COMPLETE VERIFICATION OF STRONG BSD
FOR MANY MODULAR ABELIAN SURFACES OVER Q

TIMO KELLER AND MICHAEL STOLL,
WITH AN APPENDIX JOINT WITH SAM FRENGLEY

ABsTRACT. We develop the theory and algorithms necessary to be able
to verify the strong Birch—Swinnerton-Dyer Conjecture for absolutely
simple modular abelian varieties over Q. We apply our methods to
all 28 Atkin-Lehner quotients of Xo(NN) of genus 2, all 97 genus 2
curves from the LMFDB whose Jacobian is of this type and six further
curves originally found by Wang. We are able to verify the strong
BSD Conjecture unconditionally and exactly in all these cases; this is
the first time that strong BSD has been confirmed for absolutely simple
abelian varieties of dimension at least 2. We also give an example where
we verify that the order of the Tate-Shafarevich group is 72 and agrees
with the order predicted by the BSD Conjecture.
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1. INTRODUCTION

1.1. Background. The Conjecture of Birch and Swinnerton-Dyer (“BSD”
for short), originally formulated based on extensive computations by Birch
and Swinnerton-Dyer [BS65] in the 1960s for elliptic curves over Q, is one
of the most important open conjectures in number theory. For example,
it is one of the seven “Millennium Problems”, for whose solution the Clay
Foundation is offering a million dollars each. It relates in a surprising way
analytic invariants of an elliptic curve E, which are obtained via its L-series
from its local properties (essentially the number of points modulo p on F,
for all prime numbers p), to global arithmetic invariants like the rank of the
Mordell-Weil group E(Q), its regulator, and the rather mysterious Tate—
Shafarevich group III(E/Q). The conjecture has been generalized to cover
all abelian varieties over all algebraic number fields. It consists of two parts,
which we will explain for the case of an abelian variety A of dimension g
over Q.

One attaches to A its L-function L(A/Q,s), which is defined by an Euler
product over all prime numbers p. If A is the Jacobian variety of a curve X of
genus g, the Euler factor at p for a prime p of good reduction is determined by
the number of Fj»-points on the mod p reduction of X for n < g. It follows
from the Weil conjectures for varieties over finite fields that the Euler product
converges for Re(s) > % to a holomorphic function. A standard conjecture
predicts that L(A/Q, s) extends to an entire function; this is known when
A is modular, i.e., occurs as an isogeny factor of the Jacobian Jo(N) of
one of the modular curves Xo(N). By the Modularity Theorem of Wiles
and others [Wil95, TW95, BCDTO01]|, this is always the case when A is
an elliptic curve over Q (this is now a special case of Serre’s Modularity
Conjecture [KW10]).

We now introduce the relevant global invariants of A. By the Mordell-
Weil Theorem, the abelian group A(Q) of rational points on A is finitely
generated, so it splits as A(Q) = A(Q)tors ® Z", where A(Q)tors is the finite
torsion subgroup and 7 is a nonnegative integer, the rank of A(Q). There is a
natural positive definite quadratic form h on A(Q)®z R = R", the canonical
height, turning A(Q)/A(Q)tors into a lattice in a euclidean vector space. The
squared covolume of this lattice (equivalently, the determinant of the Gram
matrix of h with respect to a lattice basis) is the regulator Rega/q- The
final global arithmetic invariant of A that we need is the Tate—Shafarevich
group III(A/Q). It can be defined as the localization kernel

1I(4/Q) = ker (H'(Q, 4) ~ D H'(Q., 4))
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in Galois cohomology; here Q, denotes the completion of Q with respect to
a place v and the direct sum is over all places of Q. Geometrically, IIT(A/Q)
is the group of equivalence classes of everywhere locally trivial A/Q-torsors.
This group is conjectured to be finite, but this is not known in general; for
example, it is not known for a single elliptic curve with (algebraic or analytic)
rank at least 2.

We also need some local invariants. To each prime p, one associates the
Tamagawa number c,(A); this is the number of connected components of the
special fiber at p of the Néron model o/ /Z of A that are fixed by Frobenius
and equals 1 for all primes of good reduction. Let (w1, ...,wy) be the pull-
back to HY(A, Q') of a basis of the free Z-module H%(e7, Q') of rank g. Then
the real period of A is the volume of A(R) measured using |wi A -+ A wyl:
Qa = [y lwr A Ayl

The weak BSD or BSD rank conjecture says that L(A/Q, s) has an analytic
continuation to a neighborhood of s =1 and

Tan = ords=1L(A/Q, s) = .

The order of vanishing of L(A/Q, s) at s = 1 is also called the analytic rank
of A/Q.

We will from now on assume that A is principally polarized, for example
the Jacobian variety of a curve. In particular, A = AV, where AV is the
dual abelian variety. Then the strong BSD conjecture says that in addition
III(A/Q) is finite and

Qall, cp(A) - Regy/q #11(A/Q)
(#A(Q)tors)2 .

Since all the other invariants of A can (usually) be computed at least
numerically, we define the analytic order of Sha to be
% 2
LA/ Q) = AL DD A Do
QaRegyiq [, (4)
Assuming the BSD rank conjecture, strong BSD can then be phrased as
“II(A/Q) is finite and #11(A/Q) = #11(A/Q)an.”

Even the weak BSD conjecture for elliptic curves over Q is wide open in
general (this is the Clay Millennium Problem mentioned above). However, the
strong BSD conjecture has been verified for many ‘small’ elliptic curves; see
below. In this article, we verify the strong BSD conjecture for the first time
in dimension greater than 1, namely for a number of abelian surfaces A/Q,
in a situation where it cannot be reduced to BSD for some elliptic curves.
Concretely, this means that A is absolutely simple.

Recall that an abelian variety A of positive dimension over Q is absolutely
simple if AQ is not isogenous to a product of at least two abelian varieties of
positive dimension. An abelian variety of dimension g whose endomorphism
ring Endq(A) is isomorphic to an order O in a totally real number field F' of
degree [F : Q] = g is said to have real multiplication (RM).

L*(A/Q,1) = lim(s—1) "L(A/Q,s) =
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Absolutely simple abelian varieties with real multiplication over Q are mod-
ular. This means that A can be obtained as an isogeny factor of some Jo(N),
where Jo(INV) denotes the Jacobian variety of the modular curve Xo(N).
These isogeny factors correspond to (Galois orbits of ) newforms in Sa(I'g(V));
see Theorem 2.1.1 below. (Note that we reserve the term ‘modular’ for GLa-
type abelian varieties here as opposed to the more general property of being
‘automorphic’; see [BCGP21, §9.1].)

1.2. General results. While the BSD conjecture is wide open in general,
there are some cases where parts of it are known to be true. Assume that A/Q
is an absolutely simple abelian variety of dimension g with real multiplication
by an order O in a totally real number field. Then A is of GLa-type; in
particular, for each prime ideal p of O, the common kernel A[p] of all elements
of p acting on A is a 2-dimensional vector space over O/p, hence induces a
Galois representation into GL2(O/p). In this situation there is a newform f
of weight 2 and some level N with g-expansion coefficients that generate an
order commensurable with @ and such that A is an isogeny factor of Jo(N);
furthermore,
LA/Qs) = [ s,
o: O=R

where o acts on the g-expansion coefficients. Since it is known that L(f7,s) is
an entire function, the same is true for L(A/Q, s). So for A/Q with RM we can
at least speak of the analytic rank r,, and the leading coefficient L*(A/Q, 1)
of the L-function at s = 1. The parity of the order of vanishing of L(f7?,s) at
s = 1 does not depend on o (it is determined by the eigenvalue e of f7 under
the Fricke involution, which is the same for all f?), and the order of vanishing
itself does not depend on o when ords—1 L(f?,s) < 1 for some o, so in this case
we have that r,, = ¢ - ords—1 L(f, s), where ords—1 L(f, s) := ords—1 L(f7, s)
for any o; see [GZ86, Cor. V.1.3]. We call ords—1L(f,s) the L-rank of A
in this case and abbreviate it as L-rk A. If the BSD rank conjecture holds
for A, then the L-rank of A is the same as the rank of A(Q) as an O-module.

Based on work of Gross—Zagier [GZ86] relating the canonical height of Heeg-
ner points to L9 (A/K, 1) for suitable imaginary quadratic fields K, Koly-
vagin [Kol88] (for modular elliptic curves) and Kolyvagin-Logachév [KL89|
(for modular abelian varieties in general) were able to show that the BSD
rank conjecture holds under the assumption that the L-rank is 0 or 1, that in
this case, III(A/Q) is finite (this is the only case where we know finiteness),
and that #I11(A/Q)an is a rational number.

The rational number #I1(A/Q)an can be computed when A is an elliptic
curve, and we show in this paper how to do that when A is a modular abelian
surface. To complete the verification of the strong BSD Conjecture for A, it
remains to determine #III(A/Q) and to check that the two numbers agree.

This involves showing that III(A/Q)[p] is trivial for all primes p ¢ S, where
S is an explicit finite set of primes, and then determining #I11(A/Q)[p*°]
for the finitely many p € S. When A is an elliptic curve, a suitable set S (or
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even an explicit annihilator of III(A/Q)) can be extracted from Kolyvagin’s
work and subsequent refinements; see below. We show in this paper how to
obtain a suitable set S when A is a modular abelian surface.

The remaining task is to determine III(A/Q)[p*°] for a given prime p. This
is always possible in theory (assuming that III(A/Q)[p°] is finite), since one
can compute the p™-Selmer group of A for n =1,2,..., which is defined as

Sel,n (A/Q) = ker (Hl(Q, Ap™) - DHYQ., A))

and sits in an exact sequence
0— A(Q)/p"A(Q) — Selyn(4/Q) — LI(A/Q)[p"] — 0.

Since we know A(Q), this gives us III(A/Q)[p"], and as soon as I[II(A/Q)[p"] =
I(A/Q)[p" ], we have determined II(A/Q)[p™] = I1(A4/Q)[p"] (and if
I(A/Q)[p] = 0, then III(A/Q)[p™] = 0 as well). For the computability
of the Selmer group in theory see [Sto12] for elliptic curves and [BPS16] in
general. In practice, there are fairly tight limits on p™, since the computation
requires the knowledge of the class and unit groups of number fields of degree
growing quickly with p™, for which no really efficient algorithms are available
so far.

If one has a conjecturally tight bound on #III1(A/Q)[p™], then another
approach is to try and get a lower bound that agrees with the upper bound. If
the upper bound is nontrivial, this involves showing the existence of nontrivial
elements of III(A/Q) in some way. One possibility for this is ‘visibility’,
which uses another related abelian variety B, for which one can construct
a nontrivial map B(Q) — HY(Q, A), whose image one can show to contain
nontrivial elements of II1(A/Q) under suitable conditions. This is used for
the example in Appendix A.

We now give a short overview of what has been done so far regarding the
verification of the strong BSD Conjecture in concrete cases.

1.3. Exact verification of strong BSD for elliptic curves. In the case
of elliptic curves, the various ingredients mentioned above have been worked
out, made explicit and been improved to an extent that it was possible to
verify the strong BSD conjecture for all elliptic curves E over Q of rank <1
and conductor N < 5000; see [GJPT09, Milll, MS13, CM12, LW16].

An explicit finite set S of primes such that HI(E/Q)[p] = 0 for p ¢ S can be
obtained using Kolyvagin’s work and refinements building on it [Jet08, Cha05].
The size of III(E/Q)[p*] for p € S can be obtained by several methods,
e.g., using Iwasawa theory and p-adic L-functions [SW13| or by performing
descents [Cre97, SS04, CFOT08, CFO*+09, CM12, MS13, CFO*15, Stol2,
Crel4, BPS16].

1.4. Numerical verification of strong BSD for higher-dimensional
abelian varieties. Compared to the case of elliptic curves, considerably
less has been done regarding the verification of the BSD conjectures for
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higher-dimensional abelian varieties A over Q. If A is not absolutely simple,
then A splits up to isogeny (and possibly after base-change to an algebraic
number field) as a product of abelian varieties of lower dimension. Since
the validity of strong BSD is invariant under isogenies [Tat95] and Weil
restriction [Mil72], this reduces the verification of strong BSD for A to cases
of lower dimension. We will therefore assume that A is absolutely simple in
the following.

In [FLST01], all factors in the BSD formula except for the order of the
Tate—Shafarevich group (only its 2-torsion is computed) and the analytic
order of Sha are determined exactly in the L-rank 0 cases and numerically to
high precision in the L-rank 1 cases for the Jacobian varieties of 29 genus 2
curves over Q such that the Jacobians are absolutely simple, of GLa-type
and have level N < 200. Their work also includes results on three curves
whose Jacobians are Weil restrictions of elliptic curves over Q(v/—3).

More recently, van Bommel [vB19] has done computations similar to those
in [FLST01] for various (in general non-modular) Jacobians of hyperelliptic
curves of genus < 5. He did not provably compute the regulator or the
torsion subgroup, which means that the approximate value of #III(A)an
that he computes may be off by a square rational factor. Van Bommel also
provides an algorithm for the computation of the real period, which corrects
the version described in [FLST01] in the case when some of the special fibers
of a minimal regular model of the curve have multiple components.

However, it was still an open problem to provably compute #I11(A/Q)an
as an exact rational number when A has positive rank and to determine
#III(A/Q). See for example William Stein’s blog post [Ste08] for the former.

We now verify the strong BSD Conjecture unconditionally and exactly for
all the curves in [FLST01] with absolutely simple Jacobian and all genus 2
curves in the LMFDB [LMFDB]| with absolutely simple modular Jacobian.

1.5. New general results in this paper. We note that, compared to
elliptic curves, a number of additional difficulties show up when trying to
verify strong BSD for higher-dimensional modular abelian varieties. By the
Modularity Theorem, every elliptic curve E over Q of conductor N is the
target of a nontrivial morphism Xy(N) — E. This makes it fairly easy to
compute Heegner points on E. Also, elliptic curves are given explicitly by
a Weierstrass equation, and a variety of algorithms are available for them.
There is no comparable explicit representation of a general (modular) abelian
variety of higher dimension. We can, however, work with curves X and their
Jacobians. In particular for hyperelliptic curves, a variety of algorithms exist.
However, in general there is only a dominant homomorphism from Jy(V)
to the Jacobian in question and no nontrivial morphism from Xy(N) to
the curve X. When there is such a morphism, the relevant computations
are much simpler; we have dealt with this case for surfaces first, and the
results are described in [KS22]. In the other cases, the required arguments
are much more subtle; for example, it is quite nontrivial to obtain a formula



8 TIMO KELLER AND MICHAEL STOLL

for the canonical height of a Heegner point on the Jacobian of X from the
Gross—Zagier formula.

In this paper, we overcome these difficulties and devise general methods
to verify strong BSD exactly for absolutely simple modular Jacobians J/Q
of L-rank 0 and 1 and apply them to several examples. We denote the curve
J is the Jacobian of by X. Many of our results and algorithms apply to any
dimension or at least to hyperelliptic Jacobians. We note that an abelian
variety (assumed to be absolutely simple) is automatically a Jacobian when
it is principally polarized and its dimension is 2 or 3.

More specifically, given such a Jacobian J and/or an attached newform f,
we do the following. (The numbers link to the corresponding sections.)

(2) We determine the (projective) images of the associated mod-p Galois
representations for all maximal ideals p of the endomorphism ring; in
particular, we determine which of them are reducible.

(3) We develop an efficient algorithm for the computation of Heegner points,
their canonical heights, and Heegner indices. This involves the computa-
tion of Petersson norms of newforms of weight 2. We also provide the
refined information of the Heegner index as a characteristic ideal of the
endomorphism ring.

(4) We derive explicit formulas for #I1(J/Q)an and #II(J/K )an (where
K is a Heegner field). When the L-rank is 1, this involves some fairly
nontrivial arguments.

(5) We give an explicit upper bound for the set of primes dividing #I11(.J/Q)
and for the primes dividing #III(J/K), where K is a Heegner field.

(6) We perform p-isogeny descents in some cases where the mod-p Galois
representation is reducible to get an upper bound on the p-Selmer group
and thus show that III(J/Q)[p] = 0.

(7) We provide a feasible algorithm for the computation of p-adic L-functions
in our setting.

(8) We provide an algorithm that, combining the above algorithms, verifies
strong BSD for the Jacobian J (absolutely simple and modular) of a
given genus 2 curve C of level N or returns at least a small finite set
of primes p for which HI(J/Q)[p>°] needs to be computed to finish the
verification.

We also improve van Bommel’s algorithm for the determination of the real
period so that it does not rely on on a gcd computation with real numbers;
see Lemma 3.1.7.

Our methods and algorithms generalize to RM abelian varieties over Q
of arbitrary dimension, provided one can compute Mordell-Weil groups and
canonical heights and one has an analogue of Algorithm 2.10.1. In joint work
in progress with Pip Goodman and John Voight, we are planning to treat
modular abelian varieties over totally real number fields.
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We then use the algorithms we developed to verify strong BSD exactly for
the first time for a number of absolutely simple abelian surfaces. The specific
examples are described below.

1.6. Examples. All computations were carried out with Magma [BCP97].
The code to reproduce our computations can be found at

https://github.com/TimoKellerMath/strongBSDgenus?2.

The README.md file contains short descriptions of the Magma files and which
sections in this paper they belong to.

Using the methods and algorithms developed in this paper, we verified
strong BSD completely for the following Jacobians of the following genus 2
curves over Q (whose Jacobians are modular and absolutely simple).

(a) The [LMFDB]| currently (as of 2023) lists exactly 97 genus 2 curves
with absolutely simple Jacobian of GLo-type and level < 1000. By their
completeness statement, this comprises all such examples with absolute
value of their discriminant at most 10° and ‘small’ coefficients. We
will refer to these as the LMFDB examples. Note that there are more
newforms of weight 2 with real quadratic coefficients of level < 1000
contained in the LMFDB; our algorithms would at least give an upper
bound on the size of the Tate—Shafarevich group of their associated
modular abelian variety given a Jacobian in their isogeny class. Some
of the examples mentioned below provide such a Jacobian for additional
newforms.

(b) The 28 ‘Hasegawa curves’ from [Has95| that have absolutely simple
Jacobian. These are all quotients of Xo(/N) by a subgroup of Atkin-
Lehner involutions. Because of this, these examples are easier to deal
with (compare Corollary 3.8.2, which shows that the computation of
Heegner points is simpler in this case), which is why we treated them
first, before extending the theory and algorithms to the general case.
See [KS22] for an overview of the results. Note that X,(161)/{w7,wa3)
is the only curve on this list whose Jacobian is not isogenous to the
Jacobian of one of the LMFDB examples. (We check this by comparing
the associated newforms.) Hence strong BSD for the other 27 Hasegawa
curves follows from isogeny invariance and the validity of strong BSD for
the LMFDB examples.

(c) The four ‘Wang curves’ from [FLST01] that are neither Hasegawa curves
nor have Jacobian isogenous to that of a curve in the LMFDB. They are
the curves labeled 65A, 1178, 125B and 175 in [FLST01].

(d) Sam Frengley’s example of a curve with N = 3200 and #111(J/Q) = 7°.

Note that there is some overlap between the first three sets. 21 of the
Hasegawa curves are in the LMFDB, as are two of the ‘Wang only’ curves
with absolutely simple Jacobian. In total, the LMFDB, Hasegawa, and Wang
examples comprise the Jacobians of 110 isomorphism classes of curves, whose
Jacobians fall into 95 distinct isogeny classes. Including the last example, we
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therefore have verified the strong BSD conjecture completely for 96 isogeny
classes of absolutely simple modular abelian surfaces.

1.7. Structure of the paper. We give an overview of the paper; more
details are given at the beginning of each section. In Section 2, we give
algorithms to determine whether the residual Galois representations attached
to f are irreducible or not. In Section 3, we compute (a multiple) of the
Heegner index, which is used in the following two sections: In Section 4, we
compute #II(J/Q)an € Q>0 exactly. In Section 5, we give a description
of a finite set S of prime ideals p such that III(J/Q)[p] = 0 for p ¢ S; this
strongly depends on the determination of the residual Galois representations
and the Heegner index. In Section 6, we perform isogeny descents to prove
II(J/Q)[p] = 0 for several p € S. In Section 7, we show how results from
Iwasawa theory and the computation of p-adic L-functions can be used
to prove an upper bound on #III(J/Q)[p*>]. In Appendix A, we prove
strong BSD for an example of Sam Frengley, where #1I1(.J/Q) = 72. In all
our other examples, #111(J/Q) € {1,2,4}. We also exhibit examples J/Q
for which p? | III(J/Q)an with p € {3,5,7} and prove the /-part strong BSD
for them except for ¢ € {2, p}, where we only get an upper bound. These
examples are obtained as quadratic twists J® of some of our main examples,
where K is a suitable Heegner field.

1.8. Terms and notation. We denote canonical isomorphisms by ~ and
arbitrary, not necessarily canonical isomorphisms by 2. We fix an embedding
Q — C once and for all.

We use boldface 7 to denote the area of the unit disk to avoid confusion
with our use of the letter m to denote an isogeny in most of the paper.

2. COMPUTATION OF THE RESIDUAL (GALOIS REPRESENTATIONS

The purpose of this section is to generalize several results on the image of
mod-p Galois representations of elliptic curves over Q (mainly from [Ser72]
and [Coj05]) to modular abelian varieties over Q of higher dimension.

Let A be an abelian variety of dimension ¢ > 1. Let O be an order
in a totally real number field F' of degree g over Q. Recall that A has
real multiplication by O over Q if Endg(A) = O, where Endg(A) denotes
the ring of Q-defined endomorphisms of A. Then A is of GLs-type in the
following sense. Let p be a non-zero prime ideal of O lying above a rational
prime p. We denote its finite residue field O/p by F, and call [F, : F,] the
degree degp of p; Fy is isomorphic to Facep. If p is regular, i.e., its local ring
is a discrete valuation ring, or equivalently, p does not divide the conductor

ideal f(Op/0) = {a € O :aOp C O} of O in O, then A}p"](Q) is free of
rank 2 over O/p™ for all n > 1.
We then obtain 2-dimensional Galois representations

ppr.at Gal(Q|Q) = Autopn (A[p"](Q)) = GL2(O/p") -
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In a similar way, we have 2g-dimensional Galois representations

ppr,at Gal(Q|Q) — Autygnz(AP"](Q)) = Gloy(Z/p"Z) .
Since the Galois action preserves the Weil pairing, the image of p, 4 lies in
the general symplectic group GSpy,(F;).

We define the p-adic Tate module TyA = l'LmnA[p"] (Q); it is free of
rank 2 over the completion O,. We also define V, A = F, ®o, T, A; this is a
2-dimensional vector space over Fy. There is also the standard p-adic Tate-
module T}, A, which is a free module of rank 2g over Z, and the associated
vector space VA = Q) ®z, TpA. We obtain the p-adic Galois representation

ppe.a: Gal(Q|Q) — Autp, (VyA) = GLo(F)
and the p-adic Galois representation

pyre.a: Gal(QIQ) — Autq, (Vp4) = GLay(Q,).

As before, the image of pp= 4 is contained in GSpy,(Qp).

If A is understood, we omit it from the notation and write p, etc.

We heavily exploit that we can work with 2-dimensional Galois represen-
tations instead of 2¢g-dimensional ones in the following. For example, there
is an easy classification of (maximal) subgroups of GLa(F}), whereas the
subgroups of GSpy,(F) are more complicated.

The goal of this section is to determine the image G of the mod-p Galois
representation

pp: Gal(Q|Q) — GLo,,(A[p](Q)) = GLa(Fy)

in the case when g = 2, so O is an order in a real quadratic number field. In
particular, we want to decide whether p, is irreducible as an Fy[Gal(Q|Q)]-
or F,[Gal(Q|Q)]-representation and whether its image in GL2(F}) is as large
as allowed by the extra endomorphisms coming from O.

We will state our results for general g if this is easily possible, but in some
cases we assume g = 2 to simplify the statements and algorithms.

Let f € S2(I'o(N)) be a newform, i.e., a normalized eigenform for the action
of the Hecke algebra Tz on the new subspace of S2(I'g(N)). The Fourier
coefficients of f generate an order Z[f] in a totally real number field Q(f). Let
It := Annt, (f) be the annihilator of f; then Tz/I; ~ Z[f], where the Hecke
operator T, is mapped to the Fourier coefficient a,(f). The Hecke algebra
also acts via Q-defined endomorphisms on Jy(N), and so we can define an
abelian variety Ay over Q as Ay := Jo(N)/Iy. Then dim Ay = [Q(f) : Q] and
Endq(Af) ~ Tz/I; ~ Z[f]. Acting by Gal(Q|Q) on the Fourier coefficients
of f, we obtain a Galois orbit of conjugate newforms f?, which has size
[Q(f) : Q]. More generally, if a: Z[f] < R is an embedding on Z[f] into R,
then f¢ denotes the newform with (real) coefficients a(a,(f)). The abelian
variety Ay only depends on the Galois orbit of f.

We give a short summary of the contents of this section. After recalling
basic results about modular abelian varieties and their Galois representations
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in Section 2.1, we determine the maximal possible image of p, in Section 2.3
and state the classification of its maximal subgroups in Section 2.4. This is
eventually used to show that p, has maximal image for all p outside an explicit
finite set by excluding the possibility that the image is contained in one of the
maximal subgroups. For fixed p, we give an algorithm that returns a set of
types of maximal subgroups that could contain the image of p, in Section 2.5.
In Section 2.6 we show how p, can be determined explicitly for a given prime
ideal p. We then give some criteria for when the image of the decomposition
group at p is contained in a Cartan subgroup in Section 2.7. Together with
some results on the image of inertia at primes £ # p, which we recall in
Section 2.8, this provides the input for an algorithm that determines a (small
and explicit) finite set S of prime ideals p such that pj is irreducible for all
p ¢ S in Section 2.9. To approach the goal of determining an analogous set
with respect to p, with maximal image, we first describe a method that allows
us to eliminate two further types of maximal subgroups (other than Borel
subgroups, which correspond to reducible representations) in Section 2.10.
To deal with maximal images, we need to exclude that the given newform f
has complex multiplication, so we provide an algorithm that checks that in
Section 2.11. We then derive an algorithm that computes a small explicit
finite set of prime ideals p such that p, has maximal image for all p not in
this set in Section 2.12. Finally, we provide a table giving the types of all
representations p, attached to our LMFDB examples.

2.1. Preliminaries. We begin by stating the correspondence between (abso-
lutely simple) abelian varieties with real multiplication over Q and weight-2
newforms for T'g(V).

Recall that L(A/Q, s) denotes the L-series of A and L(f, s) denotes the
L-series of f and that L(A/Q,s) is defined as

1
HAQ) = l;I det(1 — Frob, ' p== | Hi (A © Q, Q)r)’

where for each Euler factor at p one chooses a prime ¢ # p for the /-
adic cohomology group; this is well-defined because the Euler factors are
independent of ¢. The product converges for Re(s) > % to a holomorphic
function. The L-function associated to f =), a,q" with coefficients a,, € C
is

an 1
L = —_— =
(f’ S) Z ns ];[ 1— app*S + 6(p)plst’

n>1

where e(p) is 1 if p{ N and 0 otherwise. Since L(f, s) is the Mellin transform
of f and f is a cusp form, L(f, s) is holomorphic on the whole complex plane.

Theorem 2.1.1 (Characterization of modular abelian varieties over Q). Let
A/Q be an absolutely simple abelian variety. The following are equivalent.

(i) A has real multiplication over Q.
(ii) There is some N such that A is an isogeny quotient of Jo(N).
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(iii) There is some N and a newform f € S3(To(N)) such that
L4/Qs) = [ L),

a: Z[f]—-R

The number N in (iii) is uniquely determined; we call it the level N4 of A/Q.
The statement in (ii) holds for the same N and its multiples. If these
equivalences hold, then End% (A) :== Endq(A) ®z Q is isomorphic to Q(f)
and the conductor of A/Q equals NgimA, Furthermore, A is of GLa-type, i.e.,
the p-adic Tate modules V,A are free modules of rank 2 over the completion
of Q(f) at p; if p is a prime ideal of Q(f) above the rational prime p, then
VoA is a vector space of dimension 2 over the completion Q(f)p, a local field.

Proof. The equivalence of (ii) and (iii) is a well-known characterization of
modular abelian varieties following from the Eichler—Shimura relation and
Faltings’ Isogeny Theorem. The equivalence of (i) and (ii) can be found
as [Ser87, Thm. 5| as a consequence of Serre’s Modularity Conjecture for
absolutely simple 2-dimensional residual odd Galois representations (which
is formulated in the same paper); this conjecture is now a theorem [KW10].
See also |Rib04]. The remaining statements are well-known. O

We will use these equivalences tacitly. Note that one sometimes considers
more general modular abelian varieties, which are quotients of J;(/N) and
which can have complex multiplication.

However, when A is an absolutely simple abelian surface with CM, then A
cannot be of GLa-type over Q, as the following result shows. We thank Pip
Goodman for pointing it out to us.

Proposition 2.1.2. Let A/Q be an absolutely simple abelian surface with
CM. Then End%(A) = Q; in particular A/Q is not of GLa-type.

Proof. Let E = End%(A) = Endg(A) ®z Q be the geometric endomorphism
algebra of A. By [Shi98, Proposition 30|, the minimal field over which the
endomorphisms of A are defined is E*, the reflex field of E' (note that the
base field is just Q here). In particular, E*|Q is Galois, and the absolute
Galois group Gal(Q|Q) acts on End%(A) through Gal(E*|Q), so we obtain

an embedding
i: Gal(E*|Q) — Aut(End%(A)) .

