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1. Preliminaries

In the following, we will assume that you are familiar with the basic notions and
notations of (‘naive’) set theory. This includes, for example, the following.

• Notation for sets: {1, 2, 3}, {x ∈ S : some property of x}, the empty set ∅.
• Symbols for the set of natural numbers:

N = {1, 2, 3, . . . } , N0 = {0, 1, 2, 3, . . . },
integers: Z, rational numbers: Q, real numbers: R, and complex numbers:
C (which we will introduce shortly).

• Notations x ∈ S (x is an element of S), A ∩ B (intersection of A and B),
A ∪ B (union of A and B) A \ B = {x ∈ A : x /∈ B} (set difference of A
and B), A ⊂ B (A is a subset of B; this includes the case A = B — my
convention), A ( B (A is a proper subset of B).

• Pairs (a, b), triples (a, b, c) and general n-tuples (a1, a2, . . . , an), and carte-
sian products A×B = {(a, b) : a ∈ A, b ∈ B} etc.

• The notion of a map f : A → B and properties like injectivity, surjectivity,
bijectivity (we will recall these when we need them).

• The notion of an equivalence relation on a set S: formally, a relation on S
is a subset R of S×S. For simplicity, we write a ∼ b for (a, b) ∈ R. Then R
is an equivalence relation if it is reflexive (a ∼ a for all a ∈ S), symmetric
(if a ∼ b, then b ∼ a), and transitive (if a ∼ b and b ∼ c, then a ∼ c).
Given an equivalence relation on S, the set S has a natural decomposition
into equivalence classes, and we can consider the quotient set S/∼: the set
of all equivalence classes. We will recall this in more detail later.

We will also use notation like the following.

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An with
0⋃

i=1

Ai = ∅

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An ;
0⋂

i=1

Ai usually does not make sense⋃
A∈S

A =
⋃
S is the union of all the sets A that are elements of S

n∑
i=1

ai = a1 + a2 + · · ·+ an and is zero for n = 0

n∏
i=1

ai = a1a2 · · · an and is one for n = 0

2. What Is Linear Algebra?

Linear Algebra is the theory of ‘linear structures’. So what is a linear structure?
Well, the notion of linearity involves addition — you want to be able to form sums,
and this addition should behave in the way you expect (it is commutative (x+y =
y + x) and associative ((x + y) + z = x + (y + z)), has a zero element, and every
element has a negative) — and multiplication, not between the elements of your
structure, but by ‘scalars’, for example, real numbers. This scalar multiplication
should also behave reasonably (you want to have 1 ·x = x and λ · (µ ·x) = (λµ) ·x)
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and be compatible with the addition (in the sense that both distributive laws hold:
(λ + µ)x = λx + µx, λ(x + y) = λx + λy). We will make this precise in the next
section.

A set with a linear structure in the sense of our discussion is called a linear space or
vector space. So Linear Algebra studies these linear spaces and the maps between
them that are compatible with the linear structure: linear maps. This may sound
somewhat abstract, and indeed, it is. However, it is exactly this level of abstraction
that makes Linear Algebra an extremely useful tool. The reason for this is that
linear structures abound in mathematics, and so Linear Algebra has applications
everywhere (see below). It is this method of abstraction that extracts the common
features of various situations to create a general theory, which forms the basis of
all essential progress in mathematics. It took the mathematicians quite a long
time before they came up with our modern clean formulation of the theory.

As already hinted at above, many other structures in mathematics are built on
linear spaces, usually by putting some additional structure on them. Here are
some examples. Even though the various notions probably do not have much of
a meaning to you now, this list should show you that you can expect to use what
you will learn in this course quite heavily in your further studies.

• Geometry. First of all, there is of course the elementary analytic geometry
of the plane and space, which is based on the fact that plane and space can
be turned into linear spaces by choosing a point as the origin. Usually one
adds some structure that allows to talk about distances and angles. This
is based on the ‘dot product’, which is a special case of an ‘inner product’,
which turns a linear space into a Euclidean vector space. We will discuss
this in detail later in the course.

A more advanced branch of geometry is Differential Geometry that stud-
ies ‘smooth’ curves, surfaces and higher-dimensional ‘manifolds’. Every
point on such a manifold has a ‘tangent space’, which is a linear space,
and there are many other linear spaces associated in a natural way to a
manifold (for example, spaces of differential forms).

• Analysis. The notion of derivative is based on linearity — the derivative
describes the best linear approximation to a function in a given point.
In the case of functions of one variable, this comes down to the slope of
the tangent line to the graph. However, the concept can be generalized
to functions in several variables (which are functions defined on a vector
space!) and even to functions between manifolds. Also the operations
of differentiating and integrating functions are linear. Finally, spaces of
functions usually carry a structure as a linear space (for example, the
space of differentiable functions on the real line). Functional Analysis is
concerned with these function spaces; usually one adds some structure
by introducing a suitable ‘norm’, leading to Banach Spaces and Hilbert
Spaces.

• Algebra. Algebra studies more general algebraic structures (like groups,
rings, fields), many of which are based on linear spaces, like for example
Lie Algebras. Then there is a whole bunch of so-called homology and
cohomology theories involving (co-)homology groups, which are in may
cases linear spaces. Such groups occur, for example, in Algebraic Topology,
where they can be used to show that two spaces are essentially distinct from
each other, in that one cannot continuously deform one into the other.
They also play an important role in Algebraic Geometry.
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Another, somewhat different, application (which may be interesting to
the EECS, CS and ECE students) is to Coding Theory, where one tries
to construct good ‘error-correcting codes’. Essentially all the codes that
are considered are linear codes, which means that the codewords form a
vector space (where the scalar multiplication is not by real numbers, but
by elements from a ‘finite field’ like the field F2 = {0, 1}).

To illustrate the versatility of Linear Algebra, let me write down a few linear
equations from various areas of mathematics. Even though they involve objects
of quite different nature, the general theory applies to all of them to provide (for
example) general information on the structure of the solution set.

• A system of linear equations in real numbers:

x + y = 3 , x + z = 5 , y + z = 6 .

• A linear recurrence relation for a sequence (Fn)n≥0 of real numbers (the
Fibonacci numbers provide one solution):

Fn+2 = Fn+1 + Fn for all n ≥ 0.

• A linear ordinary differential equation for a (twice differentiable) function
y : R → R (the sine and cosine functions solve it):

y′′ + y = 0 .

• A linear partial differential equation for a (twice differentiable) function f
of time t and space x, y, z (the Heat Equation):

∂f

∂t
= −∂2f

∂x2
− ∂2f

∂y2
− ∂2f

∂z2
.

The fact that Linear Algebra applies to all of them accounts for the general feeling
that linear equations are ‘easy’, whereas nonlinear equations are ‘difficult’.

