, d) be any arithmetic progression whose first three terms
are squares — there are infinitely many of these; one can take a = r2 − 2rs− s2,
b = r2 + s2, c = r2 + 2rs − s2 — then

(
(ad2)2, (bd2)2, (cd2)2, d5) is an arithmetic

progression whose first three terms are squares and whose last term is a fifth power.

For the proof of Theorem 1, we first reduce the problem to that of determining
the sets of rational points on three specific hyperelliptic curves of genus 4. A 2-
cover descent computation (following Bruin and Stoll [3]) shows that there are no
rational points on two of these curves. We find generators for a subgroup of finite
index of the Mordell-Weil group of the last curve. Applying Chabauty’s method
and the Mordell-Weil sieve, we prove that the only rational points on this curve
are the obvious ones. All our computations are performed using the computer
package MAGMA [1].

2. Construction of the curves

Let (a2, b2, c2, d5) be an arithmetic progression in coprime integers. Since a square
is ≡ 0 or 1 mod 4, it follows that all terms are ≡ 1 mod 4, in particular, a, b, c
and d are all odd.

Considering the last three terms, we have the relation

(−d)5 = b2 − 2c2 = (b + c
√

2)(b− c
√

2) .
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Since b and c are odd, the two factors on the right are coprime in R = Z[
√

2].
Since R×/(R×)5 is generated by 1 +

√
2, it follows that

(2.1) b + c
√

2 = (1 +
√

2)j(u + v
√

2)5 = gj(u, v) + hj(u, v)
√

2

with −2 ≤ j ≤ 2 and u, v ∈ Z coprime (with u odd and v ≡ j + 1 mod 2). The
polynomials gj and hj are homogeneous of degree 5.

Now the first three terms of the progression give the relation

a2 = 2b2 − c2 = 2gj(u, v)2 − hj(u, v)2 .

Writing y = a/v5 and x = u/v, this gives the equation of a hyperelliptic curve of
genus 4,

Cj : y2 = fj(x)

where fj(x) = 2gj(x, 1)2 − hj(x, 1). Every arithmetic progression of the required
form therefore induces a rational point on one of the curves Cj.

We observe that taking conjugates in (2.1) leads to

(−1)jb + (−1)j+1c
√

2 = (1 +
√

2)−j(u + (−v)
√

2)5 ,

which implies that f−j(x) = fj(−x) and therefore that C−j and Cj are isomorphic
and their rational points correspond to the same arithmetic progressions. We can
therefore restrict attention to C0, C1 and C2. Their equations are as follows.

C0 : y2 = f0(x) = 2x10 + 55x8 + 680x6 + 1160x4 + 640x2 − 16

C1 : y2 = f1(x) = x10 + 30x9 + 215x8 + 720x7 + 1840x6 + 3024x5

+ 3880x4 + 2880x3 + 1520x2 + 480x + 112

C2 : y2 = f2(x) = 14x10 + 180x9 + 1135x8 + 4320x7 + 10760x6 + 18144x5

+ 21320x4 + 17280x3 + 9280x2 + 2880x + 368

The trivial solution a = b = c = d = 1 corresponds to j = 1, (u, v) = (1, 0) in
the above and therefore gives rise to the point ∞+ on C1 (this is the point at
infinity where y/x5 takes the value +1). Changing the signs of a, b or c leads to
∞− ∈ C1(Q) or to the two points at infinity on the isomorphic curve C−1.

3. Rational points

In this section, we determine the set of rational points on the three curves C0, C1

and C2. We first consider C0 and C2. We apply the 2-cover-descent procedure
described in [3] to the two curves and find that in each case, there are no 2-
covers that have points everywhere locally. For C0, only 2-adic information is
needed in addition to the global computation, for C2, we need 2-adic and 7-
adic information. Note that the number fields generated by roots of f0 or f2 are
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sufficiently small in terms of degree and discriminant that the necessary class and
unit group computations can be done unconditionally. This proves the following.

Proposition 3. There are no rational points on the curves C0 and C2.

We cannot hope to deal with C1 in the same easy manner, since C1 has two rational
points at infinity coming from the trivial solutions. We can still perform a 2-cover-
descent computation, though, and find that there is only one 2-covering of C1

with points everywhere locally, which is the cover that lifts the points at infinity.
We remark that by the way it is given, the polynomial f1 factors over Q(

√
2)

into two conjugate factors of degree 5. This implies that the ‘fake 2-Selmer set’
computed by the 2-cover descent is the true 2-Selmer set, so that there is really
only one 2-covering that corresponds to the only element of the set computed by
the procedure. We state the result as a lemma. We fix P0 = ∞− ∈ C1 as a
basepoint and write J1 for the Jacobian variety of C1. Then

ι : C1 −→ J1 , P 7−→ [P − P0]

is an embedding defined over Q.