We now consult Examples 8.4 (2) in loc. cit. In Example (C) there the reflex
field is not Galois, and in Example (A) the CM-type is not primitive, which
means that A is not absolutely simple. So both these cases cannot occur,
and by Example (B) it follows that E* = F; in particular, the map i above
is an isomorphism. This finally implies that

Endg(4) = Endg(A) % F/V = g/ = q. 0

Remark 2.1.3. In the situation of Theorem 2.1.1, A is isogenous to Ay
(by Faltings’ Isogeny Theorem) and therefore the Galois representations
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on V,A and on V,A; are isomorphic (similarly for V,A and V,A¢). When
A and/or f are clear from the context, we write ppec and ppe for these
representations, which depend only on the Galois orbit of f. The fact that
A and Ay are isogenous also implies that the semi-simplifications of p, o
and of ppf = ppa, are isomorphic when p is a regular prime of both
Z[f] ~ Endq(Ay) and Endq(A) (and similarly for p, 4 and pp, r).

Note that the canonical isomorphism Z[f] ~ Tz/I; ~ Endq(Ay) induces a
canonical identification of Q(f) with End%(A ), which in turn is isomorphic
to End% (A) via the isogeny between A and Ay. Fixing the isogeny, this
identifies O = Endq(A) with an order in the totally real number field Q(f).
If Z[f] is contained in O under this identification (e.g., when O is the maximal
order), then the Fourier coefficient a,, of f, which is the image of the Hecke
operator T, € Tz in Z[f], can be interpreted as an element of O, i.e., an
endomorphism of A. We make use of this to get the correct identifications of
o-isotypic components when dealing with the Gross—Zagier formula for the
height of a Heegner point in Section 3.7.

Write F' = Q(f) and Op for the maximal order of F', and let O C Of be
any order in F'. Recall the conductor ideal of O in Op,

f(Op/O) ={a € O:a0p C O};

it is the largest ideal of O that is also an ideal of Op. If A is an abelian
variety such that Endq(A) = O, then one can check that the isogenous
abelian variety A’ := A/A[f(Or/O)] has Endq(A’) = Op. So by working
with A’ instead of with A (or Af), we can assume that the endomorphism
ring is the maximal order.

Definition 2.1.4. Let p be a prime. We write
Xpr: Gal(QIQ) — Aut(uyn(Q)) = (Z/p"Z)"
for the mod-p™ cyclotomic character and
Yo Gal(QIQ) — Aut(py= (Q) = Z;
for the p-adic cyclotomic character.

Definition 2.1.5. If p is a maximal ideal in an order O of a number field,
we write p(p) for the characteristic of the finite field F, = O/p.

Theorem 2.1.6 (Characteristic polynomials of Frobenii of a modular Galois
representation). Let f € Sa2(Io(NV)) be a newform with Fourier coefficients ay
and coefficient field Q(f) a totally real field of degree g.

There is a strictly compatible system of p-adic Galois representations pye,
unramified outside Np(p). For all 1 Np(p) the characteristic polynomial
of ppee (Froby) equals

charpol(f, 6;T) := det(T — ppee (Froby)) = T? — a,T + ¢ € Z|[f][T]
(identifying a, € Z[f] with its image in Endg(Af) — Q(f)p). One has
det Oppe = Xp=
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for pt N. In particular, pye is odd. The determinant of the p-adic Galois
representation

ppe: Gal(Q|Q) — GLaoy(Zy)
18 Xf,oo,

Proof. This is well-known and shown for general weight & > 2 in [Del71| (and
for weight 2 only earlier by Shimura). O

If p is a regular prime of Z[f] (or O) not dividing N¢, then we write
charpol(f, ¢,p; T) for the characteristic polynomial of the image of Frob,
under py r (0r py a); it is the image of charpol(f,¢;T') in Fy[T].

Magma can compute the Fourier coefficients ay of a newform f and its
coefficient ring Z[f] efficiently. This will be crucial for computing the image
of py, because the only access to elements of the absolute Galois group of Q
we have is via Frobenius elements, and we can reconstruct the characteristic
polynomials of the Frobenii acting on A[p](Q), which uniquely determine
their semi-simple part. It also means that we do not have direct access to
the unipotent part of p,(Froby) via a, alone.

Let p be a prime. We fix an embedding of Q into Qp; this determines
a decomposition group D, = Gal(Q,|Q,) — Gal(Q|Q) and its inertia
subgroup I, = Gal(ép\Qgr). The inertia subgroup has a descending filtration
by its (normal) higher ramification subgroups, the first of which is the wild
ramification subgroup /', the unique (hence normal) Sylow pro-p subgroup
of I,. The quotient I,/ I is the tame inertia group IIE, which is canonically
isomorphic to the pro-cyclic p’-group

lim B> = 200(1) ~ [ Z(1),
Ng| #p

where the transition maps in the projective limit are the field norms and

Zy(1) is the Galois module lim /1 (Qy,). (See [Ser72, §1.3]. Note that Serre
uses I to denote I}, I; to denote I; and [ to denote Ip,.)

Lemma 2.1.7. The absolute Galois group of the residue field F,,, which is
canonically isomorphic to Z Frob,, acts on I]t) via conjugation. One has

Frob,, acFlrob];]L =aP forxe Ilt,.
Note that we have written I}, multiplicatively here.
Proof. See [NSWO08, Theorem 7.5.3]. O
See [Ser72, §1.7] for the following definition.
Definition 2.1.8. Let £ > 1. We define the character v of I; via the

canonical projection from the projective limit as
Yp: Iy = lim F* — F;k .
Ng|
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One has NFkaFp o = Y1 = Xp-

The k fundamental characters of level k are the powers @Z)],gn for 0 <n <k
(equivalently, 9y followed by the k automorphisms of F ).

2.2. General set-up and notation. In the following, f will always denote
a newform of weight 2, level N and trivial nebentypus. We let A/(IN) denote
the set of such newforms; NV (N, g) denotes the subset consisting of forms
whose Galois orbit has size g. The Fourier coefficients of f will be denoted a,
(or a,(f) if we want to make the dependence on f explicit); they generate
the coefficient ring Z[f], which is an order in a totally real number field
F = Q(f) (of degree g when f € N(N,g)).

Further, A will denote an abelian variety over Q that is Q-isogenous to Ay
(e.g., A= Afor A=A = A;/As[f(Or/Z[f])] as in Remark 2.1.3) and
has endomorphism ring O. Let p be a regular prime ideal of O; then p is a
maximal ideal of O; we write F, = O/p for its residue class field and p(p) for
the residue characteristic (i.e., the characteristic of Fy,). Then p, = py 4 is
the Galois representation on A[p]; its semi-simplification pj’ is independent
of the choice of A (as long as p is regular). Since we are mostly interested in
determining when p; is irreducible (or has maximal image), knowing Py 1s
usually enough, and so we suppress the dependency on A in the notation.
(Note that when p a prime ideal of Op that does not correspond to a regular
prime ideal of O, then p, 4+ will be reducible, since there is an isogeny A" — A
whose kernel has nontrivial intersection with A’[p].)

2.3. Determination of the maximal image. One of our goals is to show
that the image of py is as large as possible for all but finitely many prime
ideals p (with a small explicit set of possible exceptions). The first step is to
determine what this maximal image is. Then we will show that it suffices to
consider the image in PGLy(Fy).

To show that the projective image is maximal, we have to exclude the
possibility that it is contained in one of the maximal subgroups of the maximal
projective image, so we need a classification of these maximal subgroups.
This will be done in Section 2.4 below.

Definition 2.3.1. We write G, := p,(Gal(Q|Q)) € GLa(Fy) for the image
of pp. Theorem 2.1.6 implies that det(Gy) = F,;, since det op, is the mod-p
cyclotomic character. We set

Gy = {M € GLy(Fy) : det(M) € F ' };
then G, C ijnax.
Definition 2.3.2. We write P: GLy(F,) — PGLy(F}) for the canonical sur-
jection. For a subgroup G of GLa(Fy), we write PG for its image in PGLo(Fy).
We call PG the projective image of G. We also say that PG, is the projective

image of py. We write det: PGLy(Fy) — F;'/F;* for the homomorphism
induced by the determinant.
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We write PSLy(Fy) := PSLy(F}) for the quotient of SLy(Fy) by its cen-
ter {Io}. Note that this is not the same as the group of Fy-points of the
algebraic group PSLy. When p is odd, PSLy(F}) has index 2 in PGLy(F})
and is the kernel of det.

Lemma 2.3.3. We have that PG,'** = PGL2(Fy) when degp is odd and
PG = PSLy(Fy) when degp is even.

Proof. The image of Gg*** in PGLy(Fy) consists of the elements v € PGLa(Fy)
such that det(v) is in the image of F, . The latter is trivial if and only if deg p
is even (or p = 2, in which case PSLy(F,) = PGL2(Fy)). (See also [Rib76,
§5.2].) O

Proposition 2.3.4. Let G < G'™* be a subgroup such that det(G) = F)
and PG = PG, Then G = G"™.

Proof. First assume that #F, > 3 and let ZH denote the derived subgroup
of a group H. Since the center of GLy(Fy) is abelian, the assumption
PG = PG implies that G = G, = SLy(Fy), so SLa(Fy) < G. The

second equality follows from
SLa(Fy) = Z8SLa(Fy) < 2G,"™ < 9GLa(Fy) < SLa(Fy),

where the first equality follows from the fact that PSLy(F}) is non-solvable
simple (since non-abelian when #F, > 3) by [Lan02, Theorem 8.4|. Since
both groups map onto F under the determinant, we then have exact se-
quences

15 SLo(Fy) » G FS 51 and 1 SLy(Fy) = GRS FX 5 1,
so #G = #SLa(Fp)#F ;. = #G'™, whence the claim.
The two cases Fy = F3 or F3 can be checked by an easy computation. [J

2.4. Classification of the maximal subgroups of PG***. By Lemma 2.3.3,
PG = PGLy(Fy) when degp is odd, and PG"** = PSLy(Fy) when degp
is even. By Proposition 2.3.4, we know that G, = Gy** if and only if
PGy = PG, which is equivalent to PGy € I' for every maximal sub-
group I' of PG, In this section, we recall the classification of these

maximal subgroups.
We begin with the case degp even, where PG*®* = PSLy(Fy).

Theorem 2.4.1 (Maximal subgroups of PG'*, deg p even). Let p be a prime
and let g = p*¢ be an even power of p. The mazimal subgroups of PSLy(F,)
are as follows.
(i) (Borel) The stabilizer of a point of PL(Fy). It has order q(q—1)/2 when
q is odd and q(q — 1) when q is even.
(ii) (Sub-line) The stabilizer PGLo(F ) N PSLa(Fy) of a sub-line PY(Fy),
where q = q’(Z with a prime £ (in particular, € | 2e).
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(iii) (Dihedral) Stabilizers of a pair of points in PY(F,) (normalizer of a split
Cartan subgroup, order ¢ — 1 for ¢ > 13 odd and 2(q — 1) for q even) or
of a pair of Fy-conjugate points in Pl(qu) (normalizer of a nonsplit
Cartan subgroup, order q + 1 for ¢ # 7,9 odd and 2(q+ 1) for q even).

(iv) (Ezceptional) Subgroups isomorphic to Sy (when e =1 and 3 < p =
+3 mod 8), or As (when e =1 and p = £+3 mod 10).

Proof. See [Kin05, Corollary 2.2], taking into account that ¢ is an even power
of p. O

When g = 4, the sub-line and normalizer of a split Cartan case are in the
same conjugacy class.

When degp is odd, we have PGy*** = PGLy(Fy). Since det(Gy) = F)
contains elements of pr that are non-squares in this case, we also know that
PG, is not contained in PSLy(F)).

Theorem 2.4.2 (Maximal subgroups of PG, degp odd). Let p # 2 be
a prime and let ¢ = p*¢T' be an odd power of p. The mazimal subgroups
of PGLy(F) different from PSLo(Fy) are as follows.

(i) (Borel) The stabilizer of a point of PY(F,). It has order q(q — 1).

(ii) (Sub-line) The stabilizer PGLa(F ) of a sub-line P*(F ), where ¢ = 7’
with a prime € (in particular, | 2e +1).

(iii) (Dihedral) Stabilizers of a pair of points in P*(F,) (normalizer of a
split Cartan subgroup, order 2(q — 1), when g > 5) or of a pair of F,-
conjugate points in Pl(qu) (normalizer of a nonsplit Cartan subgroup,
order 2(¢+1)).

(iv) (Exceptional) Subgroups isomorphic to Sy (when e =0 and 3 < p =
+3 mod 8), and if ¢ = 3, Ay.

Proof. See [Kin05, Corollary 2.3], which excludes ¢ = 3. For ¢ = 3, Magma
computes that PGLy(F3) = Sy has 3 maximal subgroups, Ss, D4, A4, which
correspond to the Borel, normalizer of nonsplit Cartan, and exceptional
maximal subgroup case, respectively. O

Definition 2.4.3. We say that p, or G, is Borel, sub-line, dihedral, or
exceptional when PGy is contained in a maximal subgroup of PG"** of the
corresponding type. In the dihedral case, we distinguish between split and
nonsplit, according to the Cartan subgroup involved. We say that p, or G
is reducible or irreducible, if the action of G}, on Fg is, and we say that it is
mazimal, if Gy = G***.

The action of Gy, is reducible if and only if py, is Borel. In the sub-line case,
the invariant sub-line can be the image of a nontrivial invariant subspace
of A[p] considered as an Fp-vector space. In this case (if p is not also Borel),
pp is irreducible as a 2-dimensional Fy-representation, but reducible as a
2(deg p)-dimensional Fp-representation. See Section 2.10 below for a more
detailed discussion.
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2.5. Irreducibility and maximality criteria for fixed p. In this section
we collect some criteria that allow us to verify that p, is irreducible or
maximal for a given prime ideal p, using information from the characteristic
polynomials of p,(Froby) for £ { Np. Recall from Theorem 2.1.6 that the
characteristic polynomial of p,(Froby) has the form

T2 —aT+7,
where x — Z denotes the reduction homomorphism Z[f] — F,.
We define some invariants associated to elements of PGLa(F}); see [Ser72,
§2|. For F a finite field of odd characteristic, we define the Legendre symbol
for a € F as usual:
0 ifa=0,
a

(*): 1 if a = b? for some b € FX,
—1 otherwise.

Lemma 2.5.1. Let F be a finite field.

(1) The function

Tr(M)?

det (M)

descends to a function u: PGLy(F) — F.
(2) Assume that F has characteristic p # 2. The function
Tr(M)? — 4det(M)>

F

GLy(F) - F, M+~

GLy(F) = {0,1, -1}, M+ (
descends to A: PGLo(F) — {0,1,—1}.

Proof. Since Tr? and det are both homogeneous of degree 2 and det (M) # 0,
the existence of u follows. Similarly, Tr(M)? — 4det(M) is well-defined
up to multiplication with a non-zero square, so the Legendre symbol is
well-defined. O

We now assume that the characteristic of F is odd.
If u(g) # 0 (equivalently, Tr(M) # 0, where M is a lift of g to GLa(F)),

then A(g) = (%@_4)). If u(g) = 0, then A(g) = (M) # 0, so

A(g) = 0 is equivalent to u(g) = 4.

We note that A(g) gives the square class of the discriminant of the charac-
teristic polynomial of any lift M of g to GLa(F). This implies that A(g) # 0
if and only if M has distinct eigenvalues (and hence is semi-simple). The
eigenvalues are in F when A(g) = 1 and in the quadratic extension of F
and conjugate when A(g) = —1. It follows that the elements of any Borel
subgroup of PGLy(F) have A # —1. We therefore obtain the following.

Corollary 2.5.2. Let p be a prime ideal of odd residue characteristic. If
A(g) = —1 for some g € PGy, then py is irreducible.

Proof. If pp were reducible, then PGy, would be contained in a Borel subgroup,
and so A(PGy) C {0, 1}, contradicting the assumption. O
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This gives a method to prove the irreducibility of p, by computing

a2 — 46)
FP

for a number of primes ¢ Np(p). If we obtain the value —1 for one such /¢,
this shows that p, is irreducible.

A(Pp,(Froby)) = (

We can use the invariant u(g) to obtain information on the order of g.

(See [Ser72, §2.61ii.)

Proposition 2.5.3. Let F be a a finite field of characteristic p and let
g € PGLy(F).

(1) g is unipotent <= u(g) =4 <= A(g) =0.

(2) If p#2: ord(g) =2 <= u(g) =0.

(3) If p#3: ord(g) =3 <= u(g) =1

(4) If p#2: ord(g) =4 <= u(g) = 2.

(5) If p#5: ord(g) =5 <= u(g)? —3u(g) +1=0.

Proof. Let ¢ = PM for some M € GLy(F). If A(g) # 0 (equivalently,
u(g) # 4), then M is semi-simple by the discussion above, and so, up to
scaling, we can diagonalize M over F as M ~ diag(1,(), where ( is some
root of unity of order ord(g). Then u(g) = (1 +¢)?/¢=¢+2+ ¢ Two
values of u agree if and only if the corresponding values of ( are either
equal or inverses of each other. Claim (1) follows from the discussion above,
and the others follow by observing that the condition on p ensures that
the corresponding u(g) is not equal to 4 and by matching roots of unity ¢
withu: (= -1 <= u=0,01d({) =3 <= (+ (1 =-1 = u=1,
ord(() =4 <= (+('=0 <= u =2, and the two values of ¢ + 2+ ¢!
for a fifth root of unity ¢ are the roots of u? — 3u + 1. U

We can use this to show that p, is not exceptional, since the elements of Sy
have order at most 4 and the elements of As have order 5 or at most 3. So if
we can find an element g € PG, of order at least 5, then PGy, € Sy, and if
we can find an element of order 4 or at least 6, then PG}, Z As.

We now want to rule out the other possible maximal subgroups.

If py is dihedral, then PG, is contained in the normalizer N(C') either of
a split or of a nonsplit Cartan subgroup C. The elements of N(C) \ C have
order 2, hence u = 0. If C is split, then the nontrivial elements of C' have
A = 1; if C is nonsplit, its nontrivial elements have A = —1. So if we find
elements in PG}, with A =1 and v # 0 and also elements with A = —1 and
u # 0, then PG}, cannot be dihedral.

For the sub-line case, we restrict to degp < 2. If py is sub-line, we must
then have degp = 2, and PG, C PGL2(F)) (up to conjugation in PGLy(Fy)).
Since clearly u(g) € F, for each element g € PGLy(F,) C PSLy(F,), we
can exclude the sub-line case when we find an element g € PG}, such that
u(g) € Fp \ F},. It is also the case that the discriminant of the characteristic
polynomial of any element is in F;, (up to squares in F,’) and therefore a
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square in Fy, so that A € {0,1}. So, similar to the Borel case, this case can
also be ruled out as soon as we find an element with A = —1.

Assuming that we already know that the image is not exceptional, we can
therefore prove that it is maximal by considering primes ¢ { Np, computing

a% —4€>

A(l) == A(Pp, (Froby)) = ( E;

until we have found one ¢ such that A(¢) = —1 and p 1 a; and another ¢ such
that A(¢) =1 and p 1 as. (Recall that u(Pp,(Froby)) #0 <= p{ay).

We obtain the following algorithm that returns a set of possible types of
subgroups of PG that can contain PGy. If this set is empty, then py has
maximal image.

We use the symbols S4 and As to denote subgroups isomorphic to the
respective groups, R (“reducible”) for a Borel subgroup, L for a sub-line
stabilizer, and Ng and N, for the normalizers of a split or nonsplit Cartan
subgroup.

Algorithm 2.5.4.

INPUT: A newform f € N(N,2). A prime ideal p of the maximal order O
of Z[f]. A bound B.

OuTpUT: A subset of {R, L, Ny, Nys, S4, A5} such that if a type is not in the
set, then PGy, is not contained in a maximal subgroup of PG"** of this type.

1. [Initialize| Set S := {R, L, Ng, Nys, S4, As}. Set p := p(p).
2. [Degree 1| If degp = 1:
a. Remove L and As from S.
b. If p € {2,3}, then remove Ny and Sy from S.
3. [Degree 2| If degp = 2:
a. If p =2, then remove Ny, Sy and As from S.
b. If p = 3, then remove Ny, N, and Sy from S.
c. If p> 5 and p? { N, then remove N,,s from S.
d. If p #Z +3 mod 10, then remove As from S.
4. [Sy possible?| If p # £3 mod 8, then remove Sy from S.
5. |Loop over primes| For each prime ¢ < B such that ¢ { Np:
a. Compute the image u(f) of a?/¢ in Fy.

a?—4¢

If p # 2, then compute A(¢) := ( pr >
If u(?) ¢ {0,1,2,4}, then remove Sy from S.
If u(¢) ¢ {0,1,4} and u(€)? — 3u(f) + 1 # 0, then remove As from S.
If degp =2 and u(¢) ¢ F,, then remove L from S.
If p=2, degp =1 and u(¢) = 1, then remove R from S.
If p =2 and degp = 2, then remove R from S.
If in addition u(¢) = 1, then remove N, from S.
h. If p # 2 and A(¢) = —1, then remove R and L from S.

If in addition u(¢) # 0, then remove N; from S.
i If p#2, A(f) =1 and u(f) # 0, then remove N, from S.

R -0 &0 O
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j. If S =0, then return (.
6. Return S.

The correctness of the algorithm follows from the classification results in
Section 2.4 and the discussion in this section. The fact that N, can be
excluded when degp = 2 in Step 3c follows from Corollary 2.7.4 below.

If the image is indeed maximal, then PGy = PG contains elements
with u # 0 and A =1, with v # 0 and A = —1, of order > 6 (when p > 5)
and of order 4. Chebotarév’s density theorem then guarantees that suitable
primes ¢ exist to rule out all the possible types. Using an effective version
of the density theorem would give an explicit bound B for the primes /
that have to be considered in the algorithm to be able to decide whether p,
has maximal image. This bound will be too large to be useful in practice,
however.

2.6. Explicit computation. When Algorithm 2.5.4 returns a non-empty
set of types, we can try to determine the image explicitly as follows. We
assume that we have given a curve X of genus 2 over Q whose Jacobian J
is isogenous to Ay; we will determine the image of p;, (which has the same
semi-simplification as p, r), assuming that p is a regular prime of Endg(J).

We compute (using Magma, say) the big period matrix associated to J,
which allows us to write J(C) = C?/A for some (numerically) explicit
lattice A. We can also determine the action of End(.J) on C? and so we can
approximate numerically the points in J(C)[p]. We represent these points
by (numerical) divisors on X, which we then recognize as divisors supported
in algebraic points (this will work when the precision is sufficiently large).
We then verify that the algebraic points on J we obtain are indeed in J[p].
Knowing the points explicitly as algebraic points allows us to determine the
Galois action.

Since Magma can easily determine the torsion subgroup of J(Q) using
the algorithm described in [St0o99, § 11|, we can at least deduce that the
representation associated to some prime ideal p with p(p) = p is reducible if
J(Q)[p] is nontrivial.

Examples 2.6.1. We give two examples for such an explicit computation.
(1) A = Jy(125)". The representation Py is reducible. A[v/5] has con-
stituents p$? and p$3. In this case, 51 [Q(A[V5]) : Q], so
A[VE] = uf? @ .

(2) A = Jo(147)(wswa9) " There is a prime p | 7 in End(A) such that p, is
reducible. We find that its irreducible constituents are u?g and ,u§®4. As

[Q(A[p]) : Q] = 7+ (7 — 1) and A[7)(Q(v=T7)) = A[7)(Q(15*)) = 0, one

has a nonsplit short exact sequence of Galois modules

0— udt — Alp] —» u¥3 = 0.
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2.7. The image of inertia at p. Our next goal will be to prove that p, is
irreducible (or even maximal) for all but finitely many p, with a small explicit
set of possible exceptions. To this end, we need to study the representations pj
more carefully, so that we can extract some uniform statements. We begin
by considering the action of the inertia group at the prime p. Recall the
definitions and the notations Ip, I)), IIE from Section 2.1. Also recall the
fundamental characters ¢ from Definition 2.1.8.

We now consider py|1,, where p = p(p) is the residue characteristic of p.
We have the following result.

Theorem 2.7.1. Assume p*>{ N. Exactly one of the following two statements
18 true.

(i) pplz, has, up to conjugation, the form

Xp X
0 X},_”
for some n € {0, 1}.

(ii) After extending to the quadratic extension of Fy when degp is odd, pylr,
has, up to conjugation, the form

Py 0
(% )

Proof. By [Ser87, Prop. 1], the claim is true up to the exponents of the
characters. (Note that according to loc. cit., fundamental characters of level
> 2 cannot occur.) By [Ray74, Cor. 3.4.4], as extended via [LV14, Lemma 4.9|
to the semistable case, the characters must be among Xg and X}) in the first

case, and among ), 3, b and w§+1 in the second case. The condition that

detopy, = xp = Q,Z)ngl, together with the fact that the characters are conjugate
in the second case, then fixes the exponents. See also [Lom16, Thm. 3.6]. O

Definition 2.7.2. In case (i), we say that py|;, has level I, and in case (ii),
ppl1, has level 2.

Corollary 2.7.3. Assume p* { N. When py|1, has level 1, then Ppy(Ip)
contains a cyclic subgroup of order p — 1 of a split Cartan subgroup. In the
case of level 2, Ppy(I,) is cyclic of order p+ 1.

Proof. This follows immediately from Theorem 2.7.1. ([l

Corollary 2.7.4. If degp is even and p > 3 with p> { N, then PG, cannot
be contained in the normalizer of a nonsplit Cartan subgroup.

Proof. By Corollary 2.7.3, PGy contains elements of order > p—1 > 2. Since
degp is even, no quadratic extension is necessary in Theorem 2.7.1 in the
level 2 case, so in all cases, we find elements of order > 2 in a split Cartan
subgroup. Since such elements lie in a unique Cartan subgroup (which is the
centralizer of the element) and the normalizer of a nonsplit Cartan subgroup
contains only one Cartan subgroup, the claim follows. O
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Lemma 2.7.5. Let x: Gal(Qp|Qp) — F* be a one-dimensional character of
order prime to p. Then x|z, is a power of xp.

Proof. Since x has order prime to p and [} is a pro-p group, its image
under x must be trivial, so x is at most tamely ramified. Since Q" (p;) is the
maximal abelian tamely ramified extension of QJF, x|;, must factor through
I, — I]g — F,;, which implies the claim. O

Corollary 2.7.6. Let p be a regular prime of Z[f] of residue characteristic p
and assume that py is reducible and p* ¥ N. Then there is a character &
of Gal(Q|Q) with values in Fy' and conductor d such that d* | N and (with
respect to a suitable basis)

exn *
Py = ( Op €—1X11)—n>

Proof. The semi-simplification of p, splits as a direct sum m; ® 7 of one-
dimensional characters 71, m2: Gal(Q|Q) — Fy'. By Lemma 2.7.5, ;|7 = xj

withn =0 orn=1.

for some n, and so 3| I, = X;lfn- We can therefore write 71 = Exg with some
character e that is unramified at p. Since x;, = det op, = 1 - g, it follows
that mo = &tflxllf". We then have

d? = cond(¢) cond(¢ 1) | cond(py) | N .
Since p? { N, we have n € {0,1} by Theorem 2.7.1. O

Remark 2.7.7. One can use this to refine Algorithm 2.5.4 by potentially
eliminating type R in more cases. For each prime ¢ t Np, compare the
reduction of a; mod p with all elements of the form e(£)f" + ¢(£) =141~ for
the finitely many possible characters € and n € {0,1}, and let Sy be the set
of compatible pairs (¢,n). Then one takes the intersection of the sets Sy for
several ¢. If the intersection is empty, then p, must be irreducible.

Examples 2.7.8. We give two examples that illustrate Corollary 2.7.6. In
order to determine whether G, has a nontrivial unipotent part, we determine

explicit generators of A[p](Q), which allows us to find [Q(A[p]) : Q] (and, in

fact, to determine the Galois action); see Section 2.6.

(1) A= Jy(39)"13. There is exactly one prime p | 7 such that p, is reducible.
Since 39 is squarefree, p;* = 1@ x7. We find that A[p|(Q) = Z/7Z, so
we have a short exact sequence

0—Z/TZ — Alp] — p7 — 0,

which turns out to be nonsplit, since [Q(A[p]) : Q] is divisible by 7.

(2) A = Jo(87)*>. The representation p,, /= is reducible. Similarly as in
Example (1), the constituents are Z/5Z and ys5. Since A[v/5](Q) = Z/5Z,
we have the exact sequence

0—Z/5Z — Alp] = pus — 0,
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which is again nonsplit.

We now consider the case that p,(Gal(Q,|Q,)) is contained in the nor-
malizer of a Cartan subgroup of GLa(Fy).

Lemma 2.7.9. Assume p is a reqular prime ideal lying above a rational
prime p > 3 such that p* t N and that p,(Gal(Q,|Qp)) is contained in the
normalizer N(C) of a Cartan subgroup C of GLa(Fy). Then the following
are equivalent:

(i) pplz, has level 1.

(ii) pp(Gal(Q,lQp)) € C.
(ili) Ppy(Gal(Q,|Qp)) € PC has order p—1 and C is split.

Proof. Clearly, (iii) implies (ii) (since P~}(PC) = C). If (ii) holds, then
pp(Gal(Q,|Qy)) is abelian of order prime to p, so Lemma 2.7.5 implies that
ppl1, has level 1.

To show that (i) implies (iii), first note that the image of the wild inertia
group I}' must be trivial since I}/ is a pro-p group and the order of N(C)
is prime to p (since p > 2). So py 1, factors through Ilt), which is pro-
cyclic, and hence py(1,) is a cyclic group, which has order p — 1, since py|y,
has level 1 and p? t N. Let Frob, be any lift of the p-Frobenius on F,
to Gal(Q,|Q,). Lemma 2.1.7 implies that conjugating by p,(Frob,) has the
effect of taking pth powers on py(Ip,). Since p = 1 mod #py(Ip), this action
is trivial, so the image of Frob, commutes with the image of I,,. This shows
that pp(Gal(Q,|Q,)) is abelian. Since #p,(Gal(Q,|Qp)) contains elements
of order p — 1 > 3, this implies that p,(Gal(Q,|Qp)) < C. (This is where
we use that p,(Gal(Q,|Qp)) < N(C): all the abelian subgroups of N(C)
containing elements of order > 3 are contained in C.) On the other hand, it
follows from the discussion above that Pp,(I,) has order p —1; both together
imply statement (iii). O

Corollary 2.7.10. Assume p is a reqular prime ideal lying above a rational
prime p > 3 such that p*> ¥ N and that Gy is contained in a Cartan subgroup C'.
Then C' s split; in particular, p, is reducible.