3. Vector Spaces

In this section, we will give the complete formal definition of what a (real) vector
space or linear space is. ‘Real’ here refers to the fact that the scalars are real
numbers.

3.1. Definition. A real vector space or linear space over R is a set V , together
with two maps + : V × V → V (‘addition’) and · : R × V → V (‘scalar multi-
plication’) satisfying the following axioms. Note that for λ · x, we usually write
λx.

(1) For all x, y ∈ V , x + y = y + x (addition is commutative).

(2) For all x, y, z ∈ V , (x + y) + z = x + (y + z) (addition is associative).

(3) There is a 0 ∈ V such that for all x ∈ V , x + 0 = x (existence of a zero

element).

(4) For every x ∈ V , there is −x ∈ V such that x + (−x) = 0 (existence of

negatives).

(5) For all λ, µ ∈ R and x ∈ V , λ · (µ · x) = (λµ) · x (scalar multiplication is

associative).



5

(6) For all x ∈ V , 1 · x = x (multiplication by 1 is the identity).

(7) For all λ ∈ R and x, y ∈ V , λ(x + y) = λx + λy (distributivity I).

(8) For all λ, µ ∈ R and x ∈ V , (λ + µ)x = λx + µx (distributivity II).

The elements of a vector space are usually called vectors.

3.2. Remarks.

(1) The first four axioms above exactly state that (V, +) is an (additive) abelian
group. (If you didn’t know what an abelian group is, then this is the
definition.)

(2) Instead of writing (V, +, ·) (which is the complete data for a vector space),
we usually just write V , with the addition and scalar multiplication being
understood.

Before we continue with the general theory, we should look at some examples.

3.3. Example. The simplest (and perhaps least interesting) example of a vector
space is V = {0}, with addition given by 0 + 0 = 0 and scalar multiplication by
λ · 0 = 0 (these are the only possible choices). Trivial as it may seem, this vector
space, called the zero space, is important. It plays a role in Linear Algebra similar
to the role played by the empty set in Set Theory.

3.4. Example. The next (still not very interesting) example is V = R, with
addition and multiplication the usual ones on real numbers. The axioms above in
this case just reduce to well-known rules for computing with real numbers.

3.5. Example. Now we come to a very important example, which is the model
of a vector space. We consider V = Rn, the set of n-tuples of real numbers. We
define addition and scalar multiplication ‘component-wise’:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

λ · (x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

Of course, we now have to prove that our eight axioms are satisfied by our choice
of (V, +, ·). In this case, this is very easy, since everything reduces to known facts
about real numbers. As an example, let us show that the first distributive law is
satisfied.

λ
(
(x1, x2, . . . , xn) + (y1, y2, . . . , yn)

)
= λ · (x1 + y1, x2 + y2, . . . , xn + yn)

=
(
λ(x1 + y1), λ(x2 + y2), . . . , λ(xn + yn)

)
= (λx1 + λy1, λx2 + λy2, . . . , λxn + λyn)

= (λx1, λx2, . . . , λxn) + (λy1, λy2, . . . , λyn)

= λ(x1, x2, . . . , xn) + λ(y1, y2, . . . , yn)

Of course, for n = 2 and n = 3, this is more or less what you know as ‘vectors’
from high school. For n = 1, this example reduces to the previous one (if one
identifies 1-tuples (x) with elements x); for n = 0, it reduces to the zero space.
(Why? Well, like an empty product of numbers should have the value 1, an empty
product of sets like R0 has exactly one element, the empty tuple (), which we can
call 0 here.)
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3.6. Exercise. Write down proofs for the other seven axioms.

3.7. Example. The preceding example can be generalized. Note that we can
identify Rn with the set of maps f : {1, 2, . . . , n} → R, by letting such a map f
correspond to the n-tuple (f(1), f(2), . . . , f(n)). But there is no need to limit
ourselves to these specific sets. So let us consider any set X and look at the set
of all maps (or functions) from X to R:

V = RX = {f : X → R} .

In order to get a vector space, we have to define addition and scalar multiplication.
To define addition, for every pair of functions f, g : X → R, we have to define a
new function f + g : X → R. The only reasonable way to do this is as follows
(‘point-wise’):

f + g : X −→ R , x 7−→ f(x) + g(x) ,

or, in a more condensed form, by writing (f +g)(x) = f(x)+g(x). (Make sure that
you understand these notations!) In a similar way, we define scalar multiplication:

λf : X −→ R , x 7−→ λf(x) .

We then have to check the axioms in order to convince ourselves that we really
get a vector space. Let us do again the first distributive law as an example. We
have to check that λ(f + g) = λf + λg, which means that for all x ∈ X, we have(

λ(f + g)
)
(x) = (λf + λg)(x) .

So let λ ∈ R, f, g : X → R, and x ∈ X.(
λ(f + g)

)
(x) = λ

(
(f + g)(x)

)
= λ

(
f(x) + g(x)

)
= λf(x) + λg(x)

= (λf)(x) + (λg)(x)

= (λf + λg)(x) .

Note the parallelism of this proof with the one in the previous example! What do
we get when X is the empty set?

3.8. Exercise. Write down proofs for the other seven axioms.

Before we can continue, we have to deal with a few little things.

3.9. Remark. In a vector space V , there is only one zero element.

Proof. The way to show that there is only one element with a given property is to
assume there are two and then to show they are equal. So assume 0 and 0′ were
two zero elements of V . Then we must have

0 = 0 + 0′ = 0′ + 0 = 0′

(using axioms (3) for 0, (1), (3) for 0′, respectively), so 0 = 0′. �

3.10. Remark. In a vector space V , there is a unique negative for each element.

Proof. Let x ∈ V and assume that a, b ∈ V are both negatives of x, i.e., x+a = 0,
x + b = 0. Then

a = a + 0 = a + (x + b) = (a + x) + b = (x + a) + b = 0 + b = b + 0 = b ,

so a = b. �
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3.11. Notation. As usual, we write x− y for x + (−y).

Here are some more harmless facts.

3.12. Remarks. Let (V, +, ·) be a real vector space.

(1) For all x ∈ V , we have 0 · x = 0.

(2) For all x ∈ V , we have (−1) · x = −x.

(3) For λ ∈ R and x ∈ V such that λx = 0, we must have λ = 0 or x = 0.

Proof. Exercise. �

4. Fields

So far, we have required our scalars to be real numbers. It turns out, however,
that we can be quite a bit more general without adding any complications, by
replacing the real numbers with other structures with similar properties. These
structures are called fields.

In the formulation of the axioms below, we will use the shorthands ‘∀x ∈ X : . . . ’
and ‘∃x ∈ X : . . . ’ for the phrases ‘for all x ∈ X, we have . . . ’ and ‘there exists
some x ∈ X such that . . . ’.