Lemma 4. Let P ∈ C1(Q). Then the divisor class [P − P0] is in 2J1(Q).

Proof. Let D be the unique 2-covering of C1 (up to isomorphism) which has points
everywhere locally. Then D is (isomorphic to) the pull-back of ι(C1) ⊂ J1 under
the duplication map on J1. Both P0 and P lift to rational points on D ⊂ J1, say
Q0 and Q. It follows that [P − P0] = 2Q− 2Q0 = 2(Q−Q0) ∈ 2J1(Q). ¤

To make use of this information, we need to know J1(Q), or at least a subgroup
of finite index. We find the following two independent points, which are given in
Mumford representation as follows.

Q1 =
(
x4 + 4x2 + 4

5
, −16x3 − 96

5
x
)

Q2 =
(
x4 + 24

5
x3 + 36

5
x2 + 48

5
x + 36

5
, −1712

75
x3 − 976

25
x2 − 1728

25
x− 2336

25

)
Recall that the notation (a(x), b(x)) means the divisor class [D− 2W ] where D is
given by a(x) = 0, y = b(x), and W = ∞++∞−. We note that 2Q1 = [∞+−∞−],
which makes Lemma 4 explicit for the known points on C1.

Lemma 5. The Mordell-Weil group J1(Q) is torsion-free, and Q1, Q2 are linearly
independent. In particular, the rank of J1(Q) is at least 2.

Proof. The only primes of bad reduction for C1 are 2, 3 and 5. It is known that
the torsion subgroup of J1(Q) injects into J1(Fp) when p is an odd prime of good
reduction. Since #J1(F7) and #J1(F41) are coprime, there can be no nontrivial
torsion in J1(Q).

We check that the image of 〈Q1, Q2〉 in J1(F7) is not cyclic. This shows that Q1

and Q2 must be independent. ¤
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The next step is to show that the Mordell-Weil rank is indeed 2. For this, we
compute the 2-Selmer group of J1 as described in [13]. We give some details of
the computation, since it is outside the scope of the functionality that is currently
provided by MAGMA (or any other software package).

We first remind ourselves that f1 factors over Q(
√

2). This implies that the ‘Cassels
kernel’ is trivial. Therefore the ‘fake Selmer group’ that we compute is in fact the
actual 2-Selmer group of J1.

We have to compute the image of J1(Qp) under the descent (‘x − T ’) map for
the primes p of bad reduction. We check that there is no 2-torsion in J1(Q3)
and J1(Q5). This implies that the local image there is trivial. Since the (lo-
cal) Cassels kernel is also trivial, this means that these two primes need not be
considered as bad primes for the descent computation. The real locus C1(R) is
connected, which means that there is no information coming from the local image
at infinity.

The hardest part is the computation of the local image at p = 2. The 2-torsion
subgroup J1(Q2)[2] has order 2; this implies that the quotient J1(Q2)/2J1(Q2) has
dimension 5 as an F2-vector space. This quotient is generated by the images of
Q1 and Q2 and of three further points of the form [Di− deg Di

2
W ], where Di is the

sum of points on C1 whose x-coordinates are the roots of

D1 :
(
x− 1

2

)(
x− 1

4

)
,

D2 : x2 − 2x + 6 ,

D3 : x4 + 4x3 + 12x2 + 36 ,

respectively.

If K is a number field and S is a set of rational primes, we denote by K(S, 2) the
subgroup of K×/(K×)2 of elements α(K×)2 such that K(

√
α)/K is unramified

outside the primes of K lying above primes in S. We let L be the number field
generated by a root of f1 and compute the group

H = ker
(
NL/Q :

L({2}, 2)

Q({2}, 2)
−→ Q({2}, 2)

)
and the homomorphism

µ2 : H −→ H2 =
L×

2

Q×
2 (L×

2 )2

where L2 = L⊗QQ2. Let I2 be the image of J1(Q2) in H2. Then the 2-Selmer group

is Sel(2)(Q, J1) = µ−1
2 (I2), and we find that its F2-dimension is 2. We therefore

have the following.
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Lemma 6. The rank of J1(Q) is 2, and 〈Q1, Q2〉 ⊂ J1(Q) is a subgroup of finite
odd index.

Proof. The Selmer group computation shows that the rank is ≤ 2, and Lemma 5
shows that the rank is ≥ 2. For the second statement, we check that the given
subgroup surjects onto the 2-Selmer group. ¤

Now we want to use the Chabauty-Coleman method [4, 5, 12] to show that ∞+

and ∞− are the only rational points on C1. To keep the computations reasonably
simple, we want to work at p = 7 (the smallest prime of good reduction).

For p a prime of good reduction, write ρp for the two ‘reduction mod p’ maps
J1(Q) → J1(Fp) and C1(Q) → C1(Fp).