Proof. The assumption implies that p,(Gal(Q,|Qp)) € Gy € C. The claim
then follows from the implication “(ii) = (iii)” in Lemma 2.7.9. O

Corollary 2.7.11. Assume p > 3 and p> t N. If PG, is dihedral, then
Pp,(1p) is cyclic and contained in the corresponding Cartan subgroup C.

Proof. The first statement follows as in the proof of Lemma 2.7.9. The second
statement follows from the classification of py(I,). O

2.8. The image of inertia at a prime ¢ # p. We now consider the image
pp(I¢) of the inertia subgroup at a prime £ # p.
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Lemma 2.8.1. Let p be a regular prime ideal of Z[f] of residue characteris-
tic p and let £ # p be a prime. If €21 N, then the image py(Iy) of the inertia
subgroup at £ consists of unipotent elements.

Proof. If £ 1 N, then p, is unramified at ¢ and so the image of inertia is
trivial. Otherwise, since the prime-to-p part of the Artin conductor of p,
divides the prime-to-p part of N, it follows from v,(N) = 1 that the image
of wild inertia is trivial and that the image of inertia has a one-dimensional
fixed subspace; see [Ser87, p. 181]. So

1 =
pp|IeN 0 Xp :

Since x; is unramified at ¢, this implies that p,(I;) is unipotent. (See
also [Rib97, Section 2|; note that the definition of the conductor is purely
local.) O

Corollary 2.8.2. Let p be a regular prime ideal of Z[f] of residue character-
istic p and assume that Gy is contained in the normalizer N(C) of a Cartan
subgroup C. Then py is unramified at all primes £ # p such that 2N,

Proof. This follows from Lemma 2.8.1, since N(C) contains no nontrivial
unipotent elements. O

Corollary 2.8.3. Let p be a reqular prime ideal of Z[f] of residue charac-
teristic p > 3 and assume that Gy is contained in the normalizer N(C) of
a Cartan subgroup C. Since C has indezx 2 in N(C), we obtain a quadratic
character (which can be trivial)

gp: Gal(Q|Q) B N(C) = N(C)/C ~ {#1};

let d be its conductor. Then the odd part of d* divides N. Moreover, if 41 N,
then d* | N.

Proof. Note that the odd part of d is squarefree. Let £ # p be an odd prime.
If /2§ N, then p, is unramified at ¢ by Corollary 2.8.2, and so £ { d. This
shows the claim except for powers of 2 or p. If p> ¥ N, then p,(I,) C C
by Corollary 2.7.11 (here we use p > 3) and so ¢, is unramified at p. This
takes care of the power of p. If 41 N, Corollary 2.8.2 applies as well to show
that 2 1 d. This completes the proof. O

Question 2.8.4. Can the stronger statement be extended to the case 4 | N7

Corollary 2.8.5. Let p > 2 be prime and let K|Q be an imaginary quadratic
extension such that N and Dk are coprime and K is not equal to Q(v/—1),

Q(V-2), or Q(v/=3). If py is irreducible, then the restriction py|c, is still
wrreducible.

Proof. Suppose that p, is irreducible, but py|g, is reducible. Then the
quadratic character on Gq associated to K|Q induces a nontrivial quadratic
character € on the image of pp: G fixes a one-dimensional subspace V,
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and ¢ is given by the action on {V,p,(c)V} for 0 € Gq \ Gk. Since p,
is ramified only at primes dividing Np and K|Q is ramified exactly at the
primes dividing D, it follows from the condition that N and D are coprime
that the conductor |D| of € is a power of p. Since D # —3,—4,—8, we
must have p > 3 and D = —p.

Since pj fixes an unordered pair of complementary one-dimensional sub-
spaces, but does not fix the two subspaces individually, it must be dihedral
(compare Theorems 2.4.1 and 2.4.2). Then ¢ is the character as in Corol-
lary 2.8.3, so Corollary 2.8.3 implies that |Dg|? = p? | N (here we use that
p > 3), contradicting again the coprimality of N and Dg-. O

2.9. Explicit irreducibility for almost all p. It is known that p, is
irreducible for all but finitely many p. Lombardo [Lom16, Thm. 1.4] gives
an explicit (but very large) bound for the reducible primes (actually, for the
primes such that the image is not maximal). What we need, however, is to
determine as exactly as possible the finite set of primes p such that p, is
reducible in each concrete case.

In view of Corollary 2.7.6, we make the following definition.

Definition 2.9.1. We write dyax for the largest positive integer d such that
d?| N.

We then obtain the following criterion. (Compare [Die02, §3.1|, where
similar criteria are used to show that the mod-p Galois representations
associated to an abelian surface with minimal endomorphism ring are maximal
for almost all primes p.)

Proposition 2.9.2. Let £ t+ N be a prime and let m({) be the order of £
in (Z/dmaxZ)™. Let p be a regular prime of Z[f] of residue characteristic p.
If p>{ N and

pte-resp(T? — a)T + ¢, T™Y —1) € Z[f],
then py s irreducible.

We note that when dp,ax = 1 (which is the case, e.g., when N is squarefree)
or £ =1 mod dyax, the resultant simplifies to £ 4+ 1 — ay.

Proof. Let us prove the contrapositive. Thus suppose that p, is reducible.
Let € be the character in Corollary 2.7.6. It can be considered as a Dirichlet
character of conductor d | diax with values in Fy'. Since p? 1 N, we have
n =0 or n = 1 in Corollary 2.7.6, and by symmetry (and since what we
do depends only on the semi-simplification of py), we can assume n = 0. If
¢ =p, then p | ¢, and we are done. Hence suppose ¢ { Np. Then p,(Froby) is
well-defined and has e(¢) as an eigenvalue, which is also a root of unity of
order dividing m(£). So the characteristic polynomial 72 — a,T + £ € Fy[T
of pp(Froby) has at least one root in common with T —1. This is equivalent
to
resT(T2 —a,T + lz Tm(f) - 1) =0.
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Since the resultant is compatible with ring homomorphisms, this implies that
p divides the resultant in the statement. O

Remark 2.9.3. One can alternatively consider the condition
p | £ - resy (charpol(pyee (Froby))(T), 7™ — 1) € Z

with the same m(¢) as above. Using the fact that the resultant is the product
of all differences of roots of the first and of the second polynomial, together
with the Weil conjectures for the characteristic polynomial of Frob, on T, A,
we see that the resultant above is an integer R satisfying

0< (VI—1)29"0 < R < (VI +1)2m)

In particular, it is non-zero, so taking just one £t N gives a relatively small
bound for the set of primes p such that p, is reducible for some p | p. In
practice, one takes several £ and uses the gcd of the resultants to obtain
reasonably sharp bounds.

This leads to the following algorithm. Recall the notation p(p) for the
residue characteristic of the prime ideal p.

Algorithm 2.9.4.

INPUT: A newform f € NV (N,2). A bound B.

OuTpPUT: A finite set S of primes of the maximal order O of Z[f] such that
pp is irreducible for all p € S, or “failure”.

1. [Maximal conductor] Compute dpyax = leNpL”P(N)/QJ.
2. |Initialization| Let I := (0) as an ideal of O.
3. [Loop over primes| For all primes ¢ < B such that £t N:
a. Compute the order m(¢) of £ in (Z/dmaxZ)*.
b. Set I:= 1+ (-resp(T? — a,T + £, 7™ — 1)),
4. [Result] If I = (0), then output “failure”, else output {p : p | I or p(p)? | N}.

We can then use Algorithm 2.5.4 on the regular odd primes in S to try to
show that p; is irreducible even though Algorithm 2.9.4 was unable to prove
that. One can also use the idea from Remark 2.7.7.

Remark 2.9.5. If we take B sufficiently large in Algorithm 2.9.4, then by the
Chebotarév density theorem, the set S that the algorithm returns will contain
only the prime ideals p such that p(p)? | N or that the image of p, consists
of elements with one eigenvalue in the image of a character of conductor
dividing dp.x. This is compatible with the image being contained in the
normalizer of a split Cartan subgroup (but not in the Cartan subgroup itself).

Ezample 2.9.6. Let A = Jy(35)"7 be the Jacobian of the modular curve
quotient X¢(35)/(w7), where w7 denotes the Atkin—Lehner involution. A
corresponds to the Galois orbit of size 2 of newforms of level 35, weight 2 and
trivial nebentypus. Let f be one of these two newforms. Then Z[f] is the
maximal order of Q(v/17). Since the level N = 35 is squarefree, dpayx = 1.
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Let 8 = (1 ++/17)/2 be a generator of Z[f]. We then have ag = —3 (for

one of the two conjugate newforms), so the resultant is
resp(T% 4+ BT +2,T —1) =3+ 5,

which is an element of norm 23. This shows that p, is irreducible for all
prime ideals p with odd residue characteristic. We also have as = § — 1 and
the corresponding resultant is

resp(T? — (B—1)T+3,T—-1)=5-73,

whose norm is 2% and which is not divisible by 2, so it generates a power of
one of the two prime ideals above 2 in Z[f]; explicitly,

5-p)=(B+1)"=p"
Write (2) = pp’. Then we can deduce that py is irreducible.
Magma computes that A(Q)iors = Z/16Z. This shows that p, must be
reducible (and that it is nontrivial, since A[p](Q) = Z/2Z and not (Z/2Z)?).

Ezample 2.9.7. We now consider A = Jp(125)", which corresponds to a
Galois orbit of newforms with coefficient ring the maximal order of Q(+/5).
Let a = (1 ++/5)/2. Then we can pick one of the newforms f such that
az = —a and a3 = a — 2. Here dpax = 5 and so m(2) = m(3) = 4. We find
that

ro :=resp(T? + ol +2,T* — 1) =15+ 5a and

r3 :=resp(T? — (a — 2)T +3,T* — 1) = 90 — 15
The ideal of Z[f] generated by 2ro and 3r3 has norm 52. So the algorithm
shows that py is irreducible for all primes p # (v/5). An explicit computation
shows that Py I8 reducible; see Example 2.6.1, (1).

2.10. Excluding the sub-line and exceptional cases for almost all p.
In the following, we require that the coefficient field of the newform is of
degree 2, and so dim A = 2 as well.

Our next goal will be to show that p, has maximal image for all p outside
a small explicit finite set. Starting from the result of the previous subsection,
it remains to show that for all but a few explicit p, PG, is not contained in
the stabilizer of a sub-line (when degp = 2), in a maximal subgroup of type
Sy or As, or in the normalizer of a Cartan subgroup.

We begin with the sub-line case and assume that p, is irreducible and
p(p) is odd. In this case, Gy C P71(PGLy(F,)) N G, which is a group
containing GLa(F,) with index 2. More precisely, let a € Fy' \ F)\ be such
that o € F); then the group is the union of GLy(F,) and aGLy(F,). So
G| stabilizes the union of a 2-dimensional Fj-subspace U (that is not a 1-
dimensional Fp-subspace) of A[p] and aU. If G, C GLa(F,) (for some choice
of Fy-basis of A[p]), then these two F)-subspaces are fixed individually, and so
pp is the direct sum of two copies of a 2-dimensional Gal(Q|Q)-representation
over F,,; in particular, p, is reducible. Conversely, if p, is reducible (but p,
is not), then PGy, must be contained in the stabilizer of the sub-line that is
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the image of a 2-dimensional F-subspace fixed by Gy. So, by showing that
pp is irreducible and PGy, is not contained in the stabilizer of a sub-line, we
also show that A has no nontrivial isogenies of degree a power of p.

In any case, we know from the discussion in Section 2.5 that the element
u(Ppy(Froby)) = a2 /¢ € Fy must be in F,, for all £ Np if PG;J is contained
in the stabilizer of a sub-line. This is equivalent to p | ae — ae , where o
denotes the nontrivial automorphism of Z[f]. Since in our setting, there
always are p of degree 2 such that PGy does not consist entirely of elements g
such that u( ) € F), there will be a set of primes ¢ { N of positive density
such that af =+ a"2. (If f has an inner twist by a quadratic character,
then ay = +af for almost all ¢. But in this case A; is isogenous to the
WEeil restriction of an elliptic curve over the quadratic field associated to the
character and so A f is not absolutely simple.) We can replace a? — ag2 by
(a2 — ag?)/+/disc(Z[f]) € Z (note that the prime divisors of disc(Z[f]) are
always ramified, so the correbpondmg primes of Z[f] have degree 1). This
leads to the following algorithm.

Algorithm 2.10.1.
INPUT: A newform f € N(N,2). A bound B.
OuTPUT: A finite set S of prime ideals of the maximal order O of Z[f] such
that PG is not contained in the stabilizer of a sub-line for all p ¢ S, or
“failure”.
1. [Initialize] Set R :=0 € Z.
2. [Loop over primes| For all primes ({<B such that (1 N:
a. Set R := gcd(R, (- (a2 — a3?)//disc(Z
b. If R =1, then exit the loop.
3. |Result| If R = 0, then return “failure”,
else return {p : p(p) | R and degp = 2}.

By the discussion above, the algorithm will not return “failure” when B is
sufficiently large.

We now consider the case of exceptional image. Our analysis of the
projective image of the inertia group I, allows us to find elements of order
at least 6 in Ppy(I,) < PGy in most cases, which implies that PG}, is not
contained in Sy or As.

Proposition 2.10.2. If p > 7 is a prime such that p> { N, then PG, is not
exceptional for all p | p.

Proof. Since we assume p? { N, it follows from Corollary 2.7.3 that PG,
contains elements of order p—1 or p+1. Soif p > 7, there are always elements
of order at least 6 in PGy, which implies that PG}, cannot be contained in a
group isomorphic to Sy or to As. U

So we only have to consider prime ideals p of residue characteristic p such
that p < 5 or p? | N. By the classification in Section 2.4, we can also exclude
p =3 when degp =1 and p = 2. We can then run Algorithm 2.5.4 on these
finitely many p to reduce the set of possibly exceptional primes further.
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2.11. Proving non-CM. Recall that our goal is to show that G, = G***
for all p outside an explicit small finite set. Now if f has CM, then G, will
always be contained in the normalizer of a Cartan subgroup, so in this case
our task is impossible. Note that by Proposition 2.1.2, in our case of interest
when g = 2, if the associated abelian surface is absolutely simple, f cannot
have CM. However, since it may be of interest in other situations, we describe
a suitable algorithm.

We recall the relevant definition (see [Rib77, § 3], specialized to the case of
interest).

Definition 2.11.1. Let f be a newform of weight 2, level N and trivial
nebentypus, and let € be a Dirichlet character. We say that f has CM by ¢, if
f®e=f. We say that f has CM, if f has CM by some nontrivial Dirichlet
character .

Remark 2.11.2. The Dirichlet character ¢ is then necessarily quadratic: Since
f has totally real coefficients, € has to take real values.

If f has CM by ¢, then e(¢)ay = ay for all £4 N cond(e), so a; = 0 whenever
e(¢) = —1. This can be used to show that f does not have CM by e, by
exhibiting a prime ¢t N such that €(¢) = —1 and ay # 0.

The idea is then to first determine a finite set of possibilities for the
conductor D of € and then to check for each of the finitely many possible
characters € of conductor D that f does not have CM by e using this approach.

Theorem 2.11.3. Let f be a newform of weight 2, level N and trivial
nebentypus, and let € be a quadratic Dirichlet character of conductor D. Then
the twist f®e of f by € is a normalized eigenform of level dividing lem(N, D?)
and trivial nebentypus.

Proof. See [Shi71, Proposition 3.64], using that €2 is trivial. O

Proposition 2.11.4. If f is a CM form of level N, it is the newform
associated to a Hecke character ¢ of some conductor m of an imaginary
quadratic number field K of discriminant —Ap. One has N = A M with M
the absolute norm A (m) := #Ok /m and (Ak) | m. In particular, A% | N.

Proof. [Sch09, Theorem 1.4 and Corollary 1.5] O

In the situation of Proposition 2.11.4, the CM character ¢ is the quadratic
character associated to K.
This leads to the following algorithm.

Algorithm 2.11.5.
INPUT: A newform f of weight 2, level NV and trivial nebentypus. A bound B.
OUuTPUT: “non-CM” or “no result”.

1. Let S be the set of all negative fundamental discriminants —A such that
A?|N.
2. For each A € S, do the following.
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a. For all primes ¢ < B such that £ is inert in Q(v/—A), do:
(i) if ap # 0, then continue with the next A.
b. Return “no result”.
3. Return “non-CM”.

Remark 2.11.6. If f does have CM, then this algorithm will eventually return
“no result”. Then one has a candidate character ¢ (the character associated
to —A), and one can try to verify that f ® e = f (this is a finite computation,
as the space of cusp forms of weight 2, level lem(NN, A2%) and trivial nebentypus
is of finite dimension and can be computed).

The following result guarantees that there will be enough primes ¢ as above
when f has no CM.

Theorem 2.11.7. Let f be a non-CM form. The set of primes £ such that
ap = 0 has density 0.

Proof. See [Ser81, p. 174]. O

Ezxample 2.11.8. If N is squarefree, then Proposition 2.11.4 implies that f
has no CM, since the only possible value of A would lead to —Ag = —1,
which is not a discriminant of an imaginary quadratic number field.

Remark 2.11.9. The newforms of weight 2, level 800, trivial nebentypus and
with coefficients in Q(v/5) in the Galois orbit with LMFDB label 800.2.a.j
have CM by Q(y/—5). Computing its endomorphism ring using Magma,
we see that it has nontrivial idempotents, so A is not absolutely simple as
predicted by Proposition 2.1.2.

2.12. Maximal image for almost all p. Let f as usual be a newform of
weight 2, level N and trivial nebentypus. We now assume that f does not
have CM. In this section, we will describe an algorithm inspired by [Coj05] that
finds a small finite set of primes p such that for all p ¢ S, the representation pj,
has maximal image.

Using the algorithms we have described so far, we can determine a finite
set S of prime ideals such that for all p ¢ S, the representation p, is either
maximal or irreducible and dihedral. So if PG is not maximal for p ¢ S, it
is contained in the normalizer N(C') of a Cartan subgroup C. It therefore
remains to find a finite set of prime ideals such that PGy is not dihedral for
p outside this set.

So assume that py is irreducible and dihedral, with PG, C N(C) as above.
By Corollary 2.7.10, PG, is not contained in C' (if C' is split, then p, is
reducible). So the character €, defined in Corollary 2.8.3 is nontrivial.

Proposition 2.12.1. If N is squarefree, the residue characteristic of p is
not 2 and py is irreducible, then py is not dihedral.

Proof. Let us prove the contrapositive. Thus suppose that p, is dihedral.
Then by the discussion above, ¢, is nontrivial. On the other hand, the
conductor d > 1 of g, satisfies d?> | N by Corollary 2.8.3. Thus N is not
squarefree. O
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So in the semi-stable case, we already know that p, is maximal for all
p ¢ S. If N is not squarefree, then Corollary 2.8.3 provides us with a finite
set of possibilities for ey, and we can try to rule each of them out for all prime
ideals outside a finite set.

Lemma 2.12.2. Assume that p has odd residue characteristic p and that
pp is dihedral, with associated character ey. If £4 Np is a prime such that
ep(f) = —1, then p | ay.

Proof. Since e,(¢) = —1 by assumption, we have p,(Froby) € N(C)\ C.
Then Pp,(Froby) has order 2, which implies that a; = Tr(pp(Frob,)) =
0 mod p. O

We make use of this as follows. For each quadratic character € of conduc-
tor d such that d? | N (or d | 8dp with dy odd such that d3 | N if 4 | N), find
some prime ¢ = £(¢) { N such that a; # 0 and e(¢) = —1 (there are many
such primes by Theorem 2.11.7). Then for all p such that p 1 fa, (which
are all but finitely many), it follows that e, # €. (In practice, it makes
sense to use several such primes £ to cut the set of possible exceptions down
further.) So replacing S by the union of S with the finitely many finite sets
Se = {p :p | Laye)}, we obtain the desired finite set S of prime ideals such
that for p ¢ S, p, has maximal image.

Algorithm 2.12.3.

INPUT: A non-CM newform f € N(N,2). A bound B.

OuTPUT: A finite set S of prime ideals of the maximal order O of Z[f] such
that for all p ¢ S, p, has maximal image, or “failure”.

1. [Initialize| Let S be the union of

{p:plp) € {2,3,5} or p(p)* | N}
and the finite sets returned by Algorithms 2.9.4 and 2.10.1 (run on f with
the bound B).
Return “failure” when one of these algorithms failed.
2. [Possible conductors| Set D := {d € Z~¢ : d?> | N and 21 d}.
If4|N,set D:=DU{4d:d € D} U{8d :d € D}.
3. |[Loop over characters| For each d € D and each quadratic Dirichlet
character € of conductor d, do:
a. |Initialize| Set I := (0) as an ideal in O.
b. [Loop over primes| For each prime ¢ < B such that £{ N and e(¢) = —1,
set I :=1+ (ay).
c. |Failure| If I = (0), then return “failure”.
d. |Record prime ideals| Set S :=SU{p:I C p}.
4. [Refine] Run Algorithm 2.5.4 on each p € S and remove p from S when
the result is the empty set.
5. Return S.

If B is sufficiently large, then the algorithm will not return “failure”, and
by the discussion above, S will satisfy the specification.
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We can use the information obtained from the various algorithms to provide
a list of possible types of maximal subgroups that could contain Gy for those
primes p that are in the set returned by Algorithm 2.12.3.

2.13. The image of the p-adic Galois representation. For Theorem 7.3.3,

we also need information about the image of pyeo | Gal(QIQ(y00))? and for The-
P

orem 5.2.6, about the image of pyoc.

Proposition 2.13.1. Let O be the ring of integers of an unramified extension

of Z,,. Let G C SLy(O) be a closed subgroup.

(i) If p > 3 and G surjects onto SLa(O/p), then G = SL2(O).
(i) If p = 3 and G surjects onto SLa(0/3?), then G = SL(0).

Proof. See [Ser98, Lemma IV.23.3], noting that the proof works for O instead
of Z,; for p = 3, our claim follows from the proof given there. O

Proposition 2.13.2. Assume that O/3 € {F3,Fs2}. Let p: Gal(Q|Q) —
GL2(O) be a continuous homomorphism with mod-3" reduction psn. If p3 is
surjective and there are more characteristic polynomials mod 3% with constant
term 1 mod 32 than mod 3, then ps2 is surjective.

Proof. This is a Magma computation, looping over all subgroups of SLa(0/32)
that surject onto SLa(O/3) and computing characteristic polynomials. O

Proposition 2.13.3. Let O be the ring of integers of an unramified extension
of Zp. Let
G C Gy i={M € GLy(O) : det(M) € Z;'}
be a closed subgroup with det(G) = Z,; .
If p> 3 and G surjects onto SLa(F)p), then G = Gy*.

Proof. This follows from the proof of [Lom16, Theorem 4.22]. O

We do not need Proposition 2.13.3 for the examples in this article, but it
is useful for further examples.

2.14. Examples. The following table contains the result of running our
algorithms on all absolutely simple Jacobians with real multiplication of
genus 2 curves over Q that are contained in the LMFDB. (The genus 2 curves
in the LMFDB have discriminant bounded by 10°; since the conductor of
the Jacobian is the square of the level N and divides the discriminant, this
implies that N < 1000.)

The entry “N” gives the level and the letter x of the isogeny class of the
curve in the LMFDB (the LMFDB label of the isogeny class is then N2.z...).
The entry “p? | N” lists the primes at which the Jacobian does not have
semi-stable reduction. The third entry lists the prime ideals p such that py is
reducible and gives the splitting of p§® into characters. We use ¢4 to denote the
quadratic character associated to the quadratic extension of discriminant d.
Since piy’ is the same for isogenous Jacobians, we list each isogeny class only

: : 7PK}) _ : el 9 el
once. The primes are given as “p” when p = (p) is of degree 2, as “p,” or “p



VERIFICATION OF STRONG BSD FOR MODULAR ABELIAN SURFACES

when p = p(p) is split and as “p,” when p is ramified. The last entry lists the
prime ideals p such that p, is irreducible, but Algorithm 2.12.3 does not prove
that p, is maximal. In these cases, we have determined the isomorphism type

of PGy by a direct computation; we give it in the table.

N  p?| N reducible p, irreducible non-maximal p,
23a plut 1P x11 3: As
29a p7: 1@ x7 p2: N(Chs)
3la ps: 1P x5
35a pa: 16 x2 ps5: N(Chrs)
39a po: 1D x2; pr: 1@ xr
5la po: 1@ x2 p5: N(Chrs); 3: As
65a p2: 1@ x2; P3: 1D x3
67a 3: A4
67c plll: 16 x11
73a p3: 1D xs
73b 3: A4
77b 2: 1@ x2
85a p2: 1P xo
85b p2: 1D x2; p3: 1D xs
87a Ps: 19 X5
88b  [2] ph1@x2 pz: N(Chs)
93a 3: A5
103a 3: Ay
107a 3: As
115b 3: As
123b pr 1@ xr p2: N(Chs); 3: As
1252 [5]  ps: xe® xS 3: Dy C As
129a p2: N(Crs); 3: As
133c 3: Ay
133d p5: 1D xs
133e ps: 1D xs
135¢ p3: 16 xs
147a p2: 1 x2; Pr: X3 D X7
165a po2: 1D x2
167a
176a  [2] ph: 1D x2 pz: N(Chs)
177a 3: As
188a [2] 2: N(Crs); 3: As
191a 3: A5
193a 3: Ay
205a 3: As
207b [ 3 ] p2: 1 x2 3: Asx
209a p2: N(Chs)
211a Ps: 16 xs 3: As
213a 3: As
221a 3: As
223a p2: N(Chs)
227a 2: N(Chrs)
245a, ph S @ xd p2: N(Chrs); 3: sub-line (= S4)
250a Ps: X2 O X5 2: N(Chs)
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N p2 | N reducible p, irreducible non-maximal py
261c
275a [ 5 ] Ps: 14 X5 3: A5
275b  [5]  ph:es De—ss
287a
289a  [17] pi: ez De_sar; Pirt Xir ® xir
299a,
303a p2: N(Chs)
313a
321a
334a
357a pa: N(Cns)
358a ps: 1P x5
375a  [5]  ps: xFOXE 3: As
376b [2] 2: N(Chrs)
376e [2] 2: N(Chrs)
383a 3: As
389a pa: N(Cns)
457a
461a 3: A5
491a
499a 3: As
523a 3: Ay
533a pa: N(Cns)
599a
621a [3] p2: N(Crs); 3: As
621c [3] 3: As
637a 2: A4; 3 A4

640a [2] 2: 1P x2
640b  [2] 2 1@ xe

647a 3: As

677a 3: As

683a 2 N(Chs)
689a 2: N(Chrs)
752a 2: N(Crs); 3: As
752f 2 N(Chs)
752; 2 N(Chs)
783a [ 3]

799a 3: As

809a

837b  [3] pa: N(Chs)
84la  [29]  phot x30 @ X35

845a [ 13] 2: Ag; 3 As
877a 2: N(Chs)
887a 3: As

929a 3: As

3. COMPUTATION OF HEEGNER POINTS AND THE HEEGNER INDEX

For this section, we fix the following set-up. Let f € N (IV, g) be a newform
of level N with Galois orbit of size g, so that its coefficient ring Z[f] is an
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order in the totally real number field Q(f) of degree g. Its Fourier coefficients
are an = an(f) € Z[f]. We denote the set of embeddings Q(f) — R by X,
and we write f for the modular form with real coefficients obtained from f
by applying o € X to its coefficients. Recall that Iy denotes the annihilator
of f in the integral Hecke algebra T, and that we have morphisms of abelian
varieties

AY = T(N)I] < Jo(N) 2 Jo(N) /I Jo(N) = Ay

the composition Ay = 7y ovy: Ay — Ay is a polarization of A}; it is the
polarization induced by the canonical principal polarization of Jo(N) as
the Jacobian of Xo(N). (If A\: A — AV is the polarization coming from
L € NS(A) and ¢: B C A is an abelian subvariety, then ¢ oAop: B — BY
is the polarization on B coming from ¢*L. See |[BL04, Cor. 2.4.6 (d)].) Note
that ¢ is the composition of 7r}/ with the inverse of the canonical polarization
of Jo(N). We write

(31) df = dl'-'dg,

where (di,...,dgy) is the type of A¢; then deg A¢ = d?c (see [BLO4, Thm. 3.6.1
and Cor. 3.6.2]). The number dy is sometimes called the modular degree
of Ay; see for example [AS05, §3.3].

We further assume that we are given a (nice) curve X whose Jacobian J
is isogenous to Ay via an isogeny 7: Ay — J. The isogeny m induces an
isomorphism of endomorphism algebras (where End%(A) = Endq(4) ®z Q)

(3.2) 72 Q(f) = End%(Af) = End%(J) = Frac(0), 0 — T

which we use to identify End%(J) = Q(f). Then for any v € Z[f]NO (where
the intersection makes sense with this identification), it follows that

(3.3) Moy =r"0m.

We write 7y = momy: Jo(N) — J. We then have a commutative diagram

I ——
(3.4) Jo(N) = Ap ——— ]

with a polarization A = mroApon¥ =107y of JY. We denote Endg(J)
by O (which is also an order in Q(f)); then by pre-composing A\ with the
canonical principal polarization Aj of J, we obtain an element

(3.5) a=Xol;=molsor’ol; €O CQ(f).
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By [Mil86, Prop. 12.12], (deg7)?(deg A\f) = dega = N(«)?, which implies
that

(3.6) N(o) =df - degm.