4.1. Definition. A field is a set F , together with two maps + : F × F → F
(‘addition’) and · : F ×F → F (‘multiplication’), written, as usual, (λ, µ) 7→ λ+µ
and (λ, µ) 7→ λ · µ or λµ, respectively, satisfying the following axioms.

(1) ∀λ, µ ∈ F : λ + µ = µ + λ.

(2) ∀λ, µ, ν ∈ F : (λ + µ) + ν = λ + (µ + ν).

(3) ∃0 ∈ F ∀λ ∈ F : λ + 0 = λ.

(4) ∀λ ∈ F ∃ − λ ∈ F : λ + (−λ) = 0.

(5) ∀λ, µ ∈ F : λµ = µλ.

(6) ∀λ, µ, ν ∈ F : (λµ)ν = λ(µν).

(7) ∃1 ∈ F : 1 6= 0 and ∀λ ∈ F : 1 · λ = λ.

(8) ∀λ ∈ F \ {0} ∃λ−1 ∈ F : λ−1λ = 1.

(9) ∀λ, µ, ν ∈ F : λ(µ + ν) = λµ + λν.

Well-known examples of fields are the field Q of rational numbers and the field R
of real numbers. We will introduce the field C of complex numbers shortly. But
there are other examples of fields. For example, the smallest possible field just
has the required elements 0 and 1, with the only ‘interesting’ definition being that
1 + 1 = 0.

4.2. Exercise. Check the axioms for this field F2 = {0, 1}.

As before for vector spaces, we have some simple statements that easily follow
from the axioms.
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4.3. Remarks. Let F be a field.

(1) The zero 0 and unit 1 of F are uniquely determined. Likewise, for every
λ ∈ F , −λ is uniquely determined, and for every λ ∈ F \ {0}, λ−1 is
uniquely determined.

(2) We have 0 · λ = 0 and (−1)λ = −λ for all λ ∈ F . In particular (taking
λ = −1), (−1)(−1) = 1.

(3) If λµ = 0 for λ, µ ∈ F , then λ = 0 or µ = 0 (or both).

Proof. Exercise. �

4.4. Remark. It is perhaps easier to remember the field axioms in the following
way.

(1) (F, +) is an (additive) abelian group with zero element 0, called the additive
group of F .

(2) (F \ {0}, ·) is a (multiplicative) abelian group, called the multiplicative
group of F . (But note that the multiplication map is defined on all of F ,
not just on F \ {0}.)

(3) The distributive law holds: ∀λ, µ, ν ∈ F : λ(µ + ν) = λµ + λν.

Given this, we can now define the notion of an F -vector space for an arbitrary
field F .

4.5. Definition. Let F be a field. An F -vector space or linear space over F is a
set V , together with two maps + : V × V → V (‘addition’) and · : F × V → V
(‘scalar multiplication’), satisfying the vector space axioms given in Def. 3.1 with
R replaced by F .

Note that in order to prove the statements in Remarks 3.9, 3.10 and 3.12, we only
had to use that R is a field. Hence these statements are valid for F -vector spaces
in general.

The same observation applies to our examples of real vector spaces.

4.6. Examples.

(1) V = {0}, with the unique addition and scalar multiplication maps, is an
F -vector space, again called the zero space (over F ).

(2) F , with the addition and multiplication from its structure as a field, is an
F -vector space.

(3) F n, with addition and scalar multiplication defined component-wise, is an
F -vector space.

(4) For any set X, the set FX of all maps X → F , with addition and scalar
multiplication defined point-wise, is an F -vector space.

4.7. Example. There are other examples that may appear more strange. Let X
be any set, and let V be the set of all subsets of X. (For example, if X = {a, b},
then V has the four elements ∅, {a}, {b}, {a, b}.) We define addition on V as the
symmetric difference: A + B = (A \B)∪ (B \A) (this is the set of elements of X
that are in exactly one of A and B). We define scalar multiplication by elements
of F2 in the only possible way: 0 ·A = ∅, 1 ·A = A. These operations turn V into
an F2-vector space.



9

To prove this assertion, we can check the vector space axioms (this is an instructive
exercise). An alternative (and perhaps more elegant) way is to note that subsets
of X correspond to maps X → F2 (a map f corresponds to the subset {x ∈ X :
f(x) = 1}) — there is a bijection between V and FX

2 — and this correspondence
translates the addition and scalar multiplication we have defined on V into that
we had defined earlier on FX

2 .

4.8. The Field of Complex Numbers. Besides real vector spaces, complex
vector spaces are very important in many applications. These are linear spaces
over the field of complex numbers, which we now introduce.

The first motivation for the introduction of complex numbers is a shortcoming of
the real numbers: while positive real numbers have real square roots, negative real
numbers do not. Since it is frequently desirable to be able to work with solutions
to equations like x2 + 1 = 0, we introduce a new number, called i, that has the
property i2 = −1. The set C of complex numbers then consists of all expressions
a + bi, where a and b are real numbers. (More formally, one considers pairs of
real numbers (a, b) and so identifies C with R2 as sets.) In order to turn C into a
field, we have to define addition and multiplication. If we want the multiplication
to be compatible with the scalar multiplication on the real vector space R2, then
(bearing in mind the field axioms) there is no choice: we have to set

(a + bi) + (c + di) = (a + c) + (b + d)i

and
(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac− bd) + (ad + bc)i

(remember i2 = −1). It is then an easy, but tedious, matter to show that the
axioms hold. (Later, in the “Introductory Algebra” course, you will learn that
there is a rather elegant way of doing this.)

If z = a + bi as above, then we call Re z = a the real part and Im z = b the
imaginary part of z.

The least straightforward statement is probably the existence of multiplicative
inverses. In this context, it is advantageous to introduce the notion of conjugate
complex number.

4.9. Definition. If z = a + bi ∈ C, then the complex conjugate of z is z̄ = a− bi.
Note that z z̄ = a2 + b2 ≥ 0. We set |z| =

√
zz̄; this is called the absolute value

or modulus of z. It is clear that |z| = 0 only for z = 0; otherwise |z| > 0. We
obviously have ¯̄z = z and |z̄| = |z|.

4.10. Remark.

(1) For all w, z ∈ C, we have w + z = w̄ + z̄ and wz = w̄ z̄.

(2) For all z ∈ C \ {0}, we have z−1 = |z|−2 · z̄.
(3) For all w, z ∈ C, we have |wz| = |w| · |z|.

Proof.

(1) Exercise.

(2) First of all, |z| 6= 0, so the expression makes sense. Now note that

|z|−2z̄ · z = |z|−2 · zz̄ = |z|−2|z|2 = 1 .