Lemma 7. Let P ∈ C1(Q). Then ρ7(P ) = ρ7(∞+) or ρ7(P ) = ρ7(∞−).

Proof. Let G = 〈Q1, Q2〉 be the subgroup of J1(Q) generated by the two points
Q1 and Q2. We find that ρ7(G) has index 2 in J1(F7). By Lemma 6, we know that
(J1(Q) : G) is odd, so we can deduce that ρ7(G) = ρ7(J1(Q)). The group J1(F7)
surjects onto (Z/5Z)2, which implies that the index of G in J1(Q) is not divisible
by 5.

We determine the set of points P ∈ C1(F7) such that ι(P ) ∈ ρ7(2J1(Q)) = 2ρ7(G).
We find the set

X7 = {ρ7(∞+), ρ7(∞−), (−2, 2), (−2,−2)} .

Note that for any P ∈ J1(Q), we must have ρ7(P ) ∈ X7 by Lemma 4.

Now we look at p = 13. The image of G in J1(F13) has index 5. Since we already
know that (J1(Q) : G) is not a multiple of 5, this implies that ρ13(G) = ρ13(J1(Q)).
As above for p = 7, we compute the set X13 ⊂ C1(F13) of points mapping into
ρ13(2J1(Q)). We find

X13 = {ρ13(∞+), ρ13(∞−)} .

Now suppose that there is P ∈ C1(Q) with ρ7(P ) ∈ {(−2, 2), (−2,−2)}. Then
ι(P ) is in one of two specific cosets in J1(Q)/ ker ρ7

∼= G/ ker ρ7|G. On the other
hand, we have ρ13(P ) = ρ13(∞±), so that ι(P ) is in one of two specific cosets
in J1(Q)/ ker ρ13

∼= G/ ker ρ13|G. It can be checked that the union of the first
two cosets does not meet the union of the second two cosets. This implies that
such a point P cannot exist. Therefore, the only remaining possibilities are that
ρ7(P ) = ρ7(∞±). ¤

Now we find the space of holomorphic 1-forms on C1, defined over Q7, that anni-
hilate the Mordell-Weil group under the integration pairing

Ω1
C1

(Q7)× J1(Q7) −→ Q7 , (ι∗ω, Q) 7−→
∫ Q

0

ω .
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(Recall that ι∗ : Ω1
J1
→ Ω1

C1
gives a canonical identification of the two spaces

of differentials.) We follow the procedure described in [11]. We first find two
independent points in the intersection of J1(Q) and the kernel of reduction mod 7.
In our case, we take R1 = 20Q1 and R2 = 5Q1 + 60Q2. We represent these points
in the form Rj = [Dj − 4∞−] with effective divisors D1, D2 of degree 4. The
points in the support of D1 and D2 all reduce to ∞− modulo the prime above 7 in
their fields of definition (which are degree 4 number fields totally ramified at 7).
Expressing a basis of Ω1

C1
(Q7) as power series in the uniformiser t = 1/x times dt,

we compute the integrals numerically. A little bit of linear algebra shows that
the reductions mod 7 of the (suitably scaled) differentials that kill J1(Q) fill the
subspace of Ω1

C1
(F7) spanned by

ω1 = (1 + 3x− 2x2)
dx

2y
and ω2 = (1− x2 + x3)

dx

2y
.

Since ω2 does not vanish at the points ρ7(∞±), this implies that there can be at
most one rational point P on C1 with ρ7(P ) = ρ7(∞+) and at most one point P
with ρ7(P ) = ρ7(∞−) (see for example [12, Prop. 6.3]).

Proposition 8. The only rational points on C1 are ∞+ and ∞−.

Proof. Let P ∈ C1(Q). By Lemma 7, ρ7(P ) = ρ7(∞±). By the argument above,
for each sign s ∈ {+,−}, we have #{P ∈ C1(Q) : ρ7(P ) = ρ7(∞s)} ≤ 1. These
two facts together imply that #C1(Q) ≤ 2. Since we know the two rational points
∞+ and ∞− on C1, there cannot be any further rational points. ¤

We can now prove Theorem 1.

Proof of Theorem 1. The considerations in Section 2 imply that if (a2, b2, c2, d5)
is an arithmetic progression in coprime integers, then there are coprime u and v
such that (u/v, a/v5) is a rational point on one of the curves Cj with −2 ≤ j ≤ 2.
By Proposition 3, there are no rational points on C0 and C2 and therefore also not
on the curve C−2, which is isomorphic to C2. By Proposition 8, the only rational
points on C1 (and C−1) are the points at infinity. This translates into a = ±1,
u = ±1, v = 0, and we have j = ±1. We deduce a2 = 1, b2 = g1(±1, 0)2 = 1,
whence also c2 = d5 = 1. ¤
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