In practice, we start with the curve X of genus g and we know that its
Jacobian J has real multiplication (and is absolutely simple). We then need to
find the corresponding newform f € N(N,g). We first determine N. When
X is a quotient of Xy(N), then we know N by construction. In general, we
find IV as the square root of the conductor of J, which can be computed up
to finitely many choices of power of 2 at worst; in our LMFDB examples,
the conductor has been determined exactly and is available in the LMFDB.
Given N, we then compare the traces of the Fourier coefficients at primes
¢t N of the various candidate f with the corresponding coefficient of the
L-function of J. This quickly leaves only one candidate, which must then be
the correct f (up to the Galois action). We now assume that f is fixed.

One of the ingredients we need in order to prove that III(J/Q)[p] = 0
for all except an explicit finite set of prime ideals p of O is the Heegner
index, whose definition we now recall. (See Sections 4 and 5 below for why
the Heegner index is important.) Let K be a Heegner field for f; this is
an imaginary quadratic field such that all prime divisors of N split in K
and such that the L-series L(f/K,s) = L(f,s)L(f ® ek, s) (with ex the
quadratic character corresponding to K') vanishes to first order at s = 1.
The first condition implies that Ok contains ideals n of norm N such that
Og /n is a cyclic group of order N. Then the natural map C/Ox — C/n~}
corresponds to a cyclic isogeny of degree N between two elliptic curves with
CM by Ok and so defines a point in X((/V), which is known to be defined
over the Hilbert class field H of K. More generally, let a be some ideal of O;
then we can consider C/a — C/an™!. We obtain hx points z € Xo(N)(H)
in this way, where hx denotes the class number of K and the point depends
only on the ideal class of a. These points form an orbit under Gal(H|K);
their formal sum xx is the Heegner cycle on Xo(IN) associated to K and n;
it is defined over K. Let co € Xo(IV)(Q) denote the cusp at infinity. Then
Yk = [xKg — hi - (00)] € Jo(N)(K) is a Heegner point associated to K. By
varying n in the construction, we may get different Heegner points, but they
all agree up to sign and adding a torsion point. (See also [Gro84].) So in the
following, we will consider Heegner points up to sign and modulo torsion.

We then obtain a point yx » = 7;(yx) € J(K). By |GZ86], the O-span
of yx » € J(K) is a rank g = dim J subgroup of finite index of J(K) (which
does not depend on the choice of the Heegner point). This index is the
Heegner index; we denote it by

(3.7) IKﬂT = (J(K) :0- yKJr).

Considering the characteristic ideal Zx » := Charp(J(K)/Oyk ) gives re-
fined information; this refinement is helpful for our intended application,
because we can study the summands of III(J/Q)[p>] = D, LL(J/Q)[p>]
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individually. In the same way, we have yx 4, = 77(yx) € Ay(K), and we set
I = (Af(K) : Z[flyk,a,) and Tk := Charg(As(K)/Z[flyx a,)-

For an abelian variety A/Q and a quadratic number field K, we denote the
quadratic twist of A by the quadratic character associated to K by A¥. Then
AK is isomorphic to A over K. The natural map A(Q) x AX(Q) — A(K) has
finite kernel and cokernel killed by 2: The kernel is the diagonally embedded
A(Q)[2], and the image contains 2A(K).

When L-rkJ = 0, then J(K) is essentially J*(Q); more precisely, the
image of JX(Q) in J(K) contains 2J(K) up to torsion, and so we can
identify 2yx » up to torsion with a rational point on J K When L-rkJ =1,
then 2J(K) is contained in J(Q) up to torsion, and we can identify 2yx » up
to torsion with a rational point on J. (See also [Mill0, Lemma 2.1].) This
simplifies the computations, since certain algorithms (for example, computing
canonical heights on J) are so far only implemented when the base field is Q.

The aim of this section is to explain how we can compute the Heegner
index I » (or the corresponding ideal Zk ).

The first step is to determine a Heegner field K. This is explained in
Section 3.2. In order to determine the O-span of yx », we need to deter-
mine O = Endq(J) and its action on J(K) (we can determine generators
of J(K) from generators of J(Q) and of JX(Q), which Magma can usually
compute). Section 3.3 explains how to do that. Then, of course, we need to
find the Heegner point yx . on J.

One approach is to compute the j-invariant morphism Xo(N) — P}Q given
by sending the point representing an isogeny £ — E’ to j(E) as an algebraic
map. Then, given the hy different j-invariants of elliptic curves with CM
by Ok, we can lift them to the corresponding points in X¢(N)(H) and thus
get an algebraic description of the Heegner cycle. However, this turns out
to be too slow even for moderately large N. Therefore, we do not give more
details here.

Instead, we use an analytic approach. We start with the hx reduced
integral binary quadratic forms whose roots with positive imaginary part
map to the points in the support of the Heegner cycle on Xo(N) under the
uniformization map H — Xo(N)(C), where H denotes the upper half plane.
These quadratic forms can easily be determined using the built-in Magma
function HeegnerForms. Via the uniformization map H — Xy(NV)(C), we
obtain the set of hx points in the Heegner cycle. If the curve X is a quotient
of Xo(N), we can then map the Heegner cycle directly to X and try to
recognize it as a divisor defined over K. We can then obtain the point on J
given by the Heegner cycle. If X is not a quotient of Xy(V), we do the
following. We first use the Abel-Jacobi map Xo(N)(C) — Jo(N)(C) —
A;(C) = C/As to map the Heegner cycle to A¢(C). We then compute the
point yx € Af(C) (by taking a sum in C/Ay). Then we use an explicit
numerical isogeny A¢(C) — J(C) to map the Heegner point from A;(C)
to J(C). Finally, we recognize the image as a point defined over the Heegner
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field K. This is explained in Section 3.4. However, J(K) C J(C) is dense.
Hence we must prove that we have found the correct point. We do this
by determining its canonical height (which is well-defined since it does not
change when adding a torsion point or changing the sign) via the Gross—Zagier
formula. Since there are only finitely many points with bounded height,
knowing the height is sufficient to cut the possibilities down to finitely many
candidates up to sign and torsion; in practice, there is only one candidate.
So we check that the point we have computed has the correct height and
that no other point (up to sign and torsion) has the same height up to the
numerical precision used in the computation. In principle, we could use this
approach to bypass the analytic computation of the Heegner point altogether
and just recognize it from its height, but using both approaches provides
an additional level of confirmation that our results are correct. A further
benefit of computing the Heegner point (and its image under a generator
of the endomorphism ring of J) is that this provides us with generators of
a finite-index subgroup of J(K). So in order to determine J(K) (which is
necessary for the computation of the Heegner index Ik ), it then suffices to
saturate the known subgroup, which means that we do not have to search for
points first. This can save a considerable amount of time.

Since the Gross—Zagier formula involves the Petersson norm of f7 for the
various embeddings o: Z[f] — R, we need a way to compute the latter; see
Section 3.5. To apply the Gross—Zagier formula, we project yyx, viewed as an
element of Jo(N)(K) ®z R, to its various o-components yr , (which have
the property that Q(f) acts on them via the embedding o). The formula
then gives an expression for h(y ,), where h: Jo(N)(K) ®z R — R is the
normalized canonical height on Jy(IN) associated to twice the theta divisor.
This is discussed in Section 3.7. Finally, we have to relate the height h J(WKx)
with respect to twice the theta divisor on J to the heights ﬁ(yK,U); this is
done in Section 3.8.

3.1. Computational representation of Diagram (3.4). For our compu-
tations, we need to represent Ajvc, Ay, J as complex tori and the isogenies
between them. This is done as follows.

Definition 3.1.1. Let A be an arbitrary abelian variety over C, of dimen-
sion g. Associated to a C-basis w = (wy,...,w,) of H(A, Q) and a Z-basis
7= (7 -..,72¢) of the integral homology Hy(A(C),Z), there is the period

matrix
Ha =14y = </

wi) € CgXQQ .
Yj [2¥}

Its 2g columns generate a lattice A, and A(C) = C/A via z — ( wi)i + A

Definition 3.1.2. Let A and B be two abelian varieties over C of the same
dimension g, and let I14 and Il be associated period matrices. If p: A — B
is an isogeny, then there are uniquely determined matrices a, € GL4(C) and
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M, € Z?9*%9 such that
ay Ty =15 M,.
We call (a,, M) the pair of matrices associated to .

We observe that, given I14 and IIz, each of M, and a,, can be determined
from the other.

Note that ay, is the matrix of the C-linear map w — ¢*w with respect to
the bases of the spaces of holomorphic differentials used for I14 and IIg, and
M, is the matrix of the Z-linear map 7 — ¢,y on the homology bases.

If A, B and ¢ are defined over Q and we use Q-bases of H(4,Q')
and H(B,Q'), then a € GLy(Q) (since ¢* is a Q-linear map). Similarly, if
we use Z-bases of H’(&7, Q') and H(%, Q'), where </ and % are the Néron
models of A and B over Z, then o € Z9%9 N GL4(Q).

Definition 3.1.3. Let A and B be abelian varieties defined over Q, with
Néron models & and A over Z, respectively. Let ¢: A — B be an isogeny
defined over Q. Then we set

cp 1= (HO(7, Q1) : p'HO(5, Q1)) € Zss

If T4 and Tz are computed using Z-bases of H’(27, Q') and H®(%, Q),
then c, = | det ay|.

Definition 3.1.4. Let f € N(N,g). We define Sa(f,Z) to be the Z-
sublattice of the C-span of f and its Galois conjugates in Sa(I'g(N)) that
consists of forms whose g-expansions have integral coefficients. Under the
natural identification of Sa(T'o(V)) with HO(Xo(N), Q') ~ HO(Jo(N), QY), its
image contains W;Ho(ssz, Q1) (where 7} is the Néron model of Ay over Z).
The index
cf = (S2(f,2) : W}Ho(ﬂffjﬁl)) €Z>
is the Manin constant of 7.
See [ARS06, Def. 3.3 and Thm. 3.4].

Proposition 3.1.5. The Manin constant cy is divisible only by primes p
such that p*> | N or p = 2 and the conductor of Z[f] is even.
In particular, c; =1 if N is squarefree and the conductor of Z[f] is odd.

Proof. This is [ARS06, Cor. 3.7] for odd primes and [Ces18, Thm. 5.19| for

It has been conjectured (see [Ces18, Conj. 5.2] and the text preceding it)
that ¢y is always 1, but [Ces18, Thm. 5.10] gives a counterexample in dimen-
sion 24 (with NV =431 odd and 2 | ¢f).

Magma can compute a period matrix II AY of Ay with respect to a Z-basis
of So(f,Z) and some homology basis. Magma also computes the matrix M
of the intersection pairing (inside the homology of Jy(N)(C)) on the first
homology of A7(C). Then Il4, := HAJVc - M~ is a period matrix for Ay
(with respect to the same basis of S3(f,Z)), and (Iz, M) is the pair of
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matrices associated to the polarization A;. Let now J be the Jacobian of
a curve of genus 2 over Q such that there is an isogeny m: Ay — J as
in (3.4). Magma can compute a period matrix II; for J with respect to
a certain Q-basis B of HY(J,Q') (if J is the Jacobian of a genus 2 curve
y? = f(x), then B corresponds to the differentials dz/y and z dz/y on the
curve) and a symplectic homology basis. We can then find the associated
pair of matrices (o, My). The algorithm [vB19, Algorithm 13| determines
the ‘compensation factor’ (called W in loc. cit.)

(3.8) C = (H(_7,0Y) : (B)z)
(where ¢ is the Néron model of J over Z and the index of two commensurable

Z-lattices in H(J, Q') is in general a positive rational number). Combining
these computations gives the following.

Lemma 3.1.6.
cp-cr=C-|detogl.

In our LMFDB examples, the compensation factor C' (with respect to a
minimal Weierstrass model) is always 1, and cyc, divides the degree of the
isogeny .

For later applications, we want to compute the sizes of the kernel and
cokernel of the map 7r: Af(R) — J(R) induced by the isogeny 7 on the
groups of real points. We note that we can obtain the action of complex
conjugation 7 on A(C) = H;(A(C),Z) @ R/Z by solving IT4 = 14 - M4 , for
Ma, € Z29%29. We obtain ker m & M 1229 /729 ~ 729 /M, Z*, and we can
find its 7-invariant part ker mg using M .. The group mo(J(R)) of connected
components of J(R) is isomorphic to

ker (1+7 | Ay)/(1 —7)Ay 2 ker (Iog + My, | Z*9)/(I2g — My, )Z*
and similarly for Ay, so

ker (Iog + My, | Z%9)
(Igg — MJJ—)ZQQ + ker (Igg + MJ,T | MWZZ‘]) ’

coker TR, &

When considering the quadratic twist 7% for an imaginary quadratic field K,
then we have to replace M, by —Mj, to obtain the twisted action of
on JX(C) = J(C).

We can use a similar idea to compute €2; from the period matrix II; and
the compensation factor C' from (3.8), as follows.

Lemma 3.1.7. Let T € GLoy(Z) be such that (M, + Ip,) - T = (M | 0)
with M € Z29%9. Then

Qs =C-|det(Ily - M)]|.
Proof. 1t is well-known that €; is the covolume of the lattice given by
integrating a Néron basis over the C|R-trace of Hy (X (C),Z) (see [FLST01,
§3.5] or [vB19, Def. 11]). The Z-lattice generated by the columns of the
matrix M, + Iz, corresponds to H; (X (C),Z) (w.r.t. the homology basis
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used to compute I1;). This lattice is known to have rank g, so there exists a
unimodular matrix T as in the statement, and multiplying on the right by T'
preserves the lattice. So the columns of M give a basis of the C|R-trace
of Hi(X(C),Z), and the result follows (taking into account the factor C
arising from changing the basis of differentials used in the computation of II;
to a Néron basis). O

This improves over the method currently implemented in Magma (which
is based on [vB19, Algorithm 13]) in that it uses an exact computation to
find the correct integral linear combination of g x g minors of II; instead of
relying on a ‘real gcd’ computation with numerical approximations. (The
approximation step is in the computation of M, but here we know that
the entries are integers, so we can simply round.)

We now want to determine the endomorphism « € O = EndJ that was
defined in (3.5). Since II; is computed with respect to a symplectic homology
basis, we obtain the M-matrix of the canonical polarization of J as the
matrix I’ of the standard symplectic pairing. Then M := M, -1 - M, - I’
gives the action of @ € O on the lattice associated to J, and its action on the
tangent space can be recovered from that. We can (and do) ‘optimize’ « by
post-composing m with an automorphism ¢ € Endg(J)* (this has the effect
of multiplying a by €2) in the sense that we minimize the images a® € Rxq
under the real embeddings of O (in practice, we minimize the trace of «).
This leads to potentially smaller Heegner points on J, which simplifies some
of the computations.

3.2. Determining Heegner fields. To be able to use the results of [GZ80]
and some other results that require the discriminant of the Heegner field to
be odd, we restrict to odd discriminants in the following.

We find a Heegner field K by enumerating the odd discriminants —D of
imaginary quadratic number fields with the property that all prime divisors
of N split completely in O (this can be checked easily by computing Legendre
symbols). The condition ords—1 L(f/K,s) = 1 is equivalent to L(f ®ex, 1) #
0 when Ltk J =1 and to L'(f ®ek,1) # 0 when L-rk J = 0. Using modular
symbols as described in [Cre97, §2.8], we can decide whether L(f®eg,1) =0
or not. The non-vanishing of L'(f ® e, 1) can be proved by computing it to
a high enough precision using Dokchitser’s Magma implementation [Dok04].
Alternatively and in practice (because the evaluation of the twisted L-value
can take fairly long when N is large), we can compute the Heegner point for
a given K; if it is non-torsion, then K is a suitable Heegner field.

3.3. Computing the endomorphism ring and its action on Mordell-
Weil groups. We need to determine the endomorphism ring O of the
Jacobian J and how it acts on the Mordell-Weil group J(Q) or JX(Q),
or, more generally, on J(L) for some number field L. For this, we com-
pute a numerical approximation to the big period matrix as in Section 3.1;
potential endomorphisms can be guessed from this information. To verify
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that the presumed endomorphism ring is the correct one, we can use data
from the LMFDB [LMFDB]. (Alternatively, one could use [Lom19]|.) This
shows that the numerical endomorphisms are close to actual endomorphisms
and thus gives us a representation of O as a subring of a matrix algebra
over Z, together with its action on the complex torus C?/A = J(C). To
compute the action of O on J(L), we use an improved version of Magma’s
(To/From) AnalyticJacobian to convert between points in J(C) in Mumford
representation and representatives in C2. (The improvement also handles
points at infinity and Weierstrass points.) For a generator v of O and each
generator z of J(L), we map x to C2/A, apply v to the image, and map back
to J(C). We then recognize the coefficients of the Mumford representation
as elements of L using Magma’s MinimalPolynomial and check that the
coefficients we recognize really define a point in J(L). We then write the
resulting point as a linear combination of the generators of J(L). In this
way, we obtain a matrix giving the action of v on J(L) with respect to the
chosen generators. We can bound the height of - 2 by max,|y7|? times the
height of x, so there are only finitely many candidates for v - x, which allows
us to determine 7 - x exactly by computing with sufficient precision. As an
additional check, we verify that the matrix we obtain has the same minimal
polynomial as 7.

3.4. Computing Heegner points analytically. Recall that © denotes the
isogeny Ay — J and that we want to compute the Heegner point

Y =1 (yx) = 7(Yk,a,) € J(K).

In this section we explain how to find yx r explicitly. Also recall that 7
denotes the real number giving the area of the unit disk, to avoid confusion
with the isogeny .

We obtain a computational representation of the isogeny 7: Ay — J as
described in Section 3.1. Since we know that an isogeny has to exist, we can
be sure that what we obtain indeed describes an actual isogeny.

To find the Heegner point on J, we first determine the integral binary
quadratic ‘Heegner forms’ associated to K and N. These are representatives of
the hy classes of positive definite binary quadratic forms of discriminant Dy
such that their roots 7 € H map to the points in the Heegner cycle xx. Let
(fi,..., fg) be the Z-basis of Sa(f,Z) that is used for the computation of
the big period matrix of Ay (it can be obtained via the Magma function
qIntegralBasis). We then compute the period integrals

T 621r7l7'
P(r,j) == 27ri/ fi(2)dz :/ Zan(fj)qndqq = Z Ln(f])e%”" eC
100 0

n
n>1 n>1

for each of these roots 7 and each 1 < j < g to the desired precision. (We
pick our Heegner forms in such a way that 7 has imaginary part as large
as possible. We can use the bound |ag| < v/3n (see [GJPT09, Lemma 2.9,
where a bound [af| < n is claimed, but their argument bounding |aJ| is
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not correct for powers of 2 or 3) and the representation of f; as a linear
combination of the f? to determine the number of terms we need. The points
Yr = (P(T,j))j € C9/A; ~ Af(C) then are of the form [z, — (c0)] projected
to Ay, where oo is the cusp at infinity and z, runs through the points in the
support of the Heegner cycle xi. In particular, we have >y, = YK,Ap-

We then use the matrix o, associated to the isogeny m to map yx or
all the points y, to CI/A = J(C). We apply the numerical inverse of the
Abel-Jacobi map to find the Mumford representation of this or these points
as points on J. We then try to recognize the coefficients in the Mumford
representation as elements of K (for m(yx a,) = yk«) or of H (for 7(y,))
and check that this really gives rise to a point in J(K) or J(H).

Using the action of O on J(K) that we have determined in Section 3.3,
we can then determine the O-span of yx » and from it the ideal

T » = Charp(J(K)/Oyk )

and the index I = (J(K) : Oyk ). The corresponding index for Ay is
Ik = (Ay(K) : Z[f] - yk,a,;). We can express it in terms of I, via

o= Gaw 20D #AE)
(Oqp) :0)  #(J(K)/n(Af(K))) "
The first factor on the right takes care of the fact that Z[f] and O =
Endq(J) can be different orders in Q(f); it can be computed easily as
V/disc Z[f]/ disc O. The second factor captures the effect of the isogeny .
Note that the second factor can be multiplicatively bounded from above
by #A¢[r|(K) | degm, which gives a multiplicative upper bound for Ik as
well. (We may get a better bound than deg7 from bounding #A (K )iors
using the coefficients of its L-series.)

We will need I . in Section 4.4 for the computation of III(J/Q)an when
L-rkJ = 1 and in Section 5.2 for the determination of an explicit finite
support of III(J/Q). We will need (a multiplicative upper bound for) /i in
Section 7.

3.5. Computing the Petersson norm of a newform. Let o: Q(f) — R
be an embedding. For the Gross—Zagier formula, we need the Petersson
norms of the conjugates f for the various possible o. We identify Xy(N)(C)
with To(N)\H* (where H* = HU P!(Q) is the upper half-plane together
with the cusps) and use the normalization

122 = /X o e A dy
(0]

for the Petersson norm of f7 € So(I'g(N), C) as in [GZ86, (5.1)]. (Sometimes
this is normalized differently by dividing by the volume u(Xo(N)(C)) to
make it independent of the choice of N.) We compute the Petersson norm
by relating it to the symmetric square L-function L(Sym? £, s).
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If an L-function L(X,s) has an Euler product expansion, we write it as

L(x,s) =[] Le(x, )7,
¢

where Ly(X,T) € R[T] (with R the coefficient ring of the L-function) is the
Euler polynomial at ¢.

We define the symmetric square L-function L(Sym? f, s) as the L-function
associated to the strictly compatible system (Sym? ppeo.f) of p-adic Galois
representations. For a prime ¢t N, write

Li(f,T) =1 —a;T +4T% = (1 — a,T)(1 — B¢T);
then
Le(Sym? £, T) = (1 — a2T)(1 — a,BeT) (1 — B2T)

(3.9) = (1—(T)((1 + ()2 — a3T).

We define the imprimitive symmetric square L-function f/(Sme f,s) by this
formula for the Euler polynomial at all primes (then we take ay = ay and
Be =0 when ¢ | N); compare [CS87, p. 110|. (The difference is whether we
take I;-coinvariants before (L(Sym? f,s)) or after (L(Sym? f,s)) applying
Sym? when defining the Euler polynomials.) This imprimitive version is what
Shimura denotes D(s) in [Shi75].

We thank user334725 on MathOverflow [MO21] for pointers to the relevant
literature.

Proposition 3.5.1. Let f € So(T'g(N), C) be a normalized eigenform. Then
the Petersson norm of f is given by

N .
IfI1? = S?'L(Sme f,2).

Proof. Denote the Fourier coefficients of f by a,. We set
2

D(f,s):= Z %.
n>1

By [Pet49, Satz 6] (and taking into account the different normalization;
compare also [Shi76, Eq. (2.5)]),

1712 = [P : To(N) = -1

(4

(3.10) =N H(l + %) ﬁ ress—2D(f, s).
N

ress—oD(f,s)

) 3

By [Shi75, Eq. (0.4)] (see [Shi76, Lemma 1] for the relation between the Euler
factors), we have the following equality, where the superscript N means that
we leave out the Euler factors coming from prime divisors of V.

_ V(s-1)

z 2
= N5 2) L(Sym* f,s).

D(f,s)
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Taking the residue at s = 2 on both sides, we obtain
ress—oD(f 2 H< ) L(Sym? f,2),

which gives the desired result when used in (3.10). O

So we need to compute E(Sme f,2). However, we cannot directly do that
since L(Sym? f, 2) does not in general satisfy a suitable functional equation
(which is needed to obtain a reasonably fast converging series for the value
via a Mellin transform). We can, however, compute L(Sym? f,2), if we know
its FEuler factors at primes dividing N. So we need to determine these Euler
factors; combining this with (3.9) will also tell us what the correction factor

L(Sym? f,2)/L(Sym? f,2) is.
For a prime ¢, we set
o LZ(Symz f7 6_2)
Le(Sym?® f,072)
Corollary 3.5.2. Let f and Cg be as above. Then

11 = 5 HCe (Sym® £,2).

2|N

In particular,

N
IA11? = L(Sym® f,2)
when the level N is squarefree.

Proof. This follows from Proposition 3.5.1 and the definition of Cy, together
with the fact that C; = 1 unless ¢? | N, which will be shown in Lemma 3.6.1
below. 0

Alternative algorithms for computing the Petersson inner product are
described in [Cohl13] and have been implemented in Pari.

Using the formula in Corollary 3.5.2, we can compute || f7||? using [Dok04]
for all ¢ € ¥ if we can determine the Euler factors L,(Sym? f,T) for the
primes ¢ | N. We will do that in the following subsection.

3.6. Euler factors of the symmetric square L-function. In this section,
we explain how to find the Euler factors of L(Sym? f, s) at primes ¢ dividing
the level N of f. In [CS87, §1], analogous statements are shown for the
L-function of an elliptic curve, and [Sch88| has similar results stated in a
somewhat different language.

Recall that when ¢ { N, Lg(Smef T) = Ly(Sym? f,T) (and hence
Cy = 1), and we can write down Ly(Sym? f,T) easily in terms of Ly(f,T).
We now consider the case vp(N) = 1.
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Lemma 3.6.1. Assume that vy(N) = 1. Then
LE(Sme s T) = [:g(Sme 8 T) =1-T.
In particular, Cy = 1 whenever /24 N.

Proof. Fix some p { N/ and set p = p(p) and V, = V,(Ay). Since vy(N) = 1,
V, has a one-dimensional quotient of I,-coinvariants. Since xpe = det opyee
is trivial on Iy, it follows that pyec(Iy) lands in a unipotent subgroup (com-
pare Lemma 2.8.1). The image is nontrivial, since otherwise ¢ { N. Since
¢ # p and the unipotent subgroups of GL2(Q(f),) are pro-p groups, whereas
the wild inertia at ¢ is a pro-¢ group, it follows that pye|;, factors through
the tame inertia group Ij. By Lemma 2.1.7, conjugating by any lift Froby of
the Frobenius automorphism to I} has the effect of raising to the ¢th power.
Using that det pye (Froby) = xpe (Frob,) = ¢, it follows that (with respect
to a suitable Q(f),-basis), ppee (Froby) = £ (§9) and ppe|s, € ($ 7). This
implies that Ly(f,T) = 1 F T, and so Ly(Sym? f,T) = 1 — T. We also see
that

XZ%OO x ok

preelca@iqn = | 0 xee

0 0 1

with a one-dimensional Iy-coinvariant quotient, on which Frob, acts trivially.
This shows that Ly(Sym? f,T) =1 — T as well. (This is analogous to [CS87,

Lemma 1.2].)
In particular, Cy = 1, which, together with the discussion preceding this
lemma, gives the last claim. ([l

We now consider the case £2 | N. We first note that L(Sym? f, s) does not
change under quadratic twists.

Lemma 3.6.2. Let f be a quadratic twist of f. Then
L(Sym® f,s) = L(Sym® f, ).

Proof. We consider the Euler factor at ¢. Fix some p t N¢ and set p = p(p)
and V, = V,(Ay). Let € be the quadratic character such that f=fe
Since the canonical group homomorphism GL(V,) — GL(Sym? V,,) is trivial
on =+id, it follows that Sym? (ppo ®e) = Sym? ppeo, which, upon restricting
to Gal(Q,|Qy), directly translates into Ly(Sym? f, T) = Ly(Sym? f,T). The
claim follows. O

The argument in the proof together with the fact that pye(Iy) C SL(V})
shows that the action of I, on Sym? V, depends only on the projective image
Ppy~ (1) € PSL(V},). We will see that the dimension of the Iy-coinvariants
of Sym? V, depends on whether this projective image is abelian or not.

Lemma 3.6.3. Let k be a field of characteristic zero and let V be a two-
dimensional k-vector space. Let G C SL(V') be such that PG is not unipotent.

(1) If Sym? V' has a nontrivial G-invariant quotient, then G is abelian.
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(2) If PG is abelian, then V := V @y k has a basis e1, ey consisting of
simultaneous eigenvectors for the elements of G. The G-coinvariant space
of Sym?V = (€2 eqeq,€3) is one-dimensional and is isomorphic to the
direct summand k - e1es.

Proof. We can assume without loss of generality that k is algebraically closed.

(1) If Sym? V' has a nontrivial G-invariant quotient, then Sym? V* has a
non-zero G-invariant element, which is a quadratic form ¢ on V. Then G
must fix the zero set of ¢ in P1(k). This zero set can have either one or
two elements.

In the first case, G fixes a point in P!, hence is contained in a Borel
subgroup, so, after fixing a suitable basis, the associated representation p

has the form (é ;1) with a character x such that x? # 1 (recall

that PG is not unipotent). Then (with the columns giving the action
on X2, XY, Y2 when X,Y is the given basis with p(9)X = x(9)X,
p(9)Y = a(g)X +x7(9)Y)

2 2

XT ax «Q
Sym?p={0 1 2ax'],
0 0 x?

and this has nontrivial G-coinvariants only when o = 0, which implies
that G is abelian.

In the second case, G is contained in the normalizer of a Cartan
subgroup, so its elements are (with respect to a suitable basis (e, e2))
either of the form (8 agl) (which fix e; - e2) or of the form (a91 Ba).
However, the elements of the second form send e; - eo to its negative,
so (noting that there must be elements of the first form with a® # 1,
again since PG is not unipotent, so that neither e? nor e% can be fixed
by G) such elements cannot be present in G, which again implies that G
is abelian.

(2) If PG is abelian, then so is G. The representation on V' then splits as
a sum of two characters y and xy~! such that x? # 1. Let e; and e be
corresponding eigenvectors. Then Sym? V splits as x2 @ 1 & x~2, with
the G-action on ejes being trivial. This shows the claim. O

This leads to the following classification.