(3) Exercise.
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�

For example:

1

1 + 2i
=

1− 2i

(1 + 2i)(1− 2i)
=

1− 2i

12 + 22
=

1− 2i

5
=

1

5
− 2

5
i .

4.11. Remark. Historically, the necessity of introducing complex numbers was
realized through the study of cubic (and not quadratic) equations. The reason
for this is that there is a solution formula for cubic equations that in some cases
requires complex numbers in order to express a real solution. See Section 2.7 in
Jänich’s book [J].

The importance of the field of complex numbers lies in the fact that they pro-
vide solutions to all polynomial equations. This is the ‘Fundamental Theorem of
Algebra’:

Every non-constant polynomial with complex coefficients has a root in C.

We will have occasion to use it later on. A proof, however, is beyond the scope of
this course.

4.12. Definition. A complex vector space is a linear space over C.

5. Linear Subspaces and Linear Hulls

In many applications, we do not want to consider all elements of a given vector
space V , rather we only consider elements of a certain subset. Usually, it is
desirable that this subset is again a vector space (with the addition and scalar
multiplication it ‘inherits’ from V ). In order for this to be possible, a minimal
requirement certainly is that addition and scalar multiplication make sense on the
subset.

5.1. Definition. Let V be an F -vector space. A subset U ⊂ V is called a vector
subspace or linear subspace of V if it has the following properties.

(1) 0 ∈ U .

(2) If u1, u2 ∈ U , then u1 + u2 ∈ U .

(3) If λ ∈ F and u ∈ U , then λu ∈ U .

Here the addition and scalar multiplication are those of V .

Note that, given the third property, the first is equivalent to saying that U is
non-empty. Indeed, let u ∈ U , then by (3), 0 = 0 · u ∈ U .

We should justify the name ‘subspace’.

5.2. Lemma. Let (V, +, ·) be an F -vector space. If U ⊂ V is a linear subspace
of V , then (U, +|U×U , ·|F×U) is again an F -vector space.

The notation +|U×U means that we take the addition map + : V ×V , but restrict it
to U ×U . (Strictly speaking, we also restrict its target set from V to U . However,
this is usually suppressed in the notation.)
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Proof. By definition of what a linear subspace is, we really have well-defined ad-
dition and scalar multiplication maps on U . It remains to check the axioms. For
the axioms that state ‘for all . . . , we have . . . ’ and do not involve any existence
statements, this is clear, since they hold (by assumption) even for all elements
of V . This covers axioms (1), (2), (5), (6), (7) and (8). Axiom (3) is OK, since we
require 0 ∈ U . Finally, for axiom (4), we need that for all u ∈ U , −u ∈ U as well.
But −u = (−1)u, so this is OK by the third property of linear subspaces. �

It is time for some examples.

5.3. Examples. Let V be a vector space. Then {0} ⊂ V and V itself are linear
subspaces of V .

5.4. Example. Consider V = R2 and, for a ∈ R, Ua = {(x, y) ∈ R2 : x + y = a}.
When is Ua a linear subspace?

We check the first condition: 0 = (0, 0) ∈ Ua ⇐⇒ 0 + 0 = a, so Ua can only be a
linear subspace when a = 0. Let us check the other properties for U0:

(x1, y1), (x2, y2) ∈ U0 =⇒ x1 + y1 = 0, x2 + y2 = 0

=⇒ (x1 + x2) + (y1 + y2) = 0

=⇒ (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ U0

and

λ ∈ R, (x, y) ∈ U0 =⇒ x + y = 0

=⇒ λx + λy = λ(x + y) = 0

=⇒ λ(x, y) = (λx, λy) ∈ U0 .

5.5. Examples. Consider V = RR = {f : R → R}, the set of real-valued func-
tions on R. You will learn in Analysis that if f and g are continuous functions,
then f + g is again continuous, and λf is continuous for any λ ∈ R. Of course,
the zero function x 7→ 0 is continuous as well. Hence, the set of all continuous
functions

C(R) = {f : R → R | f is continuous}
is a linear subspace of V .

Similarly, you will learn that sums and scalar multiples of differentiable functions
are again differentiable. Also, derivatives respect sums and scalar multiplication:
(f + g)′ = f ′ + g′, (λf)′ = λf ′. From this, we conclude that

Cn(R) = {f : R → R | f is n times differentiable and f (n) is continuous}
is again a linear subspace of V .

In a different direction, consider the set of all periodic functions (with period 1):

U = {f : R → R | f(x + 1) = f(x) for all x ∈ R} .

The zero function is certainly periodic. If f and g are periodic, then

(f + g)(x + 1) = f(x + 1) + g(x + 1) = f(x) + g(x) = (f + g)(x) ,

so f + g is again periodic. Similarly, λf is periodic (for λ ∈ R). So U is a linear
subspace of V .

The following result now tells us that U ∩ C(R), the set of all continuous periodic
functions, is again a linear subspace.
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5.6. Lemma. Let V be an F -vector space, U1, U2 ⊂ V linear subspaces of V .
Then U1 ∩ U2 is again a linear subspace of V .

More generally, if (Ui)i∈I (with I 6= ∅) is any family of linear subspaces of V , then
their intersection U =

⋂
i∈I Ui is again a linear subspace of V .

Proof. It is sufficient to prove the second statement (take I = {1, 2} to obtain the
first). We check the conditions.

(1) By assumption 0 ∈ Ui for all i ∈ I. So 0 ∈ U .

(2) Let u1, u2 ∈ U . Then u1, u2 ∈ Ui for all i ∈ I, hence (by assumption)
u1 + u2 ∈ Ui for all i ∈ I. But this means u1 + u2 ∈ U .

(3) Let λ ∈ F , u ∈ U . Then u ∈ Ui for all i ∈ I, hence (by assumption)
λu ∈ Ui for all i ∈ I. This means that λu ∈ U .

�

Note that in general, if U1 and U2 are linear subspaces, then U1 ∪ U2 is not (it is
if and only if U1 ⊂ U2 or U2 ⊂ U1 — Exercise!).

The property we just proved is very important, since it tells us that there is always
a smallest linear subspace of V that contains a given subset S of V . This means
that there is a linear subspace U of V such that S ⊂ U and such that U is
contained in every other linear subspace of V that contains S.

5.7. Definition. Let V be a vector space, S ⊂ V a subset. The linear hull or
linear span of S, or the linear subspace generated by S is

L(S) =
⋂
{U ⊂ V : U linear subspace of V , S ⊂ U} .

(This notation means the intersection of all elements of the specified set: we
intersect all linear subspaces containing S. Note that V itself is such a subspace,
so this set of subspaces is non-empty, so by the preceding result, L(S) really is a
linear subspace.)

If we want to indicate the field F of scalars, we write LF (S). If v1, v2, . . . , vn ∈ V ,
we also write L(v1, v2, . . . , vn) for L({v1, v2, . . . , vn}).