Lemma 3.6.4. Let { be a prime such that £* | N. Then Ly(Sym? f,T) = 1.
Let f be a quadratic twist of f whose level N is (multiplicatively) minimal.
Fiz a regular prime ideal p 1 N¢ of Z[f].

(1) Ppy(Iy) is trivial if and only if £ N. In particular, using (3.9),

6= L=V — ol ).
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Pppe (Iy) is nontrivial and unipotent if and only if ve(N) = 1. In this
case, Ly(Sym? f,T) =1 — T and the conductor exponent of Sym? f at ¢
z2e§1.

Ppp (Ip) is abelian and not unipotent if and only if vg(N) = 2. In
this case, Ly(Sym? f,T) = 1 F (T, with the negative sign if and only if
ppo (Gal(Q,|Qy)) is abelian, and the conductor exponent of Sym? f at ¢
is 2. In particular, Cyp = 3%1 (with the same sign).

18 2. In particular, Cy =

Ppye (1) is non-abelian if and only if ve(N) > 3. In this case, we have
Le(Sym? f,T) = 1, and the conductor exponent of Sym? f at ¢ is at

least 4 and at most 2vy(N) — 1. In particular, Cy = 1.

Proof. When ¢? | N, then the space of I;-coinvariants is trivial, hence so is
its symmetric square. This means that Ly(Sym? f,T) = 1. By Lemma 3.6.2,
we have that L(Sym? f,s) = L(Sym? f,s). It suffices to show the ‘only if’
direction of the equivalences at the beginning of each statement, since the
consequences exhaust all possibilities disjointly.

(1)

(2)

If Ppyoo (Iy) is trivial, then pyeo |z, is of the form (11)®e with a quadratic
character €. Twisting by € makes the representation unramified at ¢, so
¢+ N (using that N is minimal). The statement on Cy then follows.

If the projective image is nontrivial and unipotent, then there is a qua-
dratic character € such that ppee ® €]z, is unipotent and nontrivial, which
implies that v(N) = 1. The statement on the Euler factor then follows
from Lemma 3.6.1.

We assume that Ppye (1) is abelian, but not unipotent. By Lemma 3.6.3,
Sym? V, has a one-dimensional Ij-coinvariant space. Also, because ppes|r,
is a sum of two characters of order coprime to ¢, the representation
factors through the tame inertia group, hence there is no wild part in
the conductor. This shows that vy(N) = 2 and that the conductor
exponent of Sym? f = Sym? f is 3—1 = 2. Also by Lemma 3.6.3, the
coinvariant space corresponds to the tensor product of the two one-
dimensional representations in the splitting of Vj,. Frobenius either fixes
each of these two one-dimensional spaces, in which case its action on the
tensor product is by det(ppe (Froby)) = ¢; then L,(Sym? f,T) = 1 — (T,
and pp(Gal(Q,|Qy)) is abelian. Or else Froby swaps the two spaces;
then it acts by the negative of the determinant (compare the proof
of Lemma 3.6.3), so Ly(Sym? f,T) = 1 + (T, and pye (Gal(Q,|Qy)) is
non-abelian.

We assume that Ppye(l) is non-abelian. This implies that it is not
unipotent. By Lemma 3.6.3, the I;-coinvariant space of Sym? V} is trivial.
This shows that Ly(Sym? f,T') = 1. Also, Ppye|s, cannot factor through
the tame inertia group since the latter is abelian. So there must be wild
ramification at £ both in Pppe and in Sym? Ppe- As the tame parts
of the conductor exponents of these two are given by dimV, = 2 and

dim Sym? Vi = 3, respectively, it follows that 03 N and the conductor
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exponent ¢ of Sym? f is at least 4. To obtain the claimed upper bound,
we observe that when p: G — GL(V) is a 2-dimensional representation,
then the codimension of the invariant subspace of Sym? p is at most twice
the codimension of the invariant subspace of p. Then [Ser87, Eq. (1.2.1)]
implies that the wild part ¢—3 of ¢ is at most twice the wild part vy(N)—2
of the conductor exponent of f. This gives the desired bound. O

Given f, a choice of f can be obtained from the LMFDB. Alternatively,
the conductor d of the twisting character ¢ must satisfy d? | N, so we can
check the finitely many possibilities for € and compare the resulting levels to
find f.

Which of the two possibilities for the Euler factor in case (3) is correct and
what the correct choice of conductor exponent is in case (4) can be checked
by trying all possibilities and determining which one is compatible with
the functional equation. Using the function SymmetricPower that Magma
provides for constructing symmetric power L-functions seems to result in
fairly slow code. Instead, we compute the relevant number of coefficients
ourselves and use this coefficient sequence when constructing the L-series,
which is then used for testing the functional equation and evaluating at s = 2.

3.7. Computing the height of a Heegner point using the Gross—
Zagier formula. To state the Gross—Zagier formula, we need to introduce
some more notation. Let K be a Heegner field for f. Recall that H denotes
the Hilbert class field of K. The Heegner cycle xx on X((/N) and the Heegner
point yx = [Xx —hi - (00)] € Jo(N)(K) have been defined in the introduction
to this section. Recall that Iy = Anny(f).

The action of T (or its quotient Endg(Jo(N))) on Jo(IN)(K) extends to a
linear action on the real vector space Jy(N)(K) ®z R. Since the center Z
of Endq(Jo(N)) is an order in a totally real étale Q-algebra, we obtain a
canonical decomposition

N K)@zR= P Jo(N)(K),
o: Z—=R

into isotypical linear subspaces. If o factors through Z[f], then
Jo(N)(K)s C A¥(K) ®z R = Jo(N)(K)[If] @z R,

and by the Heegner hypothesis (which implies that A}/(K ) has rank 1 as
a Z[f]-module) it follows that dim Jo(N)(K), = 1. We will abuse notation
slightly and also write Jo(N)(K ), when o € 3, implicitly pre-composing with
the projection Z — Z[f]. We write yx » € Jo(N)(K ), for the components
of yx with respect to this composition and set

vk =D UKo € AY(K) @z R;
gEY

Then )\f(y};) = YK,A,; compare the diagram (3.4). Note that w € Q(f) acts
on Yr s a8 W+ YK, = W YK,». Explicitly, when (b;)i1<j<4 is a Z-basis of Z[f]
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and (b7)1<j<g is its dual basis in Z[f] ®z R with respect to the trace form,

we have
g

(3.11) ko = Y (b yx) @b,
j=1

The normalized canonical height on Jy(N)(K) (with respect to twice the
theta divisor) induces a positive definite quadratic form on Jo(N)(K) ®z R,
which (by abuse of notation) we also denote h. Since the endomorphisms
are self-adjoint with respect to the height pairing (this is because they are
fixed under the Rosati involution; see [BL04, Section 5.5] and recall that
the endomorphism ring is totally real), it follows that the o-components are
pairwise orthogonal under the height pairing.

Recall that we write L(f/K, s) for the L-function of f base-changed to K.
This is the same as L(f, 1, s) for the trivial character 1: Gal(H|K) — C* in
the notation of [GZ86].

Theorem 3.7.1 (Gross-Zagier formula). With the notation introduced above
and assuming that Dg is odd, we have

u%(\/—DK

1672 7|2~

Here hg is the class number of K and ug := #(’)I?/ZX, which equals 1 for
Dg < —4, 2 for Dg = —4 and 3 for Dg = —3.

h(yr.o) = L'(f7/K.1)

Proof. This is a reformulation of [GZ86, Theorem 1.6.3|, taking into account
that our & is 1/2hk times the height used there (see [GZ86, EQ. (1.6.4)]).
Note that Gross and Zagier assume that the Heegner discriminant is odd;
see |GZ86, §1.3]. O

To evaluate this formula, we need the Petersson norm from 3.5, and we
need to evaluate L'(f?/K,1). By the Artin formalism of L-functions,

L(f/K,s) = L(f,s)L(f ® ek, 5)
with f ® ek the twist of f by (the Kronecker character associated to) K. Its
first derivative at s =1 is
L(f/K1) = L(f, )L (f ®ex, 1) + L'(f, 1) L(f @ ek, 1) -

Since K is a Heegner field by assumption, L(f/K,s) vanishes to first order
at s = 1. This implies that exactly one of the two terms in the sum is non-
zero; which one it is can be decided by considering the action of the Fricke
involution wy on f: if wy - f = f, then L(f,1) = 0; otherwise, wy - f = —f,
and L'(f,1) = 0. The special values of the L-functions of newforms and their
derivatives can be computed to arbitrary precision using Tim Dokchitser’s
Magma implementation [Dok04]. It provides a TensorProduct function for
L-functions, which however tends to be slow in our use case. So we construct
the tensor product L-function L(f ®eg, s) ‘by hand’ for performance reasons,
explicitly giving the Euler factors.
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We finally obtain a formula for lAL(y};)

Corollary 3.7.2. Let K be a Heegner field for f and let y}; € Ay(K)Y be
an associated Heegner point. Then

u? /=D Z L'(f°/K,1)

2N [y Ce = L(Sym? fo,2) "

Proof. Since the yx , are orthogonal with respect to the height pairing, we

have fAL(y};) =3 h(yk.o). Now combine Theorem 3.7.1 and Corollary 3.5.2.
([

hyl) =

3.8. Comparing canonical heights. Our goal in this section is to de-
termine ﬁJ(yKJr) (so that we can either use that to identify yx » up to a
sign and adding torsion assuming there is an essentially unique point of
that height, or to verify that our computation of yx , is correct). Recall
the diagram (3.4), in particular the endomorphism « of J defined in (3.5)
that, composed with the canonical polarization A; of J induced by the theta
divisor, equals A = mjomy.

We freely use standard facts about height pairings on abelian varieties; see
for example [BG06, §9]. We denote by (—, —) the height pairing on J (such
that hy(z) = (z,z);). By [BG0G6, Prop. 9.3.6] (noting that our hy is twice
their iLg), it satisfies

(r,2"); = hop(\s(2),2),
where h (=) is the canonical height on JV x J associated to the Poincaré
bundle &2. Similarly, we obtain the canonical height associated to a polariza-
tion X\: JY — J as hy(z) = ho(z, M(x)). If ¢: A — J is a homomorphism
and Aqv: AV — A is a polarization such that
A= Av =podgvopY :ao)\_l
with o € Endg(J), then by functoriality of heights, we have for = € J(Q)

T (07 (A (2)) = hgven A (@) = (A (@) = hp (A (2), A (2)))
= hop(\s(@),a(2)) = (z,a(x)),.

Proposition 3.8.1. For each o € ¥, write Yi ro = Tj(yx,0) € J(K) @z R
for the o-component of yi .. Then iLJ(yKﬂ—o—) = a"ﬁ(yK,o), and so

hy(Wrs) =Y " h(yko)
oeX
Proof. Chasing yg , through the diagram (3.4) and taking into account the
definition of o € O C Q(f), we see that (identifying AY(K) with its image
under the inclusion ¢¢)
™' (N Wrre) =1 (Ao m)(yr,o)) = 77 (A o m) (YK o))
=0 YKo = aUyKJ-
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By the discussion preceding the proposition, we have
ﬁ(ﬂ'v ()\J(yK,ﬂ',o))) = <yK,7r,cr7 (% yKJr,a>J = <yK,7r,Ua aUyKJr,o>J

= a0<yK,7T,O’7 yK,ﬂ',a>J = agilJ(yK,fr,a)‘

| herefore,
7 Itl‘ 7 v )\J yK7 o il (67 Ko o1
hJ(yK,ﬂ’,O') — ( ( ( — ))) ( UK. ) « h(yK,o) . ]

a’ af
When X is a quotient of Xo(NV), this gives a particularly simple formula.

Corollary 3.8.2. Assume that wx: Xo(N) — X is a finite covering of
curves of degree n and that wy: Jo(N) — J is induced by wx via Albanese
functoriality. Then

hy(y.x) = nil(?/{() .

Proof. In this case, &« = A\j omy o) is multiplication by degmx = n, so
a? =n for all 0 € ¥. Now use Proposition 3.8.1. O

In the general case, we can determine « as described in Section 3.1. We
record the final general formula for the height of yx .

Corollary 3.8.3. With the notation introduced so far, we have
- u2./—Dgm L'(f°/K,1)
hy(yg..) = —B e —=— o —— L
(¥ 2N Tlpn Ce 2, L(Sym? f7,2)

Proof. Combine Theorem 3.7.1 and Proposition 3.8.1. U

Remark 3.8.4. In a similar way as in the proof of Proposition 3.8.1, we obtain
the formula R
B ykmy yka)s = Y oL h(Yk,o)
ocEX
for arbitrary 8,y € O. This allows us to compute the height pairing matrix M
for a Z-basis of Oyk » and from this the regulator RegOyKJr = det M. Then
the Heegner index is given by

Regp _
IK,ﬂ' = #J(K)tors — .
Reg s k)

4. COMPUTING THE ANALYTIC ORDER OF III

Recall that J is an absolutely simple and principally polarized abelian
variety over Q of dimension g of GLo-type with associated newform f €
So(T'o(N)), and Ay is the modular abelian variety associated to f. In
particular, Ay and J are isogenous.

For an abelian variety J over a number field F', we define the Tamagawa
product to be

Tam(J/F) := HCU(J/F),
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where v runs through the finite places of F'. When J is the Jacobian variety
of an explicitly given curve, the Tamagawa numbers ¢, (C/F) (which are 1 for
all places of good reduction) and hence the Tamagawa product Tam(.J/F')
can be computed. For Jacobians of genus 2 curves in the LMFDB [LMFDB],
this information is also available in the LMFDB. For the Tamagawa number
at 2 in the example in Appendix A, we compute a regular model by hand.
We now describe how to compute the analytic order of the Tate—Shafarevich

group

(r) 2
(41) #HI(J/Q)an — L (J/Q7 1) X (#J(Q)tors) )
r'QyReg;q Tam(J/Q)
as an exact positive rational number, assuming that L-rk.J € {0,1}.

Note that we can provably verify that L-rkJ € {0,1} and determine
L-rk J in this case. The Fricke involution wy sends f to f or —f. In the
first case, the analytic order of L(f,s) is odd, and in the second case, it is
even. In the even case, we can show that L(f,1) # 0, and in the odd case
that L'(f,1) # 0 by computing the respective value numerically to a high
enough precision.

4.1. Comparing the real periods of A; and J. Let A be an abelian
variety over Q of dimension g with Néron model & over Z. We say that
a Q-basis of H(A,Q') is a Néron basis for A if it is a Z basis of the

image of HO(M,Q}%/Z). Let (wi,...,wy) be a Néron basis for A. Then
g

WA = w1 A+ Awy is a generator of the free Z-module of rank 1 H%(7, QQ{/Z).
Recall that the real period of A is

Qa ::/ ]wA|:‘/ wA‘.
A(R) A(R)

Let B be another abelian variety over Q of dimension g with Néron
model B over Z, and let m: A — B be an isogeny. Since by the Néron mapping
property, 7 uniquely extends to the Néron models, one has 7*wp = n,-w4 with
an integer n,. By the above, |n;| = ¢, where ¢ is defined in Definition 3.1.3.
We now compare 24 and Qp.

Lemma 4.1.1. Let m: A — B be an isogeny of abelian varieties of dimen-
sion g over Q. Denote by mr the morphism A(R) — B(R) on the real Lie
groups. Then
Qp  #cokermr - ¢
01~ Fkemm C &0
Here, ¢ divides e(m)9, where e(m) is the exponent of kerm, #kermr di-
vides degm, and #coker mr divides the number #mo(B(R)) of connected
components of B(R), which divides 29.

Proof. The isogeny 7 induces a short exact sequence of real Lie groups

0 — (ker7)(R) — A(R) == 71(A(R)) — 0.
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This gives, for w € H°(B, Q9),

N #ker Tr
T w = #Kker g, - w=-—-——" w,
A(R) im (R) #coker TR J/p(R)

where the second equality uses that w is translation-invariant (compare [Jor05,
Lemma 5.13]). Hence,

Qp fB(R) |ws| _ Cn fB(R) |wal

Qa Jamy lwal Bl Jawy I7*wl
G #coker TR - fB(R) wg| _ Cg - #Fcoker TR
#ker TR - fB(R) lwal| #ker TR

One has #ker g | deg 7 because ker g C ker . Let n': B = A/ker m —
A/Ale(r)] = A be the isogeny such that 7 o 7’ is multiplication by e(m).
Then

NpMy - WB = Ny - Twg =7 Trwp = (mor)wp = [e(n)*wp = e(m)? - wg,

s0 ¢r = |ng| divides e(m)9. 7R is a topological covering map, so its image
is open and closed, i.e., a union of connected components. This implies
that #coker mg divides #mo(B(R)). Since the trace map B(C) — B(R) has
image the connected component B(R)? of the origin, it follows that 7 (B(R.))
is killed by 2. This implies that mo(B(R.)) is isomorphic to B(R)[2]/B(R)°[2]
of order dividing 49/29 = 29 [Sch96, proof of Lemma 3.10]. O

Note that we can determine #ker g and #coker mr explicitly if we have
a suitable computational representation of the isogeny m; see Section 3.1.

Remark 4.1.2. See [Jor05, Lemma 5.13] for a similar statement over arbitrary
completions of global fields.

4.2. Computing L(J/Q,1)/Q;. We now consider the isogeny 7: Ay —
J. The formula for #III(J/Q)an contains the factor L(J/Q,1)/2;. In
this section we explain how this can be computed as a rational number.
By Lemma 4.1.1, we have

L(T/Q1) _ LA/Q1) Qu, LA /Q1) 1 #hermg

Qs Qa, Qs Qa, cx #cokermr

and Q4, = ¢y - Q;lf, where Q;xf is the volume computed with respect to a
Z-basis of So(f,Z) instead of a Néron basis. This gives

(4.2) L(J/Q1) _L(A;/Q1) 1  #kermg
| Y - Q’Af cgcx  Frcoker TR

The quotient LR(Ay) := L(A;/Q, 1)/Qf4f is what Magma calls the LRatio
of Ay. This Magma function computes LR(Af) € Qx¢ directly using modular
symbols, but this computation is very slow and needs lots of memory when
the level N of f is not very small (this seems to be caused by a computation
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of an integral homology basis of the ambient modular symbols space). The
computation runs in reasonable time for N < 1000, which is enough for the
L-rank zero case, but becomes infeasible for example when N = 6772, which
is the first relevant level in the L-rank one case.

So we use a numerical method instead. We compute numerical approx-
imations to L(A¢/Q,1) and to Q’Af or €; and recognize the quotient as a
rational number of small height. (See [Wut18] for a similar approach in the
context of elliptic curves.) To do that reliably, we need a bound for the
denominator of this quotient.

Proposition 4.2.1.

LR(Ay) = m for some m € Z>.

B #WO(Af(R)) : #Af(Q)tors
Proof. By [AS05, Prop. 4.6, the denominator of #mo(Af(R))-LR(Ay) divides
the order n of the image in Ay of the difference of the cusps represented by 0
and co. This image is a rational torsion point, so n | #A7(Q)tors- O

Corollary 4.2.2. Let g denote the dimension of Ay and of J. Then
L(J/Q,1) _ m

QJ 49 - CfCr - #J(Q)tors

Proof. Note that #A(Q)tors divides #ker mr - #J(Q)tors and that #mo(Af(R))

and #coker g both divide 29. The claim then follows from (4.2) and Propo-
sition 4.2.1. ]

for some m € Z>q.

Since we can determine #.J(Q)tors (an upper bound obtained from the
L-series coefficients as in [AS05, §3.5] would be enough) and we can com-
pute cyer by Lemma 3.1.6, it suffices to compute L(J/Q, 1) and € to suffi-
cient precision so that the resulting approximation to 49 - cycq - #J (Q)tors -
L(J/Q,1)/Q2; has error < 1/2. We then round to the nearest integer to ob-
tain the numerator m in Corollary 4.2.2. In practice, we use higher precision
and check that the error is as small as can be expected.

4.3. The case of L-rank 0. We obtain the following formula.
Proposition 4.3.1. Assume that L(f,1) # 0. Then

2
#I(7/Q)n = ZLED BTl e

Proof. This is (4.1) for r = 0. O

Note that all quantities in the formula in Proposition 4.3.1 can be computed
explicitly: for the first factor see Section 4.2, for the torsion subgroup
see [St099, §11], and for the Tamagawa product see the beginning of this
section.
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4.4. The case of L-rank 1: Computing #I11(J/K),,. In the following we
keep assuming that J is a Jacobian. In particular, J is principally polarized.
When the L-rank is 1, we first find a Heegner field K and compute the
analytic order of III for J/K exactly from the BSD formula
Qy/x Regf]/K Tam(J/K)

L*(J/K’ 1) - #LH(J/K) ' \/ ‘DK’g ' (#J(K)tors)2 '

Here the period €2/ is defined as

(4.3) U= [ fwnal
J(C)

where w is a generator of the free rank 1 Z-module of top Néron differentials
on J (this works since J/K is base-changed from an abelian variety over Q).
Note that this is 29 times the covolume of the period lattice (which is generated
by the columns of the big period matrix Il;, if it is computed with respect
to a Néron basis of the invariant 1-forms).

The regulator Regf, K is computed with respect to heights over K. We
will write Reg; i to denote the regulator with respect to the normalized
height; we then have that Regf]/K = [K : Q) -Regy k. See [Tat95].
(In the literature, the formula is often stated without making precise what
‘the regulator’ and ‘the period’ are, which can lead to confusion. See the

answers to the Math Overflow question at [DS] and [Cre23| for a discussion.)
We deduce that

(#J(K)iors)®  L*(J/K,1)/|Dk[’

Tam(J/K)  Qy/g[K : Qk/E) Reg x

_ (#J (K )tors)” ) [1, 1672| f7? ) 1L, h(yK,a)
Tam(J/K) - u3? Qi 29Reg /i’

where o runs through the g embeddings o: Q(f) < R. The second equality
follows from the Gross—Zagier formula Theorem 3.7.1 with

(9)
R

(44)  H#UII(J/K)an =

(4.5)

L*(J/K,1)

where L(f/K%,s) = L(f°,s)L(f° ® ek, s) with the quadratic character ex
associated to K|Q.

Note that all primes p of bad reduction for J/Q split as pp in K by the
Heegner condition. This implies that K, ~ Q,, ~ Kj and so in particular that
cp(J/K) = ¢p(J/Q) = c5(J/K). Therefore the Tamagawa product over K is
the square of the Tamagawa product over Q.

(4.6) Tam(J/K) = Tam(.J/Q)>.

We now describe in a series of lemmas how to determine the last two factors
n (4.5). Combining the results gives the explicit formula in Corollary 4.4.8.
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Lemma 4.4.1. Let f € N(N,g). Then the Petersson norm || f||? satisfies

SIS = lorl o= |y ni
)(C)

Xo

with wy = 2mif(z) dz.
Proof. See |GZ86, §1.6]. O

We now want to relate the product of the Petersson norms to the complex
period of Af. Recall the following diagram, where By = I;Jo(IN) is the kernel
of my.

(4.7) Byl Jo(N) —L s A,

WY Y

BY «—"— Jo(N)Y +——AY
Also recall the definition of dy from (3.1).

Lemma 4.4.2. Let W, be the image of Sym9 Xo(N) in Jo(N) (with respect
to some base divisor of degree g). Let By = IyJo(N) = kermy. Then the
intersection number Wy - By equals dy.

We thank Jakob Stix and Yusuf Mustopa for help with the proof.

Proof. Let m := dim Jy(N) = g(Xo(N)). By [ACGH85, Thm. V.1.3| (with
(r,d,n) < (0,g,m)) the class of Wy is 1/(m — g)!- 0™, where 6 is the class
of the theta divisor on Jo(N). We write d); for the product dj - - - dy, where

(dj,...,dy) is the type of X’ in diagram (4.7) above. Then

d;? = deg Ny = #(By Nker(}) = #(kerny N AY) = deg Af = d3,
SO d’f = dy. This implies that the intersection number is (compare [BL04,
Thm. 3.6.3])

O, "  (m—g-dy

R e [ T I -

We denote the Abel-Jacobi morphism Xo (V) < Jo(N) with respect to the

cusp 0o by ¢. Since ¢*: HO(Jo(N), ') = HO(Xo(N), Q1) is an isomorphism,

we can identify the differentials wgs with holomorphic (hence invariant)

1-forms on Jo(NN), which we also denote by wyso. The map 7y: Jo(IN) — Ay

induces an injective homomorphism 7 : H(A4(C), Q') — HO(Jo(N)(C), Q1)

whose image is the subspace spanned by the wyo. We write wa, , for the
uniquely determined preimage of wy¢s under this map.

Lemma 4.4.3. With the notation introduced so far,

gl = dy - / (a0 ATTA).
l:I Af(C)/U\ ! !
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Proof. To simplify notation, fix a numbering o1, ..., 0, of the embeddings
o: Q(f) = R and write w; for wyo;.
We first show that

H|waa||2:/ w1 AW A Awy Ay,
o Wy(C)

where W, is as in Lemma 4.4.2 with base divisor g - oo. Consider the

composition Xo(N)J LN Jo(N)9 > Jo(N) with the first morphism ¢ x ... x ¢
and s the summation morphism. This morphism has degree g! above its
image Wy since it factors through the g-fold symmetric power of Xo(V),
which is birational to W, via s. This gives

/ w1 Adwy A ... Awg A twg
Wy(C)

1 - _
= ()" s™ (w1 Nwy A=+ Awg A dwyg).
9> JXo(N)(C)s
Now for any invariant 1-form w on an abelian variety, we have that
s*w =Y 9_, priw with pry the kth projection Jo(N)9 — Jo(N); see [BLO4,
§1.5(9)]. This implies

g g g g
(9)°s° ( A Aw> = ()" ( A (X pries) A (Zprzwj)).
j=1 =1 k=1 k=1
We expand the right hand side. Terms containing two factors prj w; or
two factors pr",;@ with the same k vanish since the wedge product of two
holomorphic differentials on a curve vanishes. So we are left with a sum of
terms of the form
1

ii
9! Jxo(y(C)o

pri(wj; A z'wji) A A pr;(wjg A iwjé)

1 4 /
= +— wj, N\ iwj/
9!,}:[1 Xo(N)(C) g

with {j1,...,7} = {J1,---,dg} = {1,...,9}. Now when j;, # j;, for some £,
then the corresponding integral vanishes since the f7 are pairwise orthogonal
with respect to the Petersson inner product. All the remaining terms have
a positive sign (all relevant permutations are even) and differ only in the
ordering of the factors; in particular, there are exactly g! such terms. So we
obtain

/ /\(wfgm'wfa):/ w1 Adwy A Awg A dwg
Wy(C) & Wy(C)

g
= W/\ﬁ: (,Uo2
11/, e "7 = Iher

as desired.
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We now conmsider 7y|w,: Wy — Ay. Since dimW, = dim Ay = g and
by Lemma 4.4.2, W, meets generic cosets of By = ker m; transversally in
Wy - By = dy points, we finally obtain that

Huwfawz/ w1 Adwr A Awy Adwg
o Wy(C)

= /\(ﬁ;‘chpriTr*wAf,U)
/Wg(C) o g

=d / (wa o Niwag ,0). O

We now relate the integral on the right hand side in Lemma 4.4.3 to the
period QAf/K.

Lemma 4.4.4. One has

i disc Z -
[ N nion ) = [ s na
Af(C) Af(C)

o “r
disc Z[f
~ B2 o ke
c
f
where wa, is a top Néron differential on Ay, i.e., a generator of Ho(ﬂff, 09)
with oy /Z the Néron model of Ay, Qa,/rc = fAf(C) lwa, Nwa,|, and cy is
the Manin constant cy from Definition 5.1.4.
Over R, one has

disc Z[f]
WA o= -Qy )
/Af(R)/U\ ! cr /9

Proof. Let (f;)i_; be a Z-basis of Sy(f,Z). Then f = 37,b;f; for some
b; € Z[f], which form a Z-basis of Z[f] = Z[a,(f) : n > 1]. The matrix
A = (b)o,; then is such that A - (fj);r = (f?)}, and it satisfies

det(A)? = det(bg)i(, = disc Z[f].
By the definition of ¢y, we have that

|Trwa,| =cp - lwp Aes Awy, |,
so
]wAf Nwafl= c?c . ‘/\(wA,j A iwA,j)‘ ,
J

where TI';ZOJ Aj = Wy We also have that

/\(wAf,(, Niwa, ) = (det A)? /\(WA,j Niwa ;) -
J

g

Combining these gives the result.
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The formula for A¢(R) follows in the same way, the only difference being
that we do not take wedge products with conjugate differentials, hence we
get the square root of the factor. O

We need to compare the periods €2/, and Q4 /5.

Lemma 4.4.5. One has

Qe &

QAf/K - degﬂ"

where ¢ is as in Definition 3.1.3.

Proof. Note that the top Néron differentials wa ; and wy on Ay and J are
related by m*wy = +ci - WA Hence

QJ/KZ/ wy ANWy| = ! / |7 (wy AN @7

J(C) degm Ja,(c)
_ ! _ g O
-5/, o e N el = Gt

Combining Lemmata 4.4.1 and 4.4.3 to 4.4.5 yields the following explicit
expression for the second factor in (4.5).

Corollary 4.4.6. One has

[1, 87>l f7[]* _ degm - dy - disc Z[f]
= 2 € Q>0 .
QJ/K (Cfcw)

We now consider the third (and last) factor in (4.5).
Lemma 4.4.7. One has

Ho- iL(yK,O') _ IIQ(,W c Q
Reg /i (#J (K )tors)? - N(a) - disc Endg () >0

where o € EndqJ is defined in (3.5) and I x is the Heegner index of J with
respect to the chosen isogeny w: Ay — J; see (3.7).

Proof. Since ah(yg o) = hy((m o M) (YK ,s)) (see Proposition 3.8.1),
N(o) [[yxo) =[] e"Myxo) = [ hs((m o Ap)(yKo)) -

Here o runs through the embeddings Endq(J) — R. Now

Reg;(Endq(J) - yx,x) = det({bi - Yk x,bj - Yi,m)s)

with (b;)7_; a Z-basis of Endg(.J).
But (7o Af)(yr,o) = D9-1 bj - yrer ® 077, where (b5)7_; is the dual basis
of Endq(J) ®z R with respect to the trace pairing (a,b) — Trgnaq () z(ab)
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of Endq(J); see (3.11). Using this and the fact that the (m o A¢)(yk,s) are
orthogonal in pairs with respect to the height pairing, we find that

[T 7m0 A (o)) = det({(m 0 Ap) (YK 1) (7 0 Ap) (Yrs)).)
’ — Reg, (Endg() - yicr) - det(57)?
= Reg;(Endq(J) - yx,x) - det(b7) 2
= Reg;(Endq(J) - yx.») - (disc Endg(J)) .

Using that Reg;(Endq(J) - yx,x) = I%{,w Reg;/k J(#J (K )iors)?, we finally
obtain

IL 7(yro) _ 1L hy((moAf)(yK.o)) _ Regy(Bndq(J) - yxr)
Reg/k N(a) - Reg,x N(a) - Reg )k - disc Endq(J)
IR

" (#J(K)iors)? - N(a) - disc Endg(J)’ s

We can now compute #II(J/K)an € Q¢ exactly, as follows.

Corollary 4.4.8.
1 disc Z[f] ( Ik« )2
(cper)? discEndg(J) \Tam(J/Q)-uf/

Proof. This follows from using Corollary 4.4.6 and Lemma 4.4.7 in (4.5),
noting that the factor 29 cancels and that N(«) = dy - degm by (3.6). [

Since Z[f] and Endg(J) both are sub-orders of the ring of integers of Q(f),
the quotient of their discriminants is a square. So #III(J/K ),y is a square;
this is consistent with the fact that J over K is even in the sense of [PS99|
since the only bad places are primes that split in K, and the curve J is the
Jacobian of is simultaneously deficient or not at both places above a bad
prime p of J over Q.

#UL(J/ K )an =

Remark 4.4.9. Assuming Z[f] = Endq(J) and ug = 1, all invariants on the
right hand side of Corollary 4.4.8 are orders of finite O-modules in a natural
way. It is natural to ask for a refined BSD formula over O, namely whether

the element in the Grothendieck group of finite O-modules corresponding to
the right hand side of Corollary 4.4.8 equals that defined by II(J/K).

4.5. Periods of quadratic twists. In order to compute #I1(J/Q)an in
the L-rank 1 case, we also need to compute #II1(J% /Q)an. We can do this
as described in Section 4.3. This requires the computation of the quotient
L(JX/Q,1)/9Q k. We do that as explained in Section 4.2. The computation
of O x requires the period matrix of JX. We explain in this section how
we can obtain this period matrix easily from that of J. See Corollary 4.5.3
below for a slightly more general version. We also need to determine cyxc
to obtain the bound for the denominator. We show in Corollary 4.5.6 that it
is the same as cycy.
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The following result is a generalization of [Pall2, Lemma 3.1 and Cor. 2.6]
from elliptic curves to more general abelian varieties. We first state a local
version. We will frequently use the embedding

HY(o ", Q') — HO(AR, Q') — H(Ak, QY
induced by the isomorphism A% ~ Ag, where &7¥ is a Néron model of the
quadratic twist AX.

Lemma 4.5.1. Let A be an abelian variety over Q,, where p is an odd
prime; assume that A has good reduction. Let K|Qy be a ramified quadratic
extension, given as K = Qp(w) with w? = up, where u € Zy. Let o
and /% denote the Néron models of A and of its quadratic twist A over Z,.

Then the image of HO (/X Q) in H(Ag, Q') is 1/w times the image
of HO(a7, Q).

We thank Kestutis Cesnavicius for help with the proof.

Proof. Let L and L¥ denote the images of H(.«7, Q') and of H(&/ X Q)
in V := H(Ag, Q'), respectively; they are free Z,-submodules of V' of
rank g = dimg V = dim A. Then L is the Z,-dual of Lie(«/) — Lie(Ak)
(i.e., it consists of the differentials w such that (A\,w) € Z, for all A € L
under the natural pairing between the Lie algebra (the tangent space at
the origin) and V' (its dual)), and similarly for L. To see this, note first
that HY(.e7, Ql)) is identified with H°(Spec Z,,e*Q1 ), where ¢ is the zero
section of &7 see [BLR90, §4.2, Prop. 1|. Then by [BLR90, § 2.2, Prop. 7(b)|,
e*Ql, = I/7?% where T is the ideal sheaf of the zero section of /. The
functor of points definition of the Lie algebra then gives that Lie() is the
Z,-dual of T/Z?. These identifications are all compatible with base change
to Qp, so the duality is compatible with what is happening on the generic
fiber.

It therefore suffices to show that L¥ = w - L. By our assumptions,
K|Qp is tamely ramified. By [Edi92, Thm. 4.2|, the natural map induces
an isomorphism of <% with the subscheme of the restriction of scalars
Ry,[=)/2,92,=) fixed by the twisted action of Gal(K|Qp). Taking the
invariants under this action commutes with forming the Lie algebra, so we
obtain that L¥ is obtained by taking the invariants under this twisted action
on Lie(#z, ()) = L ®@z, Zy[w]; this invariant space is exactly @ - L. O

Corollary 4.5.2. Let A be an abelian variety over Q and let K be a quadratic
number field of odd discriminant Dy such that all primes of bad reduction
for A are unramified in K. Let o and </ denote the Néron models of A
and of its quadratic twist AKX over Z. Then the image of HO(a/®, Q1)
in HY(Ag, QY is 1//Dx times the image of H (a7, Q).

Proof. Fix a Néron basis (wi,...,wy) for A, where g = dim A. Identifying
invariant 1-forms on A and on AX with their images on Ak, we see that
(\/DK_lwl7 el \/DK_lwg) is a Q-basis of the space of invariant 1-forms
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on AX. Since K|Q is unramified at all places of bad reduction of A, these
1-forms will form a local Néron basis at all these places, and also at all places
of good reduction for A at which K|Q is unramified. Finally, Lemma 4.5.1
(with @ < /D) shows that they also form a local Néron basis at all places
where K|Q is ramified. So we have obtained a (global) Néron basis for AKX
and the claim follows. (|

Corollary 4.5.3. Let A be an abelian variety over Q and let K be a quadratic
number field of odd discriminant such that all primes of bad reduction for A
are unramified in K. Let 114 be a big period matriz for A with respect to a

Néron basis of H(A,QY). Then \/DK_ll_IA is a big period matriz for the
quadratic twist A with respect to a Néron basis of H'(AK, Q).

Proof. We use the Néron bases described in the proof of Corollary 4.5.2.
Fixing an embedding K < C and a symplectic basis of Hy(A(C),Z), we see

for the resulting period matrices that Il jx = \/DK_IHA. O

We can use this result, together with the following elementary statement
about abelian groups with an involution, to relate the period of A/K to the
real periods of A/Q and A% /Q when K is an imaginary quadratic field.

Lemma 4.5.4.

(1) Let V' be a finite dimensional Fo-vector space and let © € GL(V') with
2 =idy. Then (V : (id +0)(V)) = #V .

(2) Let G be a finitely generated abelian group and let 1 € Aut(G) with
2 =idg. Let Gy = {g+(g): g€ G} and Gy = {g —1(g9) : g € G}.
Then .

(G.Gl—i-Gg)—#(%) .

Proof.
(1) The map ¢ :=id + ¢ = id — ¢ has kernel V). Since V is finite, we have
(V : (id 4 0)(V)) = #coker ¢ = #ker o = #V ) |

(2) Since for each g € G, 29 = (9 + ¢(9)) + (9 — t(g9)) € G1 + G2, we have
that 2G C G + Ga. Therefore, using part (1),
. (G Gi+Gy G G\ G\®
(@:61+62) = (351 —5 ) = (g5 :4+0(55)) = #(55) - O

Corollary 4.5.5. Let A and K be as in Corollary 4.5.3, with Dy < 0. Then

Qu/qQax/qVIDxl”  #AR)[2]
Qa/x 2

= #mo(A(R)).

Proof. We use II4 and II4x to denote big period matrices of A and AX
with respect to a Néron basis of the invariant 1-forms. The period 4,k is
29 times the covolume of the lattice A C CY9 (where, as usual, g = dim A)
generated by the columns of IT4 (a Néron basis of HY(A4/Q, Q') gives a
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Néron basis of H(A/K,Q'), since at the bad places of A, K|Q is unramified
and Néron models are preserved by unramified base extension). The real
periods 24,q and 2,k q are the covolumes of the lattices in RY generated
by the C|R-traces of the columns of II4 and Il 4x, respectively. The first
lattice is Aj = {A+ X : A € A}. By Corollary 4.5.3, T ;x = Dj;'/*T14 (using
suitable bases), which together with Dk < 0 implies that Q4 /q is / Dg| ™’
times the covolume of the lattice in RY generated by the C|R-traces of the
columns of v/—1 - II4. This is the same as the covolume of Ay C v/—1RY,
where Ao = {A — X : X € A}. So QA/QQAK/Q\/‘DKF is the covolume of
Ay 4+ Ag C CY9. Applying Lemma 4.5.4 (2) with G = A and ¢ the restriction
of complex conjugation, we finally obtain

Qa/QQx VD[ (A A ) A0 #AR)2

Qa/i 29 29 29 ’

where (A/2A)" denotes the subgroup fixed under the induced action of
complex conjugation. (Note that A(C)[2] ~ 1A/A ~ A/2A as a Gal(C|R)-
module.) The last equality comes from the fact that #A(R)%[2] = 29, since
the connected component of the identity is a g-dimensional real torus. [

Corollary 4.5.6. Let f € N(N,g) and let K be a quadratic number field
such that D is coprime with 2N. Let further m: Ay — J be an isogeny
defined over Q. We write f& and 7 for the corresponding quadratic twists
of f and m, respectively. Then cyxcpx = cyey.

Proof. The map my: Jo(IN) — Ay is geometrically defined, so 7« is the same
. . K : : * 170

as the quadratic tw;st 7y of my. Note that ¢y is the index of 73 H" (<7, Q}?{f/z)

in ﬂ;‘c(Af,Ql) NH (fO(N)vgljo(N)/Z) (where, as usual, &/ and _Zy(N)

denote the Néron models of Ay and Jo(IN) over Z). Applying Corollary 4.5.2,

we see that, considered inside H(Jo(N) g, 2'), the images of both spaces are

multiplied by 1/v/Dg by twisting, so the index stays the same. This shows
that cyx = c¢y. An analogous argument shows that ¢ x = cr. U

4.6. The case of L-rank 1: Computing #III(J/Q)an. We now show how
we can compute #II(J/Q)an from #III(J/K)ay as determined in Section 4.4
and #I11(J% /Q)an, which we can compute as in Section 4.3 since the L-rank
of JX is zero by the Heegner hypothesis.

From the induction formula L(J/K,s) = L(J/Q,s)L(J% /Q, s) we obtain

LY(J/K,1) = L9(J/Q,)L(J¥/Q,1).
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Then one computes #I11(J/Q)an from the relation

HI(J/K )an = #I(J/Q)an - #UL(J" /Q)an
(#J(K)tors)Q
(#J(Q)tors>2(#JK(Q)tors)2

Tam(J/Q)Tam(J%/Q)  Regyq sk \/[Dkl’
Tam(J/K) 25] Rng/K QJ/K

(4.8) :

that we obtain from (4.4) and its analogues for J/Q and JX/Q.
As discussed at the beginning of Section 4.4, both regulators are defined
in terms of the normalized canonical height. This implies that

Rng/Q . (#J(K)tors)2 . . 9
(#J(Q)tors)? Reg /i = (J(K) - J(Q))"-

Since we have computed J(K) already, we can easily determine this index.
By Corollary 4.5.5, the last factor is #J(R)[2]/29, assuming D is odd.

We can evaluate the factor involving Tamagawa numbers using the following
result. This is not strictly necessary for the formula in Corollary 4.6.2 below,
but will be useful for the example in Appendix A.

Lemma 4.6.1. We have
Tam(J%/Q) = Tam(J/Q) - [] ¢(J*/Q)

pIDk
and hence
Tam(J/Q)Tam(J*/Q) _ 1y . (&
T+~ L9

where c,(JX/Q) = #J(Fp)[2] when p | Dk is an odd prime.

Proof. Since all bad primes p of J split in K, the Tamagawa numbers of J%
at these primes are the same as those of J and also agree with the two
Tamagawa numbers of J/K at the primes dividing p. Since the only further
primes of bad reduction for JX are those dividing Dy, we obtain the stated
equalities.

The last claim follows from the fact that JX has totally unipotent reduction
at p, which implies that there is no 2-torsion in ¢ (F,)° (where #¥ is the
Néron model of JX), together with the fact that the component group is killed
by 2 since JX obtains good reduction after a quadratic extension (see [HN16,
Cor. 5.3.3.2]). This gives an isomorphism between J(F,)[2] ~ #X(F,)[2]
and the F,-points of the component group. ([

Recall that Tam(J/K) = Tam(J/Q)? by (4.6). We then obtain the
following.
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Corollary 4.6.2. Keep the notations and assumptions introduced so far. If
Dy is odd, then

_ disc Z[f] 49
#HI(J/Q)an = discEndq(J) #J(R)[2]- Tam(J/Q)

K _
’ ((J(K) :Iﬁﬁa)) : ug(>2’ (L(ngf’l)) :

Proof. Combine (4.8) with Corollary 4.4.8 and Proposition 4.3.1, applied
to JK. O

5. BOUNDING THE SUPPORT OF THE TATE—-SHAFAREVICH GROUP

Let A/Q be an absolutely simple GLo-type abelian variety with associated
newform f. In this section, we obtain an explicit bound on the support of the
Tate—Shafarevich group coming from the Heegner point Euler system. This
leads to an explicit description of a finite set of (regular) prime ideals p of Z][f]
such that III(A/Q)[p] = 0 for all p not in this set. In the L-rank 0 case we
make the results of Kolyvagin—Logachév [KL89] explicit and in the L-rank 1
case those of Nekovar [Nek07]. We first prove a result on the vanishing of the
first Galois cohomology group for irreducible p, in Section 5.1. Specializing
to the case where A = J is a Jacobian for simplicity (so we do not have to
deal with polarizations), we derive the explicit finite support for III(J/Q) in
Section 5.2; see Theorems 5.2.2, 5.2.3 and 5.2.6.

5.1. Vanishing of H'(F(A[p])|F, Alp]). We assume that p is a regular prime
ideal of Z[f] and set p = p(p). The goal of this section is to show that
the Galois cohomology group H!(F(A[p])|F, A[p]) vanishes when the mod p
Galois representation is irreducible (and p > 2); see Proposition 5.1.4. The
vanishing of this group is an important input for [KL89, Proposition 5.10].

Let F' be a number field with F' N Q(x,) = Q, which implies that the
mod-p cyclotomic character x,: Gal(F|F) — F) is surjective. (This level
of generality is needed later on and also useful for further applications, for
example in our forthcoming work on the BSD conjecture over totally real
fields with Pip Goodman.) Let G := Gal(F(A[p])|F) — G"**.

The main idea is that H'(G, A[p]) = 0 if G contains a nontrivial homothety.
Our arguments are purely group cohomological, without much arithmetic
input.

Definition 5.1.1. A homothety in the automorphism group of a vector
space V over a field K is a map of the form v — Av with A € K*. It is
nontrivial if A # 1.

Lemma 5.1.2. Let V be a finite-dimensional vector space over a finite field F
and let G be a subgroup of GL(V). If G contains a nontrivial homothety,
then HY(G, V) = 0.
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Proof. (Compare [LW16, Lemma 3].) Let g € G be a nontrivial homothety;
note that (g) is a normal subgroup of G. Consider the associated inflation-
restriction exact sequence:

0 —— HYG/(g), V) 0 HY(G, V) —= HY((g), V)

The left-hand group is trivial, since V{9 =0 (a nontrivial scalar matrix fixes
no nontrivial element of a vector space), and the right-hand group is trivial
because #(g) | #F* and #V = #FI™V are coprime. So the middle group
must be trivial as well. O

Lemma 5.1.3. Let F be a finite field of characteristic p > 3 and let
G C GLy(F) be such that G does not fix a unique line in F2. Then

HY(G,F?) =0.
Proof. We proceed in a number of steps.

(1) If N is a normal subgroup in G and N fixes a unique line, then so does G.
This is because G acts on the lines fixed by V.

(2) If N is a normal subgroup in G of index prime to p, then (by inflation-
restriction and since HY(G/N,V) = 0 for V = (F?)N) HY(N,F?) = 0
implies H! (G, F?) = 0.

(3) By (1) and (2), we can restrict to subgroups of SLso(F), observing that
G N SLa(F) is a normal subgroup of G of index dividing #F*.

(4) If #G is prime to p, then HY(G,F?) = 0. We can therefore assume that
p divides #G and therefore also #PG.

(5) If G contains —I (the unique nontrivial homothety in SLo(F); note p > 3),
then H'(G,F2?) = 0 by Lemma 5.1.2. Since —I is the unique element of
order 2 in SLy(F'), this is the case whenever #G is even, so in particular
when #PG is even.

(6) We consult [Kin05, Thm. 2.1], which lists all subgroups of PSLy(F). In
cases (f), (i), (p) and (u), p = 2. In cases (b)—(e), (g), (h), (j) and (k), p
does not divide #PG. In cases (n), (0), (q)—(t) and (v), #PG is even. In
the remaining cases (a), (1) and (m), PG is contained in a Borel subgroup
and has order divisible by p, so G fixes a unique line. In each case, either
the assumptions are violated, or we can conclude using (4) or (5). O

Proposition 5.1.4 (Irreducible implies trivial cohomology). Let A be an
absolutely simple abelian variety over Q of GLa-type and let p be a regular
prime ideal of Endg(A). Let F' be a number field that is a Galois extension
of Q. We assume that p(p) > 3 and that py|c, is irreducible. Then

HY (F(A[p))|F, Alp]) = 0.

Proof. Let G be the image of p, and let G’ := p,(Gr), which is a normal
subgroup of G. Since py is irreducible, G' does not fix a unique line; by
part (1) of the proof of Lemma 5.1.3; this implies that G’ also does not fix a
unique line. Then Lemma 5.1.3 says that

H' (F(A[p])|F, Alp]) = H'(G', F2) = 0. O
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5.2. Bounding the support of I1I(4/Q). Using our computations of G,
from Section 2 and the Heegner index from Section 3, we can improve [KL89]
and [Nek07] to give an explicit finite bound for the support of III(A/Q)
considered as a Z- or an O-module.

We do not repeat the full proof, we only explain how to make the arguments
explicit.

Assumption 5.2.1. Let A be a modular abelian variety of level N. We
write O := Endq(A) and assume that O is the maximal order of Q(f) (via
an isomorphism as in (3.2)). This is no essential restriction; compare Re-
mark 2.1.3 and note that the truth of the strong BSD Conjecture is an
isogeny invariant by [Mil06, Theorem 1.7.3]. (However, the support of III
can change under isogenies.) Let K be a Heegner field of odd Heegner
discriminant Dk # —3 (in particular, Di ¢ {—3,—4,—8}), i.e., K is an
imaginary quadratic field such that all primes dividing the level N split
completely in K. Then yg € A(K) is a Heegner point, and we assume that
L-rk(A/K) =1, i.e., yx » is non-torsion by the Gross—Zagier formula. Note
that yx » satisfies the Euler system relations from [KL89, §2| because the
isogeny 7 is equivariant with respect to the action of Z[f] C O; see (3.3).

In Table 2 we collect the most important objects and constants in [KL89].
We specialize to the case that A is the Jacobian J of a curve with its canonical
principal polarization. In particular, since J has RM, the Rosati involution
associated to the polarization is the identity on Endq(J)®zR, which we need
to use the results in [KL89, §2.1]. This implies that the polarization ¢p in
Table 2 is principal. Recall that Tam(J/Q) =[], c/(J/Q) is the Tamagawa
product of J. The component group mo(_#) of the Néron model 7 /Z
of J/Q is an O-module. This allows us to consider its order Tam(J/Q) as
the corresponding characteristic ideal in O in the following.

In Assumption 5.2.1 we assume that the endomorphism ring is the maximal
order. For several curves from the LMFDB, the endomorphism ring of the
Jacobian is not maximal. However, in all these cases there is another curve
in the database whose Jacobian is isogenous and whose endomorphism ring
is the maximal order. Since the validity of the strong BSD Conjecture is
preserved under isogenies, it suffices to consider these other curves.

Theorem 5.2.2 (Explicit finite support of III in the L-rank 0 case). Assume
L-rkJ = 0. Suppose that p is a mazimal ideal of O such that py is irreducible
and

pt2-Tam(J/Q) - glc(d(IKm) ,
where K runs through the Heegner fields for J/Q. Then
II(J/Q)[p] = 0.

Proof. Note that the arguments in [KL89] (there for a prime ¢) also work
for prime ideals p; this is explained in [DL19, § 7.1]: annihilation of modules
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symbol definition properties
my p™ - Selpee (J/Q) =0 m1 = ms + mio + 2(mg + m11) + mas
mz ordp(Anne (ker ¢a)) 0 if pa principal polarization
A 1, Anno (H' (K| Ky, J)) divides Tam(J/K) = Tam(J/Q)?
B ord(hk - A(j(7(0)))) divides #J (K )tors
z  AByk,r mod p"J(K)
my (1] 0ifpt2
me  [3g] + ma/2 0if degoa =1 and pt2
my  gma + me 0if dega =1 and pt2
ms  [2] + 3m7 + ma + ma2
= [12g + 3] + 5m2/2 0if degpar =1 and pt2
my Lemma 5.9 in [KL89] 0if p 12 and p, is irreducible
mio PO H(K|Q, J[p"](K)) =0 0ifpt2
v K(J[anrmz(P)D
mi P HY(V|K, J[p™]) =0 0 if py irreducible

miz r-x€ptJ(K) = rep" B30 0ifptABlg
TABLE 2. The constants mg(p™) and important objects oc-
curring in the proof of [KL89]. The notation “[m]” denotes m
when p(p) = 2 and 0 otherwise.

under O by p is translated to the annihilation under p | p using the Chinese
remainder theorem O/p D,, O/p. We set p := p(p).
Looking at Table 2, all constants m; are 0 for p satisfying our hypotheses.

(i) mg = 0 because p 1 2 and the polarization is principal.

(ii) If p4 Tam(J/Q), then p 1 A: Let p = p(p). Let v { p be a finite prime
of K with residue field F,. Let ¢ be the Néron model of J/K.
By [Mil06, Proposition 1.3.8],*

Hlllr(Kva J) ~ Hl(FvaO(/)(Fv))
~ liy H' (Fyn [Fo, mo(7 ) (Fon))

as O-modules. The last module is a subquotient of my(_Z)(Fyn)
since Fyn|Fy, is cyclic [NSWO08, Proposition 1.7.1]. (Note that con-
jecturally, Tam(.J/Q) divides all Heegner indices |GZ86, Conjec-
ture V.(2.2)]; see also Corollary 4.4.8.)

(iii) If p | B, then J(Q)[p] # 0, so py is reducible.

(iv) mg = 0 if p { 2 and p, is irreducible, because the irreducibility
implies that the p-isogeny graph is reduced to a point; see [KL89,
Lemma 5.9].

(v) p 12 implies that myp = 0, since #Gal(K|Q) = 2 is prime to #A[p].

(vi) pp irreducible implies my; = 0 by Proposition 5.1.4.

INote the erratum mentioned in the footnote above; it is fixed in the third edition
available at https://jmilne.org/math/Books/index.html.
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(vii) One can take mi3 to be

vp(Zr ) = vy (Charp(J(K)/Oyk)) .

This is because this choice of m13 = m;3(p>°) satisfies [KL89, Propo-
sition 5.12].

Hence my = 0, so Sely~(J/Q) = 0. O

To simplify notation below, we write J#,(f) for the set of all Heegner
fields K such that a,(f) Z ex(n)a,(f) (mod p) for some n coprime to N,
where e is the nontrivial quadratic Dirichlet character associated with K|Q.
In practice, we find a Heegner field K such that K € JZ,(f) for all p 12 by
checking that for some small bound B the ideal

(an(f) —ex(n)an(f): (n, NDg) =1, n < B)

of Z[f] has norm a power of 2 (note that the norm is always divisible by 2).
Note that this ideal is non-zero if f does not have CM by € in the terminology
of Definition 2.11.1.

Theorem 5.2.3 (Explicit finite support of III in the L-rank 1 case). Assume
that L-rk J =1 and J/Q is simple and does not have CM. Suppose that p is
a mazimal ideal of O such that py is irreducible, K € J%,(f) and

p f 2. Tam(J/Q) -Z—K77r . hK,
where hg s the class number of K. Then
I(J/Q)[p] = II(J/K)[p] = 0.

Proof. In the setting of [Nek07], F = Q, K is a Heegner field for J/Q, the
character « is trivial (see the main theorem at the beginning of [Nek07]),
therefore K () = K and hence 5 = 1 by [Nek07, (3.1)]. According to [Nek07,
7.3, 7.5, 7.5.3], we have to show that our hypotheses imply C;(p) = 0 for
i=1,...,6,0 (with C;(p) as defined in [Nek07]):

(1) If p  Tam(J/Q), then Ci(p) = 0 because of the definition of Ci(p)
in [Nek07, Proposition 5.12| and by the argument in the proof of Theo-
rem 5.2.2.

(2) If ker (H'(K, J[p]) = H'(K(J[p]), J[p])) = O, then Ca(p) = 0 [Nek07,
Proposition 6.1.2]. By Proposition 5.1.4 and the inflation-restriction
sequence, this holds since py|q, is irreducible by Corollary 2.8.5 (here
we use D # —4, —8,—3; compare Assumption 5.2.1).

(3) Since «a is trivial, H = K(a) = K in [Nek07, §6|. Hence there we only
need to consider the Dirichlet character n = ex: Gal(K|Q) — {£1} of
Gal(K|Q) in [Nek07, Proposition 6.2.2], thus C3(p) = 0 if K € J(f).

(4) We have Cy4(p) = 0 because 32 = 1.

(5) By definition [Nek07, (7.4)], C5(p) =0if p{ hi.

(6) One has Cg(p) := ordy degy with ¢: J — JY a polarization (for the
Weil pairing) [Nek07, (7.4)]. Hence Cg(p) = 0 because J is principally
polarized.
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(0) Let z € J(K) be a Heegner point. One has
Co(p) :=max{c € Z>p: x € J(K )tors + P J(K)};

see [Nek07, (7.4)]. Hence Cy(p) = 0if p { Zi .

Note that these results imply II(.JJ/K)[p] = 0. Since p 12, II(J/Q)[p] =0
follows. O

We use the refined information that is provided by considering Tam(J/Q)
as an O-ideal in the following way.

Proposition 5.2.4. We assume that J is the Jacobian of a curve of genus 2.
Fiz an odd prime q. Let Z |7 be the Néron model of J/Q. If

(i) there is exactly one rational prime p with ve(cp(J/Q)) > 1 and we have
0alep(J/Q)) = 1 (then ay(f) € {£1,0}),
(ii) qO = qq’ is split in O with py irreducible,
(ill) vg(exp(J(Q)tors)) > vg(p — ap(f)), where exp(J(Q)tors) denotes the
exponent of the rational torsion subgroup of J,

then vy (Tam(J/Q)) = 0 and vy(Tam(J/Q)) = 1.

Proof. Since ¢ is odd, the g-primary part of J(Q)tors injects into _Z (Fp).
The group of Fj-points on the connected component of the identity of #F,
has exponent p — a,(f) since it is a product of two copies of F) (when
ap(f) = 1) or of the norm 1 subgroup of F;2 (when a,(f) = —1) or of F,
(when ap(f) = 0). So (iii) implies that the g-primary part of J(Q)tors maps
nontrivially into the g-primary part of mo(_#¥,)[Fp]. By (i), the latter is
the same as the g-primary part of the ideal Tam(.J/Q) and it has order ¢,
so by (ii), this g-primary part of Tam(J/Q) is either q or q. The map
from the g-primary part of J(Q)iors to mo(_#F,)[Fp| respects the action of
the endomorphism ring. Since pq is irreducible, only g can occur in the
characteristic ideal of J(Q)sors, s0 only g can occur in Tam(J/Q). O

Ezamples 5.2.5. There are three Jacobians of curves from the LMFDB for
which we need to apply Proposition 5.2.4 to show that the p-primary part
of III(J/Q) is trivial for a degree 1 prime ideal p such that pj is irreducible.
For one curve each at levels N = 39 and 123, the Tamagawa product is 7 and
7 is split in the endomorphism ring. In both cases, there is rational 7-torsion
and c3 = 7, so the proposition applies. In the last case, N = 133 and the
Tamagawa product is 3, with ¢; = 3. We have ay =1, so v3(7 — az(f)) =1,
but luckily, J(Q) = Z/9, so condition (iii) above is still satisfied.

Under stronger assumptions on p we can even get an upper bound for
#II(J/K)[p>].

Theorem 5.2.6. Assume that L'(f/K,1) # 0. Let p | p > 2 be a regular
prime ideal of Endq(J) with pt hx -ur - N. Suppose im pyoc = Gy&&*. Then

Selpeo (J/K) = (Ep/Op) @ M & M



74 TIMO KELLER AND MICHAEL STOLL

with M finite of order bounded by #Oy/Ik . Here, Ey is the completion of
E = Endy(J).

Proof. This is [How04, Theorem A|. O
Note that this implies III(.J/K)[p>] = M & M, so in particular,
#UL(J/K)[p™] < #(Op/I1cx)"

Theorem 5.2.6 requires p to be a prime of good reduction and pp~ to be
surjective, which Theorems 5.2.2 and 5.2.3 do not.