If L(S) = V , we say that S generates V , or that S is a generating set for V .

Be aware that there are various different notations for linear hulls in the literature,
for example 〈S〉 (which in LATEX is written $\langle S \rangle$ and not $<S>$!).

5.8. Example. What do we get in the extreme case that S = ∅? Well, then we
have to intersect all linear subspaces of V , so we get L(∅) = {0}.

Definition 5.7 above has some advantages and disadvantages. Its main advantage
is that it is very elegant. Its main disadvantage is that it is rather abstract and
non-constructive. To remedy this, we show that we can build the linear hull in a
constructive way “from below” instead of abstractly “from above.”
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5.9. Example. Let us look at a specific case first. Given v1, v2 ∈ V , how can we
describe L(v1, v2)?

According to the definition of linear subspaces, we must be able to add and multi-
ply by scalars in L(v1, v2); also v1, v2 ∈ L(v1, v2). This implies that every element
of the form λ1v1 + λ2v2 must be in L(v1, v2). So set

U = {λ1v1 + λ2v2 : λ1, λ2 ∈ F}

(where F is the field of scalars); then U ⊂ L(v1, v2). On the other hand, U is itself
a linear subspace:

0 = 0 · v1 + 0 · v2 ∈ U

(λ1 + µ1)v1 + (λ2 + µ2)v2 = (λ1v1 + λ2v2) + (µ1v1 + µ2v2) ∈ U

(λλ1)v1 + (λλ2)v2 = λ(λ1v1 + λ2v2) ∈ U

(Exercise: which of the vector space axioms have we used where?)

Therefore, U is a linear subspace containing v1 and v2, and hence L(v1, v2) ⊂ U
by our definition. We conclude that

L(v1, v2) = U = {λ1v1 + λ2v2 : λ1, λ2 ∈ F} .

This observation generalizes.

5.10. Definition. Let V be an F -vector space, v1, v2, . . . , vn ∈ V. A linear combi-
nation (or, more precisely, an F -linear combination) of v1, v2, . . . , vn is an element
of V of the form

v = λ1v1 + λ2v2 + · · ·+ λnvn

with λ1, λ2, . . . , λn ∈ F . If n = 0, then the only linear combination of no vectors
is (by definition) 0 ∈ V .

If S ⊂ V is any subset, then an (F -)linear combination on S is a linear combination
of finitely many elements of S.

5.11. Proposition. Let V be a vector space, v1, v2, . . . , vn ∈ V . Then the set
of all linear combinations of v1, v2, . . . , vn is a linear subspace of V ; it equals the
linear hull L(v1, v2, . . . , vn).

More generally, let S ⊂ V be a subset. Then the set of all linear combinations
on S is a linear subspace of V, equal to L(S).

Proof. Let U be the set of all linear combinations of v1, v2, . . . , vn. We have to check
that U is a linear subspace of V . First of all, 0 ∈ U , since 0 = 0v1 + 0v2 + · · ·+ 0vn

(this even works for n = 0). To check that U is closed under addition, let
v = λ1v1 + λ2v2 + · · ·+ λnvn and w = µ1v1 + µ2v2 + · · · + µnvn be two elements
of U . Then

v + w = (λ1v1 + λ2v2 + · · ·+ λnvn) + (µ1v1 + µ2v2 + · · ·+ µnvn)

= (λ1 + µ1)v1 + (λ2 + µ2)v2 + · · ·+ (λn + µn)vn

is again a linear combination of v1, v2, . . . , vn. Also, for λ ∈ F ,

λv = λ(λ1v1 + λ2v2 + · · ·+ λnvn)

= (λλ1)v1 + (λλ2)v2 + · · ·+ (λλn)vn
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is a linear combination of v1, v2, . . . , vn. So U is indeed a linear subspace of V . We
have v1, v2, . . . , vn ∈ U , since

vj = 0 · v1 + · · ·+ 0 · vj−1 + 1 · vj + 0 · vj+1 + · · ·+ 0 · vn ,

so, by definition of the linear hull, L(v1, v2, . . . , vn) ⊂ U . On the other hand, it
is clear that any linear subspace containing v1, v2, . . . , vn has to contain all linear
combinations of these vectors, hence U ⊂ L(v1, v2, . . . , vn). Therefore

L(v1, v2, . . . , vn) = U .

For the general case, the only possible problem is with checking that the set of
linear combinations on S is closed under addition. For this, we observe that if v is a
linear combination on the finite subset I of S and w is a linear combination on the
finite subset J of S, then v and w can both be considered as linear combinations
on the finite subset I ∪ J of S; now our argument above applies. �

5.12. Example. Let us consider again the vector space C(R) of continuous func-
tions on R. The power functions fn : x 7→ xn (n = 0, 1, 2, . . . ) are certainly
continuous and defined on R, so they are elements of C(R). We find that their
linear hull L({fn : n ∈ N0}) is the linear subspace of polynomial functions, i.e,
functions that are of the form

x 7−→ anx
n + an−1x

n−1 + · · ·+ a1x + a0

with n ∈ N0 and a0, a1, . . . , an ∈ R.

6. Linear Independence and Dimension

This section essentially follows Chapter 3 in Jänich’s book [J].

In the context of looking at linear hulls, it is a natural question whether we really
need all the given vectors in order to generate their linear hull. Also (maybe in
order to reduce waste. . . ), it is interesting to consider minimal generating sets.
These questions lead to the notions of linear independence and basis.

6.1. Definition. Let V be an F -vector space, v1, v2, . . . , vn ∈ V. We say that
v1, v2, . . . , vn are linearly independent, if for all λ1, λ2, . . . , λn ∈ F ,

λ1v1 + λ2v2 + · · ·+ λnvn = 0

implies λ1 = λ2 = · · · = λn = 0. (“The zero vector cannot be written as a
nontrivial linear combination of v1, . . . , vn.”)

In a similar way, we can define linear independence for arbitrary subsets of V.
This is equivalent to the following. S ⊂ V is linearly independent if every choice
of finitely many (distinct) vectors from S is linearly independent.

As a special case, the empty sequence or empty set of vectors is considered to be
linearly independent.

If we want to refer to the field of scalars F , we say that the given vectors are
F -linearly independent or linearly independent over F .

If v1, v2, . . . , vn (resp., S) are not linearly independent, we say that they are linearly
dependent.
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6.2. Example. For an easy example that the field of scalars matters in the context
of linear independence, consider 1, i ∈ C, where C can be considered as a real or
as a complex vector space. We then have that 1 and i are R-linearly independent
(essentially by definition of C — 0 = 0 ·1+0 · i, and this representation is unique),
whereas they are C-linearly dependent — i · 1 + (−1) · i = 0.