6. COMPUTING II(J/Q)[p*>°] USING DESCENT

The results of the preceding section reduce the problem of showing that

#I1(J/Q) = #1.,(J/Q) to the verification that

Up(#m(J/Q)) - Up(#man(J/Q))

for finitely many primes p. The left hand side can be computed by studying
I(J/Q)[p>] for the prime ideals p of O dividing p. In most cases, we
need to show that III(J/Q)[p>°] = 0, for which it is sufficient to show that
I(J/Q)[p] = 0. We can compute (the size of) III(J/Q)[p] in principle by
doing a descent, i.e., by computing the p-Selmer group Sel,(J/Q) of J/Q.
Recall that

Sel,(J/Q) = ker (HY(Q, J[p])) = [[H"(Qu, J(Qu)))

and that the Selmer group sits in the following exact sequence.

— & — Sely(J/Q) — II(J/Q)[p] — 0.

pJ(Q)

(There are analogous definitions with p in place of p.) This implies that

vp (#I(J/Q)[p]) = vp(# Selp(7/Q)) — (deg p) tko(J/Q) — vp(#7(Q)[p]) -
So to verify that #III(J/Q)[p] = 0, it is sufficient to show that

dimp, Sel,(J/Q) < (degp) rko(J/Q) + dimp, J(Q)[p] .

6.1. Dealing with p = 2. We always need to determine #III(.J/Q)[2°],
since primes dividing 2 are always excluded in Theorems 5.2.2 and 5.2.3.
Luckily, for Jacobians of hyperelliptic curves, the size of the 2-Selmer group
can be computed fairly easily. This is described in [Sto01]| and is implemented
in Magma. If this computation shows that III(.J/Q)[2] = 0, then we know
that #111(J/Q) is odd.

The 2-primary part of III(J/Q) is somewhat special, as its cardinality
can be twice a square (the odd part, if finite, is always the square of some
group). Using results of [PS99], we can determine whether this is the case;
in particular, the computation of the 2-Selmer group is sufficient to detect
that #111(J/Q)[2%°] = 2. In all cases where the 2-part of #IIl,,(J/Q) is 1
or 2, this computation shows that #I11(J/Q)[2°°] has the expected value.
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When #111(J/Q)[2] > 2, but III(J/Q)[4] = II(J/Q)[2], then this can
be verified by computing the Cassels—Tate pairing on Sely(J/Q) (this is a
symmetric bilinear form on the Fa-vector space Sela(J/Q) whose kernel is
the preimage of 2I11(J/Q)[4]). A method for doing this is described in the
recent preprint [F'Y23] by Fisher and Yan, and an alternative approach will
be detailed in forthcoming work by Shukla.

There are ten cases in our database where #III,, = 4 (in all cases,
#,, € {1,2,4}), corresponding to the levels and isogeny classes

67c, 73a, 133e, 211a, 275a, 313a, 358a, 640a, 6400, 887a,

each of which occurs only once in the list. In each case, the 2-descent
computation shows that #III(J/Q)[2] = 4 as expected. For the two curves at
level 640 (that are quadratic twists by —1 of each other), there exists a Richelot
isogenous Jacobian J', for which a 2-descent shows that III(J'/Q)[2] = 0.
This shows that in both cases, #III(J/Q)[2°°] = 4, since elements of order 4
would have to survive the isogeny.

To deal with the remaining eight cases, we need to compute the kernel
of the Cassels-Tate pairing on III(J/Q)[2] and verify that this kernel is
trivial. Fortunately, Fisher and Yan [F'Y23] have computed the pairing on the
2-Selmer groups of all Jacobians of genus 2 curves in the LMFDB with even
analytic order of I1I. In particular, they have verified that #I11(J/Q)[2*°] = 4
in all cases where #111,,(J/Q) = 4. This finishes the verification for the
2-primary part of Il in our LMFDB examples. There is one of the ‘Wang
only’ curves that also has #I11(J/Q)[2] = #I11(J/Q)an = 4 (the curve with
label 125B); Tom Fisher has kindly checked for us using the code from [F'Y23|
that #111(J/Q)[2°°] = 4 for this curve as well.

6.2. Odd primes. We will now assume that p is a prime ideal of O dividing
an odd prime. We will also assume that degp = 1, as for primes of degree 2,
the computation tends to get fairly involved. The situation is then analogous
to that of a full p-descent (where p = p(p)) on an elliptic curve: the kernel
of the isogeny is isomorphic to Z/p x Z/p as a group, and it carries a Weil
pairing. How to do a p-descent on an elliptic curve is analyzed in detail
in [SS04]; most of what is done below builds on this analysis. For the general
theory of how to perform descent computations, see [BPS16]. We assume
that the prime ideal p is principal, generated by a prime element w. This
ensures that J/J[p] = J via the multiplication-by-zo map. This assumption
is satisfied in all the examples that we have considered.

We now assume in addition that p, is reducible; this is the most com-
mon situation when the general results do not allow us to conclude that
I(J/Q)[p] = 0. We then have an exact sequence of Galois modules

0 — My — Jp] — My — 0,

where M; and M, are one-dimensional Galois modules corresponding to
characters with values in Fj. A frequently occurring case is that J ]
contains a rational point of order p; then M; = Z/p, and the action on My
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is via the cyclotomic character x,. Let A = J/M; be the isogenous abelian
surface; write ¢: J — A for the corresponding isogeny and t: A — J for the
isogeny such that 1 o ¢ = w; its kernel is ¢(J[p]) ~ Ma. Then we have the
associated Selmer groups Sel(¢) € HY(Q, M;) and Sel(y) € H'(Q, Ms) and
an exact sequence (see [SS04, Lemma 6.1])

M(Q)
0— 2TPIQ) — Sel(¢) — Sel,(J/Q) — Sel(v) .
This allows us to bound dimp, Sel,(J/Q) via
dimg, Sel,(J/Q) < dimg, Sel(¢) + dimg, Sel(¢)) — dimp Q) .
' -7 ' " o(Jpl(Q))

Let S be a finite set of primes. For a finite Galois module M such that
pM = 0, we denote by HY(Q, M;S) the subgroup of cohomology classes
unramified outside 9, i.e., mapping to zero in H'(I,, M) for all primes q ¢ S,
where I, is the inertia group at g. (Since p is odd, we can ignore the infinite
place.)

By Lemma 3.1 and the following text in [SS04| (the arguments carry over
from elliptic curves to abelian varieties), the Selmer group Sel(6) of an isogeny
0: A — Ay is contained in H'(Q,ker6; S), where S is the set of primes ¢
such that the Tamagawa number ¢,(As2) is divisible by p, together with p.
We set

Sy = {p}U{q prime: p | co(J)}

and define S4 in a similar way. Then
Sa € Sy = {p}U{qprime:q|N}.

By considering the reduction type of J at ¢, we may be able to obtain a
smaller upper bound for S4.

Now let M be a one-dimensional (over F),) Galois representation given by
the character x: Gal(Q|Q) — F). Let MY := Hom(M, p1,) be the Cartier
dual, with character prfl. Let L be the fixed field of the kernel of pr—l'
The degree of L/Q divides p — 1, so is prime to p, so by inflation-restriction,
we see that

HY(Q, M) ~ HY(L, M)/ ~ HY(L, )V =~ (L7 /LP) D),

where the superscript (1) denotes the subspace on which the action of o €
Gal(L/Q) is given by multiplying by a, / raising to the a,th power, where
Gy = pr_l(a) € F,. We can restrict this isomorphism to the elements
that are unramified outside S. Here aL*P € L*/L*P is considered to be
unramified outside S when the extension L({/«)/L is unramified outside
places above primes in S; equivalently (when p € S), p divides all valuations
vq(e) for q | g ¢ S. Denoting the subgroup of elements unramified outside S
by L(S,p), this shows that Sel(p) € L1(S4,p)") and Sel(v)) € La(Sy,p)™D,
where L1 and Lo are the fields associated to M; and Mo, respectively.
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Since it occurs frequently, we give an explicit statement in the case that
J[p] contains a rational point of order p (then M; = Z/p and My = ). We
will use the notation

1, if A is true

A = {0 |
, otherwise.

Proposition 6.2.1. Let J be the Jacobian of a curve of genus 2 that occurs
as an isogeny factor of Jo(N) associated to a pair of conjugate newforms.
Let p be a prime ideal of degree 1 of O = End(J) of residue characteristic p.
Assume that J[p](Q) = Z/p and that the class number of Q(pp) is not
divisible by p. Then

dimg, HI(J/Q)[p] < #{q prime: q| N and ¢ =1 mod p}
+#q prime:p | cg(J)} +[p | N = ko J(Q).

If in addition there is a prime £ =1 mod p such that the natural map

re: Qq:p | cg(J) orq=p| N}, p) — Q) /Q,”

is montrivial and the map
ri: QUup)({p} U{g: ¢ | N and ¢ = 1 mod p},p)Y) — Q;/Q;”
induced by any embedding Q(up) — Qg is surjective, then
dimp, HI(J/Q)[p] < #{q prime: q| N and ¢ =1 mod p}
+ #{q prime : p [ ¢o(J)} +[p | N] —tko J(Q) — 1.

Proof. Since My = (P) = Z/p, we have L1 = Q(pp). Similarly, since
M; = i, we have Ly = Q. Let F' € Q(X)* be a function whose divisor is pD,
where the linear equivalence class of D is P; then the ‘descent map’ 6: J(Q) —
HY(Q, Ms) ~ Q*/Q*? is given by evaluating F on a representative divisor
whose support is disjoint from that of D. We have the analogous map
dg: J(Qq) — Q;/Q;p for each prime ¢. By the above, Sel(¢: A — J)
is contained in the unramified outside S; part of Q*/Q*P, which is the
subgroup generated by the classes of the primes in S;. When p { N, so that
J has good reduction at p, then we can choose F' in such a way that its
reduction mod p is well-defined. When evaluating d,, on a point Q € J(Q,),
we can pick a representative divisor whose support is disjoint mod p from the
support of D; this shows that F'(Q) is in the image of Z; and hence that
Sel(¢) € (g : p | cq(J)) in this case. So in any case, we have

(6.1) dimg, Sel(y)) < #{q prime : p | ¢,(J)} + [p | N].

On the other hand, Sel(yp) C L1 (S, p)M = Q(1,) (S, p)M). Since we assume
that the class number of Q(y,) is not divisible by p, the group Q(u,)(S’,p)
is generated by the images of a primitive pth root of unity ¢,, a choice of
fundamental units, 1 — (,, and one element generating a suitable power of
each prime ideal above a prime in S’;. Of these, only ¢, and the totally split
primes contribute to the relevant eigenspace (the fundamental units come,
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up to index prime to p, from the maximal real subfield, and the ideal (1 — ()
and the nonsplit prime ideals have nontrivial stabilizer), and the contribution
of each totally split prime ¢ is exactly 1. Since ¢ is totally split in Q(u,) if
and only if ¢ = 1 mod p, we obtain the bound
62) dimp, Sel(p) < dimp, Q(k)(S},p))

. =1+ #{q prime : ¢ | N and ¢ = 1 mod p}.

Finally, we have

dim, I11(J/Q)[p] = dimp, Sel(J/Q)[p] — dinp, pﬁg

< dimp, Sel(¢) + dimg, Sel(v)) — 1 — ko J(Q)
< #{q prime : ¢ | N and ¢ = 1 mod p}
+ #{q prime : p | ¢,(J)} + [p | N] —rko J(Q),

where we have used dim J(Q)/pJ(Q) = rko J(Q) + dim J(Q)[p] and Equa-
tions (6.1) and (6.2).
To show the refinement, consider the kernel-cokernel exact sequence asso-

ciated to J(Qy) LN A(Qy) N J(Qu),

0— Z/p — J(Qo)[p] = 11p(Qe) —

AQe) v J(Qu) J(Qr)
P(J(Q))  pIQ)  P(AQ)

Since ¢ = 1 mod p, dimpu,(Qe) = 1. Since p { £, dim J(Qg)/pJ(Qr) =
dim J(Qg)[p]. These facts imply that

dimM-FdimM:Z.

©(J(Qu)) P(A(Q))
We note that the elements of Sel(p) (respectively, Sel(¢)) map into the image
of A(Qe)/¢(J(Qr)) in HY(Qy, Z/p) = Q) /Q,” (respectively, into the image
of J(Qe)/¥(A(Qe)) in HY(Qy, p1p) ~ Q) /Q,*) under r), (vespectively, ). If
dim J(Qy) /¥ (A(Qg)) = 0, then Sel(v)) is contained in the kernel of ry; since
rp is assumed to be nontrivial, this implies that the bound on dim Sel(¢)) can
be reduced by 1. Otherwise, dim A(Q¢)/¢(J(Qr)) <1 <2=dimQ/Q,”.
Since 7 is assumed to be surjective, this implies that the bound on dim Sel(¢y)
can be reduced by 1. So in all cases, the bound on dim Sel(¢) + dim Sel(z))

is reduced by 1, which gives a corresponding improvement for the bound
on dim HI(J/Q)[p]., O

— 0.

Remark 6.2.2. In some cases, we can improve the bound in Proposition 6.2.1
by 1 when p | N. Assume that we can find enough ‘descent functions’
F € Q(X)* (i.e., whose divisor is p times a divisor D such that [D] €
J(Q) generates J[p]) that reduce to well-defined functions F on Xg, and
such that the support of F' consists of smooth points on X, and that the
following holds: if D is a divisor of degree zero on X defined over Q with
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reduction D modulo p, then we can find some F' such that the divisor of F
has support disjoint from D. Then the argument near the beginning of the
proof of Proposition 6.2.1 shows that (D) € Z), hence

Sel(y) € Q({q prime : p | ¢4(J)},p) ,
and so we can remove the term ‘[p | N|” in the final bound.
We also note the following.

Lemma 6.2.3. In the situation above, we have that dimg, II1(.J/Q)[p] is
even. In particular, dimp, HI(J/Q)[p] < 1 implies that TI1(J/Q)[p] = 0.

Proof. Recall that one of our overall assumptions is that rkp J(Q) < 1,
in which case we know that III(J/Q) is finite by [KL89]. Therefore the
Cassels—Tate pairing on II1(J/Q) is perfect. It is also anti-symmetric, which
implies (since p is odd) that its restriction to III(J/Q)[p*°] is perfect and
alternating. This in turn implies that III(J/Q)[p>*] = M x M for some
finite Op-module M. In particular, III(J/Q)[p] = MIp] x M[p], and so
dimp, II(J/Q)[p] = 2 dimg, M|p]. O

Ezamples 6.2.4. For most pairs (X, p) consisting of a curve X in our database
of LMFDB curves and an odd prime p such that the table in Section 2.14 says
that the semisimplification of py splits as 1 & x;, where p is a prime ideal of
the endomorphism ring of degree 1, Proposition 6.2.1 without the refinement
together with Lemma 6.2.3 show that III(J/Q)[p] = 0. The exceptions are
as follows. (We frequently indicate the isogeny class with a letter appended
to the level N.)

(i) Two of the four curves at level N = 31, where p = 5 (one has no rational
point of order 5, the other gives a bound dim ITI(J/Q)[p] < 2). This is
unproblematic, since these Jacobians are isogenous to the Jacobians of
the two other curves at that level, for which the simple bound proves
that III(J/Q)[p] = 0. By invariance of BSD in isogeny classes, it suffices
to verify strong BSD for one of these Jacobians.

(i1) The pairs (N,p) = (73a,3) and (85b, 3), where there is no rational point
of order 3.

(iii) The curves at level 133d with p = 3 and at level 275a with p = 5, where
the unrefined bound only gives dim ITI(J/Q)[p] < 2.

Ezamples 6.2.5. We consider the curves listed under (ii) above. In these
cases, the p-torsion (where p is an ideal of norm 3) sits in an exact sequence

0— pus — Jp| — Z/3Z — 0.

Using the fact that M»(Q)/e(J[p]) = Z/3Z in these cases and that the
Tamagawa numbers at all bad primes are not divisible by 3 (and 3 is not a
bad prime, which implies that Sel(¢)) € Q({¢ prime : ¢ | N}, 3)), this leads
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to a general bound of the form

dimy, II(J/Q)[p] < dimp, Sel(¢)) — 1 + dimp, Sel(p) — rko J(Q)
< dimp, Q({g prime : ¢ | N},3) — 1

+ dimp, Q(u3)({3},3)") — rko J(Q)
< #{q prime : q | N} — rko J(Q),

which evaluates to 1 and 2, respectively, for N = 73 and 85. Using Lemma 6.2.3,
this already shows that III(.J/Q)[p] = 0 for N = 73.
To improve the bound for N = 85, we note that in this case

Sely(J/Q) € HY(Q, J[p); S) € Q(V/5)({3},3) x Q(u3)({3},3)

and that Sel(¢) C Q({5,17},3) maps into the first factor by the obvious map.
(Compare Section 6 of [SS04]; one can check that the algebra that is called D
there is a product of two copies of Q(¥/5).) Since any element involving 17
will have image ramified at 17, this shows that actually, Sel(¢)) € Q({5},3)
(we even have equality here, since we know the map to Sel,(J/Q) has one-
dimensional kernel), thus improving the bound by 1, which is sufficient to
conclude.

Ezamples 6.2.6. We now consider the cases listed under (iii) above. For both
pairs (NN, p), we can use the refinement in Proposition 6.2.1. The unrefined
bound for dim ITI(J/Q)[p] is 2 in both cases.

In the first case, (7 -19,3) for the curve in isogeny class 133d, we use
¢ =7. Here ¢y = 3 and cj9 = 1, so the first condition is that Q({7},3) —
Q> /Q? is nontrivial, which is clearly the case. The second condition is that
Q(13)({3,7,19},3)M) — QX /Q? is surjective, which follows from the fact
that Q7 does not contain a primitive ninth root of unity. So both conditions
are satisfied, and the bound can be improved to dim ITI(.JJ/Q)[p] < 1, which
is sufficient to conclude that III(J/Q)[p] = 0 by Lemma 6.2.3.

We now consider (52 -11,5) for the curve in isogeny class 275a. Here we
use £ = 11. Both Tamagawa numbers are 1, so the first condition is that
Q({5},5) — Q}/Q}’ is nontrivial. This follows from the fact that 5 is not
a fifth power in Fi;. The second condition is that Q(us)({5,11},5)() —
QJ,/Q; is surjective. This follows in the same way as for the previous exam-
ple. So we can again reduce the bound by 1 and obtain that II(.J/Q)[p] = 0.

We note that with some more work, one can show that in both these cases
we have Sel(y) = 0.

The remaining cases (where pj° splits into two nontrivial characters) come
from the following pairs of level (+ isogeny class) and prime.

(125a,5), (147a,7), (245a,7), (250a,5), (275b,3)
(289a,3), (289a,17), (375a,5), (841a,29).
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Ezamples 6.2.7. We consider the curve at level N = 125 = 53 and p = (/5).
According to Example 2.6.1, (1), we have p, 2 x2 & x3. This implies that

Sel,(J/Q) € Q(us)({5}.5) Y & Q(v5)({5},5)? |

where the superscript (m) indicates that the action is via xZ'. One finds
easily that the first summand is trivial and the second has dimension 1. Since
the O-rank of J(Q) is 1, we obtain the bound

dimp, TI(J/Q)[V5] <0+1—1=0,

so 1(J/Q)[v/3] = 0.

Similarly, for the curves at levels 2 - 5% and 3 - 53, we have (for p = (v/5))
that pp° = X2 @ x3. Since 2 and 3 are primitive roots mod 5, we still have
that Q(us)({q,5},5)"Y is trivial and Q(v/5)({g,5},5)!) is one-dimensional,
where ¢ = 2 or 3. This gives the bound

dimp, HI(J/Q)[V5] < 0+1—rko J(Q) < 1

(the rank is zero for the curve at level 2 - 53 and one for the curve at level

3 - 53), which again suffices to conclude that ITI(.J/Q)[v/5] = 0.

The two pairs (IV, p) = (172,17) and (292, 29) can be dealt with in a similar
way as (N, p) = (5%,5).

Ezamples 6.2.8. We now consider (N, p) = (3-7%,7) and (5-72,7). In both
cases, O = Z[v/2], and pp is reducible for exactly one of the two prime ideals
above 7, with pj® = X2 @ x#%. The two relevant groups are Q(u7)* ({g, 7}, 7)™
and Q(v=7)({¢,7},7)®), with ¢ = 3 or ¢ = 5. Since both are primitive roots
mod 7, q does not contribute to the relevant eigenspaces, and it is easy to
see that the first group has dimension 1, whereas the second one is trivial.

The O-rank is 1 in both cases, which directly shows that III(J/Q)[p] = 0.

Ezamples 6.2.9. For (N, p) = (172,3), we have Py = e17e_g.a7, where &, de-
notes the quadratic character mod m. This is one of two cases in our examples
where the two characters are not powers of x,. The two relevant groups are
Q(v—3-17)({3,17},3)~, which is trivial, and Q(v/17)({3,17},3)~, which
has dimension 1. The O-rank is 1, which directly gives that III(.J/Q)[p] = 0.

The other similar case is (N,p) = (52 - 11, 3), where Py = es D e—g5 and
we obtain the same bound with a similar argument. (Note that 5 and 11,
like 17, are primitive roots mod 3.)

Ezxamples 6.2.10. There are three ‘Wang only’ curves for which a p-descent
is necessary, namely

(i) Curve 117B with p | 7,
(ii) Curve 125B with p | 5, and
(iii) Curve 175 with p | 5.

In all cases, we have to show that III(.J/Q)[p] = 0.
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In case (i), we have an exact sequence
0—e_3—Jp —e_3-x7 —0.

This case can be dealt with in a similar way as in Examples 6.2.8; we obtain
dim II(.J/Q)fp)] < 1.

In case (ii), J[p] = 1 @ x5 is split. It can be dealt with similarly to Exam-
ples 6.2.7, leading again to dim III(J/Q)[p] < 1.

Finally, in case (iii), we have a non-split exact sequence

0—1—Jp—xs —0,

and p = (\/5) The non-refined bound from Proposition 6.2.1 gives us only

dim I1I(J/Q)[p] < 2: we have Sel(p) € Q(us)({5, 7}, 5)) = Q(us) (0, 5),
which has dimension 1, and Sel(y) € Q({5,7},5) of dimension 2. We can
improve the bound using Remark 6.2.2. The functions

(825 + 5t + 1523 + 3022 + 152 + 4) & (62 + x — 2)y
(z —a)®

for a € {0, 41,42, 00} (where we set 1/(x — o0)? := 1) form a suitable set of
descent functions on the model

X:y? =20 —22° — 32* — 623 — 1422 — 82 — 3

of the curve, so in fact Sel(y)) C Q({7},5) has dimension at most 1, which
is enough to conclude that III(J/Q)[p] = 0. (In fact, dim Sel(y)) = 1, since
evaluating a suitable descent function on a point of order 5 gives 72, which is
a fifth power in Qs, but nontrivial in QX /Qx°.)

7. BOUNDING III(J/Q)[p*>°] USING IwASAWA THEORY

The Main Conjectures for modular forms in Iwasawa Theory imply the
p-part of strong BSD when the L-rank is 0 under certain conditions, see Theo-
rem 7.2.1 below. For fixed p of good ordinary reduction, we can also compute
an approximation to the p-adic L-function and use the known results on the
p-adic BSD conjecture (see Theorem 7.3.2 below) to determine or at least
bound the p-valuation of the order of III.

As we will only need these results in the case that p is a prime of good
ordinary reduction that is inert in Z[f], we restrict to this situation in the
following, although more general results are available.

This section generalizes [SW13] from elliptic curves to modular abelian
varieties of arbitrary dimension.

Let f be a newform of level N with coefficient ring Z[f]. We assume that
ap(f) is a p-adic unit, i.e., that p is ordinary for f. This implies that the
characteristic polynomial of the Euler factor at p of f has exactly one root
that is a p-adic unit; we denote this root by a. We use the following notation.
Let f be a newform and p | p a prime of Z[f]. Let Z,(f,T) € Q(f),[T] be
the p-adic L-function of f constructed in [BMS16, §2.2]. If A is the abelian
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variety associated to f, Z,(A,T) = HU:Z[f]%R.,%(fJ,T); see [BMSI16,
§2.3).

7.1. The Iwasawa—Greenberg Main Conjecture. We use the following
known cases of the GLy Iwasawa—Greenberg Main Conjecture.

Theorem 7.1.1 (Skinner—Urban, Skinner). Let f € So(To(NV)) be a newform
and p > 2 be a prime with

(ord) v,(N) <1 and [ay(f)], = 1.

Let p | p be a finite place of Q(f) and Qo be the cyclotomic Z,-extension
of Q with Galois group I' := Gal(Quo|Q). Let A := Z[f],[T'] be the Iwasawa
algebra.

Assume that

(irr) pyryp is irreducible and
(M) that there exists a prime q # p with vg(N) = 1 such that py, is
ramified at q.

Then one has an equality

Charq, z(y], (f) = (%(f.T))

of ideals in A. Here, Charsz[f]p(f) is the characteristic ideal of the p-adic
Selmer group of f over Qoo and £, (f,T) is the p-adic L-function of f; both
are defined in [SU14, §1.1].

Proof. See [SU14, Theorem 1] in the case v,(N) = 0 and [Skil6, Theorem A|
in the case v,(N) = 1 (by reduction to [SU14| using Hida theory). (Note the
footnote 1 in [Skil6, p. 172], which says one can weaken the condition that
there exists an Z[f],-basis of Ty with respect to which the image of pj oo
contains SLy(Z,) to condition (#) for the Iwasawa Main Conjecture to hold
integrally in [SU14, Theorem 1].) O

Example 7.1.2. We expect that Theorem 7.1.1 combined with the computation
of Z,(f,T) can be used to verify strong BSD for the Jacobian J of the curve

C: y? = 202° — 192 + 11823 — 16922 + 50z + 25

of level 145. Our algorithm gives us that #III(J/Q)an = 1 and III(J/Q)[p] =
0 except maybe for the two primes p lying above 7. For them, one can
compute the p-adic L-function using Sage. We plan to include this example
in a future version of this paper.

7.2. Results on the p-part of BSD from Main Conjectures in Iwasawa
Theory. We state a result that follows from Iwasawa Theory and shows that
the p-part of BSD holds in the L-rank 0 case under fairly mild assumptions
when p is inert in Z[f]. Note that an explicit descent computation is hard
when p is inert and py,, is irreducible, so this is useful to deal with such
primes when our other methods do not show that III(A/Q)[p] is trivial.
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Theorem 7.2.1 (p-part of BSD in the L-rank 0 case). Let A/Q be a simple
modular abelian variety associated to a newform f of level N. Let p > 2 be a
prime inert in Z[f] with

(ord) vp(N) <1 and |ap(f)p = 1.
Assume that

(irr) pyp is irreducible and
(W) that there exists a prime £ # p with ve(N) = 1 such that psy is
ramified at £.

If L(A/Q, 1) # 0, then the p-part of BSD holds for A/Q, i.e.,

‘L(A/Q, 1) Tam(A/Q) - #111(A/Q)[p*]
QA #A(Q)tors . #AV<Q)tors p
— [Tam(A/Q)| - |#111(4/Q)| .

Proof. This is [Skil6, Theorem C] (the proof generalizes from elliptic curves to
modular abelian varieties because [Skil6, Theorem B] is for general newforms
and p is inert in Z[f]). Note that [#A(Q)tors - #AY (Q)tors|p = 1 since pyp is
irreducible. U

Remark 7.2.2.

(i) We have restricted ourselves to inert primes for simplicity. The proofs
for other primes p would need to be adapted from the case of elliptic
curves and one would need to define the algebraic factors in the strong
BSD formula as elements of Z[f], up to units. (It is likely that one can
even define them up to squares of units over the Heegner field as most
terms are in fact squares.)

(ii) In the L-rank 1 case, there is [Zhal4, Theorem 10.3] for elliptic curves,
which builds upon [Zhal4, Theorem 9.3|, which is for general newforms.
These theorems have stronger assumptions than Theorem 7.2.1.

(iii) [CGLS22| proves the p-part in the L-rank 1 case for odd good ordinary
primes p completely split in the Heegner field K with p, reducible if
Pyl = ¢ @ such that ¢le,, ,Vlay, # 1,Xp for the places v | p of K.
For example, this excludes the case A(K)[p] # 0. Forthcoming work of
the first author and Mulun Yin [KY] will remove the restriction on ¢
and v and also treat the case of bad multiplicative reduction. For the
L-rank 0 case in this situation, see [CGS23|.

(iv) The preprint [CCSS18| proves the p-part of strong BSD in the L-rank
0 and 1 cases also for p good non-ordinary, but it assumes that the
level N is squarefree.

(v) Theorems 5.2.2 and 5.2.3 give III(J/Q)[p] = 0 under the assumptions
there, but they do not prove the p-part of BSD. Theorem 7.2.1 does
this, but not for non-inert primes or supersingular or bad additive
primes. Note that by the Sato—Tate conjecture there are infinitely
many p with a, = 0, and they can be treated with [CCSS18] only when
N is squarefree.

p
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7.3. The p-adic BSD conjecture. We continue to assume that p is inert
in Z[f]. The coefficient of its leading term of .Z,(A,T) at T'= 0 is denoted
by £;(A,0). The p-adic multiplier is

$(4/Q) = [ -
o: Z[f]=R

(Note that if a, = 1 and p | N, then o = 1 and €),(4/Q) = 0, so conjecturally
there will be an extra zero.) The p-adic regulator Reg,(A/Q) is the determi-
nant of the p-adic height paring on A(Q) defined in [BMS16, Definition 3.3].
According to a Conjecture of Schneider, Reg,(A4/Q) should be non-zero,
but this is not known in general. Assume p > 2. Let v € 1 4 pZ, be a
topological generator, the same used in the construction of .Z,(A,T). We
take v = 1+p in our computations. Let Reg,(A4/Q) := Reg,(A4/Q)/log,(v)"
where r = rk A(Q). We then have the following p-adic version of the BSD con-
jecture; see [BMS16, Conjecture 1.4|, generalizing [MTT86].

Conjecture 7.3.1 (p-adic BSD conjecture). Let A/Q be a principally po-
larized modular abelian variety and p a prime of good ordinary reduction
for A/Q. Then

rk A(Q) = ordr—9.%,(A,T)

and

#111(A/Q) - Tam(A/Q) - Reg, (4/Q)
(#A(Q)tors)z ‘

We are interested in the size of the p-part of III(A/Q), so it is sufficient
to compare the p-adic valuations of both sides.

The following result due to Schneider shows that the conjecture holds in
some cases at least up to a p-adic unit, but with .Z,(A/Q,T) replaced by

the Twasawa L-function Zp(l) (A/Q,T) defined in [Sch85, §2|. Note that the

latter is defined without using modularity, but in a more algebraic way.

25 (4,0) = £,(A/Q) -

Theorem 7.3.2. Let A/Q be a simple principally polarized modular abelian
variety with associated newform f. If

(i) p is a prime of good ordinary reduction,
(ii) such that the p-adic regulator Reg,(A/Q) is non-zero, and

(i) TI1(A/Q)[p] is finite,
then the p-adic BSD conjecture holds for A/Q and ,%p(l)(A/Q, T):

The Iwasawa L-function .Zp(l)(A/Q,T) vanishes to order tk A(Q) at
T =0, and its leading term has p-valuation equal to that of

#11(A/Q)[p>] - Tam(A/Q) - Reg, (4/Q)
&(4/Q) - s

(#A(Q)tors)
Proof. See [Sch85, Theorem 2'|. O

We need to compare the two L-functions .£,(A/Q,T’) and fp(l)(A/ Q7).
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Theorem 7.3.3. Let p > 2 be a prime of good ordinary reduction for A/Q.
Let p be a prime ideal of Z[f] lying above p. Assume that the image of
Gal(Q|Q(pp=)) = Autgp, (TyA) contains SLy(Zy) (see Section 2.13). Then

Z(4/Q,T) | 4(A/Q,T) € ZIf,[T].
Proof. See [Kat04, Theorem 17.4 (3)]. O

Theorem 7.3.4. Let p > 2 such that ay(f) € Z[f];. Then

OI"dT:().,%p(f, T) > corkz[f]p Selpoo (Af/Q) > I‘kzm Af(Q) .

Here, the corank corkg s, M of a discrete torsion Z[f]p-module is the Z[f],-
rank of its Z[ f],-Pontrjagin dual.

Proof. See [Kat04, Theorem 18.4]. O

Corollary 7.3.5. Let A/Q be a simple principally polarized modular abelian
variety with associated newform f. If

(i) p> 2 is a prime of good ordinary reduction
(ii) such that the p-adic regulator Reg,(A/Q) is non-zero,
(i) TI1(A/Q)[p™] ds finite,
(iv) the image of Gal(Q|Q(up)) — Autgy), (TpA) contains SLa(Zy), and
(v) ordr=02,(f7,T) < rko A(Q) for all o,

then
00 Ha gp(fg’ 0)* : (#A(Q)tors)2
o HFIIA/QP™]) < ”p<sp<A/Q> “Reg, (4/Q) )

Proof. Combine Theorems 7.3.2 to 7.3.4. (I

Note that [Skil6, Theorems A and B| (with the case of good ordinary
reduction coming from [SU14]) establishes equality up to units in Z[f],[17]
in the ordinary case under some conditions like p, being surjective.

So if we can compute the p-adic valuations of £, (A, 0) and of Reg, (4/Q),
this result allows us to bound the order of the p-part of III(A/Q) from above.
Note that we know by the results of Kolyvagin—Logachév and their extensions
that IIT(A/Q)[p] is finite in the cases of interest, so the main assumption is
that p is a prime of good ordinary reduction. When the L-rank is zero, then
the p-adic regulator is 1, so it remains to compute .Z,(A,T). We explain
in the next subsection how to do this. When the L-rank is 1, we also need
to compute the p-adic height pairing. In the case that p is a prime of good
ordinary reduction for the Jacobian of a genus 2 curve, this is accomplished
in [BMS16, §3.4]; see also [GM23].

7.4. Computing approximations to p-adic L-functions. We use Green-
berg’s improvement |Gre07] of the Pollack—Stevens algorithm [PS11] to com-
pute the p-adic L-function of a newform f with a,(f) a p-adic unit. Our
Magma implementation is based on that of Darmon-Pollack [DP06] with
their Magma code available at [DP]. We modified the code so it also works
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with newforms with arbitrary coefficient rings, accepts newforms as input
and outputs the p-adic L-function as a p-adic power series to any specified
precision for the uniformizer = of Op and T'. For performance reasons, we
specialized to weight k = 2.

7.4.1. Computing the p-stabilization of ¢s if p t N. The construction of
the p-adic L-function via the overconvergent modular symbol algorithm
of [Gre07, PS11]| needs v,(NN) = 1. In the case that p{ N is a good ordinary
prime, one has to p-stabilize f to a form of level Np with the same T)-
eigenvalues as f and Up-eigenvalue the unit root of T2 — ap(f)T + p. Note
that the p-adic L-function is defined with respect to that (p-stabilized if
p1 N) lift; see [BPR21, §§4.1, 4.2, 4.4].

Recall that a,(f) € Z[f];. If pt N, let a € Z[f], be the unit root of
T2 — ap(f)T + p. Let 8 be the other root. We then p-stabilize in the sense
that we replace f by its p-stabilization fo(z) = f(z) — Bf(pz) of level Np
with the same Hecke eigenvalues away from p. Otherwise, i.e., if v,(N) =1,
we can directly use the algorithm of [Gre07, PS11| to compute a lift. (The
reason for the p-stabilization is that the distribution property for the modular
symbol follows if it is an eigenvector under the Up-operator, but not under
the T)-operator.)

7.4.2. Modular symbols. Let Ag be the left Z[GLy(Q)]-module Div?(P(Q)),
where GL2(Q) acts via fractional linear transformations on P*(Q). We write
an element [s] — [r] of Ag with r, s € PY(Q) as {r — s}.

Consider the monoid

So(p) = {(‘CL Z) € Mata(Z) : (a,p) = 1, p | ¢, ad — be 0}.

Note that because p | N, T'g(N) C 3g(p). Let V be a right 3¢ (p)-module
with the action of S € T'o(N) on v € V denoted by v|S. Then the Hecke
operators

Ty := <€ (1)) + § (é Z) € Z[X(p)], ¢ +# p prime,

a=0

0=5 (3 1) e 2imuo)

a=0
act on V on the right, making it into a Hecke module. (The matrices
constituting Ty, Uy are in ¥g(p), but not in T'x(N).) In Magma, the elements
of Ag are called the modular symbols of T'o(N'), but we refer to the elements
of the module

and

Symbr, 3y (V) := Homgr, () (Ao, V)
as the V-valued modular symbols. The abelian group Homgz(Ap, V) is a

right Z[T'o(NN)]-module and we write the action similarly as ¢|S. Spelled out
explicitly, the I'g(/V)-equivariance means that for ¢ € Symbr, (V) one has
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o|S =g, ie., p(S{r — s})|S = p{r — s} for {r — s} € Ag and S € I'x(N).
Then Symbp, v)(V) is a right Hecke module via the left action on Ag and
the right action on V.

7.4.3. Computing the canonical periods (Qﬁ)g attached to f. We have to
find canonical periods of {7} as defined in [BMS16, § 2|, unique up to Z[f]*.
We compute an approximation of the periods (Q]ﬁ)a with o: Q(f) — R as
follows: We compute the period integrals
100 100
pjji, (r) = ﬂ'i( fo(z)dz £ fo(z) dz)
T -r

(i.e., over the path {r — oo} € Hi(XT, {cusps};Z)) for a finite set of r € Q
such that the {r — oo} generate the Ag as a I'g(NN)-module to a high enough
precision. By [BMS16, §2.1, Theorem 2.2 and 2.4|, there are canonical periods
(Qjﬁ,)g attached to f such that pﬁ/Qjﬁ € Q(f) and “being compatible with
twists” (for a precise formulation see [BMS16, Theorem 2.2|).

By [BMS16, text after Remark 2.6, there is a b € Q(f)* such that
(Q]jfg)g = (U(b)pjﬁr (r))s. We approximate a representative vector of an equiv-
alence class (Qjﬁ,)o. To compute the period integrals pjji, (r), we combine (4.2)
(and the equation before it) and Lemma 4.4.4 and get

(7.1) QO crer #coker T ’ HQ}FJ '

QT JdiscZ[f] #kermr

We compute €27,q as in Lemma 3.1.7, cgcy as in Lemma 3.1.6, and #coker 7R,
#ker mr as described in Section 3.1. In fact, since the latter two constants
are powers of 2, we do not need to compute them if p # 2. Since we work
with a Z-basis (g;) of S2(f,Z), there is no factor y/disc Z[f] when we replace
IL, Q}C, by the corresponding product for the (g;).

Assuming that Equation (7.1) holds, the canonical periods are unique up
to o(b) for some b € Z[f];’. So the p-adic valuation of the leading term of
the p-adic L-function is uniquely determined.

7.4.4. The modular symbol py. The modular symbol associated with f is
¢y € Homgra(Qo, Q(f)), where Q(f) is a trivial T'g(/N)-module. It is
defined as ¢ ¢{r — oo} = p}'(r)/Qj{ +p; (r)/€) € Q(f) and by extension
oi{r = s} = pp{r = oo} — ¢p{oo — r} to all paths between cusps
r,s € P1(Q). It is enough to know ¢ 7 on a finite set of generators of Ag as a
Z[I'y(N)]-module, which can be obtained via Manin symbols [Cre97, §§2.2,
2.3].

7.4.5. Querconvergent modular symbols and p-adic L-functions. Let p | p be a
prime ideal of Z[f] inducing an embedding of Q(f) into the completion Q(f),.
To approximate the distribution Ly(f) (see [PS11, §6.2]) and its associated
power series %, (f,T), we implemented Greenberg’s improvement [Gre07] of
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Pollack—Stevens’s computation of an overconvergent modular eigenlift of the
modular symbol ¢y € Symbp 3 (Q(f)) (see [PS11, §6.3]).

For the following, see [PS11, §3.1] and [Gre(7, §1]. For r € [C}[,, define
2 [r](Q(f)p) to be the Q(f)p-Banach space of Q(f),-affinoid functions on

B[Z,,r] :=={2 € C, : Ja € Z), with |a — 2|, <7}
endowed with the supremum norm. Let
AN(Zp) = lim o [s](Q(S)p)
s>1
endowed with the colimit topology, denote the algebra of Q(f)y-overconver-

gent functions on B[Z,, 1]. The overconvergent distributions 27(Q(f),) are
defined as its continuous Q( f),-linear dual endowed with the strong topology.

7.4.6. The strategy to compute the distribution Ly(f). The method of con-
structing the p-adic L-function L,(f) of f as a distribution is summa-
rized in the following diagram. Here Symb(Q(f))[f] denotes the subspace
of Symbr(Q(f)) on which the Hecke operators T;, with p { n act as multipli-
cation by a,(f) and the superscript ‘U, = o’ means the subspace where the
Hecke operator U, acts as multiplication by the unit root eigenvalue a of the
characteristic polynomial at p.

Symbp (2(Q(f)p))[f1Vr=o "= D gt o p),.)
~lpr le(fwa; 1Ly(f)
Symbp(Q(f))[fJUr=0 — 220X gy,

To compute the distribution Ly(f), we start with ¢¢ in the lower left
corner and lift it via the algorithm described below to a distribution valued
modular symbol ®¢; this is the left vertical isomorphism. Then Ly(f) is the
evaluation ® {0 — oo}, i.e., the image under the top horizontal morphism.

7.4.7. Computing the modular symbol Lp]jf attached to f. Knowing the canon-
ical periods, we can compute @jf{r — s} with r,s € P1(Q) as described

in [Wut18] by computing the corresponding period integrals for all f¢ and
dividing by Q]%, and recognizing the elements in Q(f) using that

[10X = o dr = s}) € QLX)

g
has rational coefficients with the denominator of the coefficient of X [Q(/)):Ql—n
bounded by (49 - cfer - #J(Q)tors)™; see Section 4.2 and [Wutl18, Prop. 1].

One can compute the modular symbol associated to f up to a factor

in Q(f) with Magma. (Note that one has to take a suitable Q(f)-linear
combination because magma takes a basis of Sa(f,Z).) Hence, alternatively,
one can compute this factor by comparing with our above computation for
some ps{r — s} # 0 and scale.
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7.4.8. Determining the required p-adic precision for the desired T-adic pre-
cision of Z,(f,T). Note that a distribution u € 27(Q(f),) is uniquely
determined by its moments u(z7), j > 0. We represent a distribution in
an approximation module AM@T(Z[f]p) by storing its j-th moment up to
precision M + 1 — j, i.e., as an element of Z[f],/p™™177. To be able to
compute lifts, we store the 0-th moment up to the final precision.

To ensure the moments we consider are integral, we do the following:
According to [PS11, Corollary 7.6, §8.3 3|, to obtain a precision of n p-adic
digits, one needs to compute with a precision M satisfying

M — [log(M +2)/logp] —1>n.

We take m minimal with p™ > M + 1 and scale ¢y by p™*t1. Then we

perform M steps of the algorithm to obtain the approximation to p™*1® ¥
in AMP(Z[f],). Finally, we divide by p™*?.

7.4.9. Computing the lift ® of p. This is the key step in the computation of
the p-adic L-function and a simplification of [PS11] due to Greenberg [Gre07|,
with the additional non-critical slope assumption, which is satisfied if there
is a unit root of the characteristic polynomial of p-Frobenius.

Let o € Symbp(Q(f))[f]Y»=* be a Hecke eigensymbol. The action of v =

(2%) with p | ¢ and p{ a on a distribution 4 is given by (u|v)(f) = u(y - f),
where 7 acts on the function f as (v- f)(z) = (a + cz)? - f(LEE),

a+cz
We start with (®)g := . To lift (®)ss from SymeO(N)(AM@T(Z[f]p)) to
precision M + 1, we first lift all values on the finitely many generators of Ag
(computed using Manin symbols) arbitrarily to precision M +1. The resulting
function will usually not be additive, I'g(NV)-equivariant or an Up,-eigensymbol
anymore, but it will be after we apply the operator U,.

7.4.10. Computing an approximation to the p-adic L-function from the dis-
tribution Ly(f). To go from an approximation of Ly(f) to the power se-
ries Z,(f,T'), we use the formulas in [PS11, §9]. The computation depends
on the choice of a topological generator v € 1+ pZ,. We take vy =1+ p in
our computations.

7.5. Examples. The example below represents the only case where our other
methods are not sufficient to compute #III(A/Q)[p>°], so that we need to use
p-adic L-functions. (Note that a p-descent would amount to a full 3-descent
in this case, which is not really feasible with current methods.)

Example 7.5.1. For the Jacobian J of the curve C' of level 188 = 2% - 47 in
our data set, the Tamagawa product is 9 (we have co = 9 and c47 = 1); the
prime 3 is inert in the endomorphism ring. To show that III(J/Q)[3°°] = 0
in this case, we therefore compute the 3-adic L-function. Since 31 N, we
have to 3-stabilize. Note that az(f) = 7% is a 3-adic unit, hence the

reduction at 3 is good ordinary. Then e3(J/Q) is a unit as well (since
a=az(f) #1mod 3).
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We verify using Propositions 2.13.1 and 2.13.2 that SLo(Z3) is contained
in the image of py30.

The L-rank is 1 and J(Q) = Z2. A computation of 3-adic heights shows
that v3(Regs(J/Q)) = 0. Therefore, one has

v3(Reg,(//Q)) =0 — 7 - v3(logg(1 + 3)) = 2.

We thank Steffen Miiller for computing it for us using the code described
in [GM23]. Using the algorithm sketched above, we find that

XB(Jv T) = gfﬂ(fﬂ T) : 33(.]007 T)
= (0(3%) +uT + O(T?)) - (O(3%) + /T 4+ O(T?))

with 3-adic units u,u’. (The computation took 30 minutes and 214 MiB RAM
on a AMD Ryzen 7 PRO 6850U.) Since rk J(Q) = 2 and III(J/Q)[3*] is
finite, corkz; ), Selz=(J/Q) = 1, so Corollary 7.3.5 shows that the vanishing
order of Z5(J,T) at T = 0 must be exactly 2 and that

s (HI11(/Q)B]) < (rfg”gl) -0,

hence II(J/Q)[3*°] = 0.

8. EXAMPLES

8.1. Jacobians of genus 2 Atkin—Lehner quotients. Tables displaying
the results for the Hasegawa curves can be found in [KS22].

8.2. All genus 2 curves with absolutely simple modular Jacobian
from the LMFDB. We compute the analytic order of III using the results
from Sections 3 and 4. It turns out that all of them are 1, 2, or 4. We
also discover some twists J% which have analytic order of IIT divisible by 32
and 7°.

It turns out that combining the information about the images of the residual
Galois representations from Section 2 with the Heegner indices from Section 3
(for a few examples, we have to use two Heegner fields) and the Euler system
from Section 5 prove that III(J/Q)[p] = 0 except in the following cases:

e p = 2: these are dealt with in Section 6.1.

e odd primes p with p, reducible: these are dealt with in Section 6.2.

e One example with N = 188 for which 3 | Tam(.J/Q) and p3 is irreducible:
see Example 7.5.1.

This completes the verification of strong BSD for all the 97 absolutely
simple modular Jacobians in the LMFDB.

8.3. Jacobians of the four remaining Wang curves. The Jacobians
J of the four Wang curves of levels 65A, 117B, 125B, and 175 (in the
notation of [FLST01]) also have analytic order of Sha in {1,2,4}. The
remaining descent computations that are necessary to finish the proof that

#I1(J/Q) = #11(J/Q)an in these cases are sketched in Examples 6.2.10.
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APPENDIX A. AN EXAMPLE WITH 7-TORSION IN III

In this appendix, which heavily relies on contributions by Sam Frengley,
we verify strong BSD for a genus 2 Jacobian J such that #I11(J/Q) = 7°.
This contrasts with the examples in our database, where we always have

#I1(J/Q) | 4.

A.1. Visibility. We first briefly recall some generalities about visibility
of elements of Tate-Shafarevich groups of abelian varieties, following e.g.,
[CMO00, AS02, AS05, Fis16].

Let A;/K and Ay/K be abelian varieties defined over a number field
K. Suppose that there exist finite Gal(K|K )-submodules A; C A;(K) and
Ay C Ai(K) equipped with an isomorphism ¢: A; = Ay of Gal(K|K)-
modules. Write A] = A;/A; and A}, = Ay/As and let ¢1: A1 — A} and
a: As — Al be the quotient morphisms. The isomorphism ¢ induces an
isomorphism on Galois cohomology H*(K, A1) = HY(K,Ay). We might
hope that if enough ‘local coincidences’ occur at the bad primes, then the
11 and 19-Selmer groups Sel()1) and Sel(1)2) may be isomorphic. In this
case if the order of the group A;(K)/¢1 A} (K) is smaller than the order of
Ag(K) /12 AL(K), the latter will contribute to a discrepancy between the
order of A;(K)/y1 A} (K) and Sel(1)1), thereby ‘explaining’ some nontrivial
elements of II(A;/K)[11].

To make this idea precise let A C (A4; x A2)(K) be the graph of the
isomorphism ¢ and consider the abelian variety B = (41 x Az)/A. We have
a pair of morphisms

L:A1—>A1><A2—>B.

Definition A.1.1. We say that an element or subgroup of H (K, A;) is visible
in B if it is contained in the kernel of the homomorphism ¢, : H (K, A;) —
HY(K, B). We write Visg H'(K, A1) (respectively Visp I11(A4;/K)) for the
subgroup of H (K, Ay) (respectively IIT(A; /K)) consisting of elements visible
in B.

We will use the following theorem (which is proved in [Fis16, Theorem 2.2|;
see also [AS02] and [AS05, Appendix|), which we state in the case when
K=Q.

Theorem A.1.2. If A;(Q)/p141(Q) = 0, then the subgroup Visg H(Q, A)
is isomorphic to A2(Q)/p2A5(Q). Moreover if #A is odd, and

(i) all Tamagawa numbers of A1/Q and Ay/Q are coprime to #A, and

(ii) the abelian variety B has good reduction at all primes dividing #A,
then ViSB I_H(Al/Q) = AQ(Q)/(,OQAIQ(Q)

A.2. The example. Let C'/Q be the genus 2 curve given by the Weierstrass
equation

C:y?* = —10(2% — 102° + 322" — 402° + 3822 — 20z + 4) .
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Its Jacobian J is of GLa-type; the level is N = 3200. This genus 2 curve
is obtained, up to quadratic twist, by specializing the family of genus 2
curves with v/2-multiplication given by Bending [Ben99, Theorem 4.1] at
(A, P,Q) = (—10,1,-5). This example was found by computing (for many
such specializations) twists Xj[[p}(’?) of the modular curve X(7) whose K-
points parameterize elliptic curves E equipped with an isomorphism of
Gal(K|K)-modules J[p] & E[7] (see e.g., [PSS07, Section 4.4] for the con-
struction of these twists). The details of these calculations and further
examples will appear in the PhD thesis of Sam Frengley.
We begin by showing that the support of III(J/Q) is contained in {7}.

Proposition A.2.1. The Jacobian J has O := Endq(J) = Z[V?2] and
Tan = 0=, J(Q) =0, SelQ(J/Q) =0, ca=c5=1, and IQ(V —31),r — .
In particular, #10(J/Q)an = 7> and #111(J/Q) is a power of 7.

Proof. The endomorphism ring contains Z[v/2] by construction of the curve.
Since Z[v/2] is the maximal order of Q(+/2), it follows that O = Z[/2]. A com-
putation of the 2-Selmer group shows that rk J(Q) = 0 and II(.J/Q)[2*°] = 0.
We check that L(J/Q,1) # 0 by computing L(J/Q, 1)/ as described in
Section 4.2. The torsion subgroup of J(Q) turns out to be trivial. The Tama-
gawa number at 5 can be determined using van Bommel’s Magma code [vB19,
§4.4]. However, Magma is unable to compute a regular model at 2. So we
computed a regular model by hand (see Sha7-curve.m for the computation
of ¢2) and found that the reduction type is [III5] in [NU73]. Note that this
is also needed to determine the power of 2 in the ‘compensation factor’ C'
in Lemma 3.1.7, which we need for the computation of #I1I(J/Q)an = 7°.
Using the approach in Section 3, we find that Ik » = 7 for K = Q(y/—31).
As all residual Galois representations are irreducible, the claim now follows
from Theorem 5.2.2. U

Lemma A.2.2. We have that #111(J/Q)[7*] | 72.

Proof. Note that 7 is split in the endomorphism ring O = Z[v/2], so the
Heegner index as an ideal of O equals p with p one of the two prime ideals
above 7. Using Proposition 2.13.1, we find that the p-adic Galois representa-
tions for these two primes have image GL2(Z7). Furthermore, 71 hq,/=37)V.

Hence Theorem 5.2.6 shows II(J/K) < (Z/7)%. Since [K : Q] = 2 is
coprime to 7, we get III(J/Q) < (Z/7)2. O

Applying Theorem A.1.2, we can show the following.

Proposition A.2.3 (Sam Frengley). Let E be the elliptic curve with LMFDB
label 3200.a1 and Weierstrass equation

E:y? = 2% — 100z 4 400.

There exists a prime p | 7 in O such that J[p] = E[7] as Gal(Q|Q)-modules.
Moreover, if A C J x E is the graph of this isomorphism, then I1(J/Q)
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contains a subgroup isomorphic to (Z/7)? which is visible in the abelian
threefold (J x E)/A.

Proof. We first show that J[p] is isomorphic to E[7] as a Gal(Q|Q)-module,
following [Fis16, Theorem 6.3]. Let IC := J/{£1} be the Kummer surface of .J
given by the model in [CF96, Chapter 3] and let z;: J — K be the quotient
morphism. Similarly let zg: F — E/{#1} = P! be the x-coordinate mor-
phism. Since the mod-7 Galois representation attached to F/Q is surjective,
by [Fis16, Proposition 6.1] to show that there exists a quadratic twist £¢/Q
of E/Q such that J[p] is isomorphic to E?[7] as a Gal(Q/Q)-module it
suffices to show that there exist points P € J[p] and Q € E[7] such that
Q(z;s(P)) and Q(zg(Q)) are isomorphic. Using the approach detailed in
[Fis16, Theorem 6.3] we give an explicit degree 24 number field L/Q and
equations for points z;(P) € K(L) and z(Q) € P'(L) which generate L/Q.
For the computations see the file congruence.m.

Finally, if d € Z is chosen to be squarefree, then d is divisible only by bad
primes of E and C. As discussed in [Fis16, (5.2)], by [FLST01, Section 2.1]
or [MS93, Lemma 3] an isomorphism of Galois modules J[p] = E4[7] induces
a congruence

(A.1) ap(EN? — tya,(E?) +n, =0 mod 7.

Here t, = p+1— Ny and n, = (N? + N2)/2 — (p + 1)Ny — p, where
Ny = #C(Fp) and No = #C(F,2). Note that £ and C have bad reduction
at 2 and 5 and good reduction at all other primes, and for each d # 1 dividing
+10 the congruence in (A.1) fails to hold at one of p = 11, 17, or 23. It
follows that J[p] and E[7] are isomorphic as Gal(Q|Q)-modules.

To show that IT11(J/Q) contains a subgroup isomorphic to (Z/7)?, first note
that the Tamagawa numbers of F//Q are coprime to 7 and by Proposition A.2.1
so are the Tamagawa numbers of J/Q. The torsion subgroups of E/Q
and J/Q are trivial, the rank of F/Q is 2, and the rank of J/Q is 0, again
by Proposition A.2.1. It follows from Theorem A.1.2 that III(J/Q)[7] contains
a subgroup isomorphic to (Z/7)? which is visible in (J x E)/A. O

Combining these results, we obtain the following.
Theorem A.2.4. For J as above, we have #1(J/Q)an = 7> = #11(J/Q).

The computations with precision 462 took 57 hours and 3.3 GiB RAM on an
MIT server running Magma V2.28-3 provided to us by Andrew Sutherland.
The log of N3200.m can be found in 3200.1og. The bottleneck was the
computation of the Heegner point, which required 783700 Fourier coefficients
of the newform. Note that one must use ¢ = 1 from Proposition A.2.1
to get #II(J/Q)an = 7% and not 2 - 72; Magma cannot compute a regular
semistable model of the curve.

A.3. Further examples. One expects the existence of elements of order p
in IIT in quadratic twists of A/(P) where 0 # P € A[p](K) by [SW22].
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Our computations of the analytic orders of Sha for the Jacobians J of the
LMFDB examples with L-rank 1 yield the following examples of twists of J
by the first Heegner field such that there is nontrivial p-torsion in Sha for
some p € {3,5,7}. The number in parentheses indicates the index of the
curve in the list of LMFDB examples.

(30) The twist of the second curve with N = 133 by Dy = —31 has I = 32
and #11(JX /Q)an = 22 - 32

(55) The twist of the first curve with N = 275 by D = —19 has I = 3
and #LI(J"/Q)an = 2% - 3.

(57) The twist of the curve with N = 289 by D = —15 has Ix = 3 and
H#IL(TX /Q)an = 27 - 3%

(74) The twist of the curve with N = 523 by Dx = —35 has I = 3% and
H#IL(TX /Q)an = 27 - 3%

(77) The twist of the first curve with N = 621 by D = —11 has Ix =7
and #I(J5/Q)an = 7°.

(82) The twist of the curve with N = 647 by Dg = —11 has Ix = 5 and
H#IL(TX /Q)an = 27 - 5.

To obtain these values, we computed #III(J/K )., for a Heegner field
K = Q(v/D) and use that #I1I(.J/Q)ay is a power of 2 for the LMFDB exam-
ples, hence #111(JX /Q).n and #111(J/K ),y differ by a power of 2. By Corol-
lary 2.8.5, the set of p { 2 with p;/q, irreducible remains the same when
p is restricted to Gg. By Lemma 4.6.1 and (4.6), the odd prime factors
of Tam(JX/Q) are those of Tam(.J/Q).

To also show that #I1I(JX /Q) agrees with the analytic order of Sha, one
has to compute II1(JX /Q)[2°°], which our computation predicts to be (Z/2)?
in all of the above cases except the curve with N = 621. Using Theorems 5.2.3
and 5.2.6, the remaining tasks are as follows.

(30) Show that dimp, II(J*/Q)[p] = 0 and = 2 for the two prime ideals
p | 3, respectively.

(55) Show that dimg, II(J®/Q)[p] = 2 for one of the two prime ideals
p | 3. Since the Heegner index as an O-ideal has norm 3, this shows
HI(JX/Q)[p] = 0 for the other p | 3.

(57) Show that dimp, III(JX/Q)[p] = 2 for one of the two prime ideals
p | 3. Since the Heegner index as an O-ideal has norm 3, this shows
I(JX /Q)[p] = 0 for the other p | 3. For one of them, one can perform
an isogeny descent.

(74) Show that ITII(JX /Q) has a subgroup isomorphic to (Z/3)?; note that
the prime 3 is inert in Z[f].

(77) Show that dimp, III(JX/Q)[p] = 2 for one of the two prime ideals
p | 7. Since the Heegner index as an O-ideal has norm 7, this shows
HI(JX/Q)[p] = 0 for the other p | 7.

(82) Show that dimg, III(J* /Q)[p] = 2 for the one two prime ideals p | 5.
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