6.3. Remark. Let V be a vector space, v1, v2, . . . , vn ∈ V. Then v1, v2, . . . , vn are
linearly dependent if and only if one of the vj is a linear combination of the others,
i.e., if and only if

L(v1, v2, . . . , vn) = L(v1, . . . , vj−1, vj+1, . . . , vn)

for some j ∈ {1, 2, . . . , n}. A similar statement holds for subsets S ⊂ V.

Proof. Let us first assume that v1, v2, . . . , vn are linearly dependent. Then there
are scalars λ1, λ2, . . . , λn, not all zero, such that

λ1v1 + λ2v2 + · · ·+ λnvn = 0 .

Let j be such that λj 6= 0. Then

vj = −λ−1
j (λ1v1 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn) .

Conversely, assume that vj is a linear combination of the other vectors:

vj = λ1v1 + · · ·+ λj−1vj−1 + λj+1vj+1 + · · ·+ λnvn .

Then

λ1v1 + · · ·+ λj−1vj−1 − vj + λj+1vj+1 + · · ·+ λnvn = 0 ,

so the given vectors are linearly dependent. Bearing in mind that S is linearly
dependent if and only if some finite subset of S is linearly dependent, the last
statement also follows. �

6.4. Example. In C(R), the functions

x 7−→ 1 , x 7−→ sin x , x 7−→ cos x , x 7−→ sin2 x , x 7−→ cos2 x

are linearly dependent, since 1− sin2 x− cos2 x = 0 for all x ∈ R.

On the other hand,

x 7−→ 1 , x 7−→ sin x , x 7−→ cos x

are linearly independent. To see this, assume that λ + µ sin x + ν cos x = 0 for
all x ∈ R. Plugging in x = 0, we obtain λ + ν = 0. For x = π, we get λ− ν = 0,
which together imply λ = ν = 0. Then taking x = π/2 shows that µ = 0 as well.

6.5. Definition. Let V be a vector space. A sequence v1, v2, . . . , vn ∈ V (or a
subset S ⊂ V ) is called a basis of V if v1, v2, . . . , vn are (resp., S is) linearly
independent, and V = L(v1, v2, . . . , vn) (resp., V = L(S)).

From Remark 6.3 above, we see that a basis of V is a minimal generating set of V,
in the sense that we cannot leave out some element and still have a generating set.

What is special about a basis among generating sets?
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6.6. Lemma. If v1, v2, . . . , vn is a basis of the F -vector space V, then for every
v ∈ V , there are unique scalars λ1, λ2, . . . , λn ∈ F such that

v = λ1v1 + λ2 + · · ·+ λnvn .

Proof. The existence of (λ1, λ2, . . . , λn) ∈ F n such that

v = λ1v1 + λ2 + · · ·+ λnvn

follows from the fact that v1, v2, . . . , vn generate V.

To show uniqueness, assume that (µ1, µ2, . . . , µn) ∈ F n also satisfy

v = µ1v1 + µ2v2 + · · ·+ µnvn .

Taking the difference, we obtain

0 = (λ1 − µ1)v1 + (λ2 − µ2)v2 + · · ·+ (λn − µn)vn .

Since v1, v2, . . . , vn are linearly independent, it follows that

λ1 − µ1 = λ2 − µ2 = · · · = λn − µn = 0 ,

i.e., (λ1, λ2, . . . , λn) = (µ1, µ2, . . . , µn). �

6.7. Exercise. Formulate and prove the corresponding statement for subsets.

6.8. Example. The most basic example of a basis is the canonical basis of F n.
This is e1, e2, . . . , en, where

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)

...
...

en = (0, 0, 0, . . . , 0, 1) .

In a precise sense (to be discussed in detail later), knowing a basis v1, v2, . . . , vn

of a vector space V allows us to express everything in V in terms of the standard
vector space F n.

Since we seem to know “everything” about a vector space as soon as we know a
basis, it makes sense to use bases to measure the “size” of vector spaces. In order
for this to make sense, we need to know that any two bases of a given vector space
have the same size. The key to this (and many other important results) is the
following.

6.9. Basis Extension Theorem. Let V be an F -vector space, and let v1, . . . , vr,
w1, . . . , ws ∈ V. If v1, . . . , vr are linearly independent and V is generated by
v1, . . . , vr, w1, . . . , ws, then by adding suitably chosen vectors from w1, . . . , ws, we
can extend v1, . . . , vr to a basis of V.

Note that this is an existence theorem — what it says is that if we have a bunch of
vectors that is ‘too small’ (linearly independent, but not necessarily generating)
and a larger bunch of vectors that is ‘too large’ (generating but not necessarily
linearly independent), then there is a basis ‘in between’. However, it does not tell
us how to actually find such a basis (i.e., how to select the wj that we have to
add).

The Basis Extension Theorem implies another important statement.
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6.10. Exchange Lemma. If v1, . . . , vn and w1, . . . , wm are two bases of a vector
space V, then for each i ∈ {1, 2, . . . , n} there is some j ∈ {1, 2, . . . ,m} such that
v1, . . . , vi−1, wj, vi+1, . . . , vn is again a basis of V.

This says that we can trade any vector of our choice in the first basis for a vector
in the second basis in such a way as to still have a basis.

We will postpone the proofs and first look at some consequences.

6.11. Theorem. If v1, v2, . . . , vn and w1, w2, . . . , wm are two bases of a vector
space V, then n = m.

Proof. Assume that, for example, n > m. By repeatedly applying the Exchange
Lemma, we can successively replace v1, v2, . . . , vn by some wj and still have a basis.
Since there are more v’s than w’s, the resulting sequence must have repetitions
and therefore cannot be linearly independent, contradiction. �

This implies that the following definition makes sense.

6.12. Definition. If the vector space V has a basis v1, v2, . . . , vn, then n ≥ 0 is
called the dimension of V , written n = dim V = dimF V.

6.13. Examples. The empty sequence is a basis of the zero space, so dim{0} = 0.

The canonical basis of F n has length n, so dim F n = n.

6.14. Theorem. Let V be a vector space, dim V = n. Then any sequence of
vectors v1, . . . , vm ∈ V such that m > n is linearly dependent.

Proof. Let w1, . . . , wn be a basis of V. Assume that v1, . . . , vm were linearly
independent. Then by the Basis Extension Theorem (note that

V = L(w1, . . . , wn) = L(v1, . . . , vm, w1, . . . , wn) ),

we could extend v1, . . . , vm to a basis of V by adding some vectors from w1, . . . , wn.
Since m > n, the resulting basis would be too long, contradiction. �

Note that this theorem is a quite strong existence statement: it guarantees the
existence of a nontrivial linear relation among the given vectors without the need
to do any computation. This is very useful in many applications. On the other
hand, it is quite a different matter to actually find such a relation: the proof
is non-constructive (as is usually the case with proofs by contradiction), and we
usually need some computational method to exhibit a relation.

The preceding theorem tells us that in a vector space of (finite) dimension n, there
is an upper bound (namely, n) for the length of a linearly independent sequence
of vectors. We can use this to show that there are vector spaces that do not have
dimension n for any n ≥ 0.
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6.15. Example. Let us consider again the linear subspace of polynomial functions
in C(R) (the vector space of continuous functions on R), compare Example 5.12.
Let us call this space P :

P = {f ∈ C(R) : ∃n ∈ N0 ∃a0, . . . , an ∈ R ∀x ∈ R : f(x) = anx
n + · · ·+ a1x + a0}

Denote as before by fn the nth power function: fn(x) = xn. I claim that
{f0, f1, f2, . . . } is linearly independent. Recall that this means that the only way
of writing zero (i.e., the zero function) as a finite linear combination of the fj is
with all coefficients equal to zero. If we let n be the largest number such that
fn occurs in the linear combination, then it is clear that we can write the linear
combination as

λ0f0 + λ1f1 + · · ·+ λnfn = 0 .

We have to show that this is only possible when λ0 = λ1 = · · · = λn = 0.

Note that our assumption means that

λnx
n + · · ·+ λ1x + λ0 = 0 for all x ∈ R.

There are various ways to proceed from here. For example, we can make use of
the fact that a polynomial of degree n ≥ 0 can have at most n zeros in R. Since
there are infinitely many real numbers, the polynomial above has infinitely many
zeros, hence it must be the zero polynomial (which does not have a well-defined
degree).

Another possibility is to use induction on n (which, by the way, is implicit in the
proof above: it is used in proving the statement on zeros of polynomials). Let us
do this in detail. The claim we want to prove is

∀n ∈ N0 ∀λ0, . . . , λn ∈ R :
(
∀x ∈ R : λnx

n + · · ·+λ0 = 0 =⇒ λ0 = · · · = λn = 0
)

.

We now have to establish the induction base: the claim holds for n = 0. This is
easy — let λ0 ∈ R and assume that for all x ∈ R, λ0 = 0 (the function is constant
here: it does not depend on x). Since there are real numbers, this implies λ0 = 0.

Next, and this is usually the hard part, we have to do the induction step. We
assume that the claim holds for a given n (this is the induction hypothesis) and
deduce that it then also holds for n+1. To prove the statement for n+1, we have
to consider coefficients λ0, . . . , λn+1 ∈ R such that for all x ∈ R,

f(x) = λn+1x
n+1 + λnx

n + · · ·+ λ1x + λ0 = 0 .

Now we want to use the induction hypothesis, so we have to reduce this to a
statement involving a polynomial of degree at most n. One way of doing that is to
borrow some knowledge from Analysis about differentiation. This tells us that the
derivative of f is zero again, and that it is a polynomial function of degree ≤ n:

0 = f ′(x) = (n + 1)λn+1x
n + nλnx

n−1 + · · ·+ λ1 .

Now we can apply the induction hypothesis to this polynomial function; it tells
us that (n + 1)λn+1 = nλn = · · · = λ1 = 0, hence λ1 = · · · = λn = λn+1 = 0.
So f(x) = λ0 is in fact constant, which finally implies λ0 = 0 as well (by our
reasoning for the induction base).

This completes the induction step and therefore the whole proof.

Note that since P = L({fn : n ∈ N0}), we have shown that {fn : n ∈ N0} is a
basis of P .

So we see that P cannot have a finite basis, since we can find arbitrarily many
linearly independent elements. This motivates the following definition.
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6.16. Definition. If a vector space V does not have a finite basis, then V is said
to be infinite-dimensional, and we write dim V = ∞.

In particular, we see that dim P = ∞.

The following result shows that our intuition that dimension is a measure for the
‘size’ of a vector space is not too far off: larger spaces have larger dimension.

6.17. Lemma. Let U be a linear subspace of the vector space V . Then we have
dim U ≤ dim V . If dim V is finite, then we have equality if and only if U = V .

Here we use the usual convention that n < ∞ for n ∈ N0.

Note that in the case that dim V is finite, the statement also asserts the existence
of a (finite) basis of U .

Proof. There is nothing to show if dim V = ∞. So let us assume that V has
a basis v1, . . . , vn. If u1, . . . , um ∈ U are linearly independent, then m ≤ n by
Thm. 6.14. Hence there is a sequence u1, . . . , um of linearly independent vectors
in U of maximal length m (and m ≤ n). We claim that u1, . . . , um is in fact a
basis of U . The first claim follows, since then dim U = m ≤ n = dim V .

We have to show that u1, . . . , um generate U . So assume that there is u ∈ U that
is not a linear combination of the uj. Then u1, . . . , um, u are linearly independent,
which contradicts our choice of u1, . . . , um as a maximal linearly independent se-
quence in U . So there is no such u, hence U = L(u1, . . . , um).

To prove the second part, first note that dim U < dim V implies U ( V (if U = V ,
a basis of U would also be a basis of V , but it is too short for that by Thm. 6.11).
On the other hand, assume U ( V , and consider a basis of U . It can be extended
to a basis of V by the Basis Extension Theorem 6.9. Since it does not generate V ,
at least one element has to be added, which implies dim U < dim V . �

6.18. Examples. Since

P ⊂ C∞(R) =
∞⋂

n=0

Cn(R) ⊂ · · · ⊂ C2(R) ⊂ C1(R) ⊂ C(R) ⊂ RR ,

all these spaces are infinite-dimensional.

6.19. Exercise. Let F be a finite field, and consider the F -vector space V of
functions from F to F (so V = F F in our earlier notation). Consider again the
linear subspace of polynomial functions:

PF = LF ({f0, f1, f2, . . . })

where fn : x 7→ xn (for x ∈ F ). Show that dimF PF is finite.

We have seen that the intersection of linear subspaces is again a linear subspace,
but the union usually is not. However, it is very useful to have a replacement
for the union that has similar properties, but is a linear subspace. Note that the
union of two (or more) sets is the smallest set that contains both (or all) of them.
From this point of view, the following definition is natural.
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6.20. Definition. Let V be a vector space, U1, U2 ⊂ V two linear subspaces. The
sum of U1 and U2 is the linear subspace generated by U1 ∪ U2:

U1 + U2 = L(U1 ∪ U2) .

More generally, if (Ui)i∈I is a family of subspaces of V (I = ∅ is allowed here),
then their sum is again ∑

i∈I

Ui = L
(⋃

i∈I

Ui

)
.

As before in our discussion of linear hulls, we want a more explicit description of
these sums.

6.21. Lemma. If U1 and U2 are linear subspaces of the vector space V , then

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2} .

If (Ui)i∈I is a family of linear subspaces of V , then∑
i∈I

Ui =
{∑

j∈J

uj : J ⊂ I finite and uj ∈ Uj for all j ∈ J
}

.

Proof. It is clear that the sets on the right hand side contain U1∪U2, resp.
⋃

i∈I Ui,
and that they are contained in the left hand sides (which are closed under addi-
tion). So it suffices to show that they are linear subspaces (this implies that the
left hand sides are contained in them).

We have 0 = 0 + 0 (resp., 0 =
∑

j∈∅ uj), so 0 is an element of the right hand side
sets. Closure under scalar multiplication is easy to see:

λ(u1 + u2) = λu1 + λu2 ,

and λu1 ∈ U1, λu2 ∈ U2, since U1, U2 are linear subspaces. Similarly,

λ
∑
j∈J

uj =
∑
j∈J

λuj ,

and λuj ∈ Uj, since Uj is a linear subspace. Finally, for u1, u
′
1 ∈ U1 and u2, u

′
2 ∈ U2,

we have

(u1 + u2) + (u′1 + u′2) = (u1 + u′1) + (u2 + u′2)

with u1 + u′1 ∈ U1, u2 + u′2 ∈ U2. And for J1, J2 finite subsets of I, uj ∈ Uj for
j ∈ J1, u′j ∈ Uj for j ∈ J2, we find(∑

j∈J1

uj

)
+

(∑
j∈J2

u′j

)
=

∑
j∈J1∪J2

vj ,

where vj = uj ∈ Uj if j ∈ J1 \J2, vj = u′j ∈ Uj if j ∈ J2 \J1, and vj = uj +u′j ∈ Uj

if j ∈ J1 ∩ J2. �

Now we have the following nice formula relating the dimensions of U1, U2, U1∩U2

and U1 + U2. In the following, we use the convention that ∞ + n = n + ∞ =
∞+∞ = ∞ for n ∈ N0.
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6.22. Theorem. Let U1 and U2 be linear subspaces of a vector space V. Then

dim(U1 + U2) + dim(U1 ∩ U2) = dim U1 + dim U2 .

Proof. First note that the statement is trivially true when U1 or U2 is infinite-
dimensional, since then both sides are ∞. So we can assume that U1 and U2 are
both finite-dimensional.

For the proof, we use the Basis Extension Theorem 6.9 again. Since U1 ∩ U2 ⊂ U1

and U1 is finite-dimensional, we know by Lemma 6.17 that U1 ∩ U2 is also finite-
dimensional. Let v1, . . . , vr be a basis of U1 ∩ U2. Using the Basis Extension
Theorem, we can extend it on the one hand to a basis v1, . . . , vr, w1, . . . , ws of U1

and on the other hand to a basis v1, . . . , vr, z1, . . . , zt of U2. I claim that then
v1, . . . , vr, w1, . . . , ws, z1, . . . , zt is a basis of U1 + U2. It is clear that these vectors
generate U1+U2 (since they are obtained by putting generating sets of U1 and of U2

together). So it remains to show that they are linearly independent. Consider a
general linear combination

λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws + ν1z1 + . . . νtzt = 0 .

Then z = ν1z1 + . . . νtzt ∈ U2, but also

z = −λ1v1 − · · · − λrvr − µ1w1 − · · · − µsws ∈ U1 ,

so z ∈ U1 ∩ U2, which implies that

z = ν1z1 + . . . νtzt = α1v1 + · · ·+ αrvr

for suitable αj, since v1, . . . , vr is a basis of U1 ∩ U2. But v1, . . . , vr, z1, . . . , zt are
linearly independent (being a basis of U2), so this is only possible if α1 = · · · =
αr = ν1 = · · · = νt = 0. This then implies that

λ1v1 + · · ·+ λrvr + µ1w1 + · · ·+ µsws = 0 ,

and since v1, . . . , vr, w1, . . . , ws are linearly independent (being a basis of U1), λ1 =
· · · = λr = µ1 = · · · = µt = 0 as well. So we have dim(U1 + U2) = r + s + t,
dim(U1 ∩ U2) = r, dim U1 = r + s and dim U2 = r + t, from which the claim
follows. �

6.23. Remark and Exercise. Note the analogy with the formula

#(X ∪ Y ) + #(X ∩ Y ) = #X + #Y

for the number of elements in a set. However, there is no analogue of the corre-
sponding formula for three sets:

#(X∪Y ∪Z) = #X+#Y +#Z−#(X∩Y )−#(X∩Z)−#(Y ∩Z)+#(X∩Y ∩Z) .

Find a vector space V and linear subspaces U1, U2, U3 ⊂ V such that

dim(U1 + U2 + U3) + dim(U1 ∩ U2) + dim(U1 ∩ U3) + dim(U2 ∩ U3)

6= dim U1 + dim U2 + dim U3 + dim(U1 ∩ U2 ∩ U3) .

Note that if U1 ∩U2 = {0}, then we simply have dim(U1 + U2) = dim U1 + dim U2

(and conversely). So this is an especially nice case; it motivates the following
definition.
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6.24. Definition. Let V be a vector space. Two linear subspaces U1, U2 ⊂ V are
said to be complementary if U1 ∩ U2 = {0} and U1 + U2 = V .

Note that by the above, we then have dim U1 + dim U2 = dim V .

6.25. Lemma. Let V be a vector space.

(1) If V is finite-dimensional and U ⊂ V is a linear subspace, then there is a
linear subspace U ′ ⊂ V that is complementary to U .

(2) If U and U ′ are complementary linear subspaces of V , then for every v ∈ V
there are unique u ∈ U , u′ ∈ U ′ such that v = u + u′.

Proof.

(1) In this case, U is finite-dimensional, with basis u1, . . . , um (say). By the Ba-
sis Extension Theorem 6.9, we can extend this to a basis u1, . . . , um, v1, . . . , vn

of V . Let U ′ = L(v1, . . . , vn). Then we clearly have V = U + U ′. But we
also have U ∩ U ′ = {0}: if v ∈ U ∩ U ′, then

v = λ1u1 + · · ·+ λmum = µ1v1 + · · ·+ µnvn ,

but u1, . . . , umv1, . . . , vn are linearly independent, so all the λs and µs must
be zero, hence v = 0.

(2) Let v ∈ V. Since V = U + U ′, there certainly are u ∈ U and u′ ∈ U ′

such that v = u + u′. Now assume that also v = w + w′ with w ∈ U and
w′ ∈ U ′. Then u + u′ = w + w′, so u − w = w′ − u′ ∈ U ∩ U ′, hence
u− w = w′ − u′ = 0, and u = w, u′ = w′.

�

6.26. Example. Given U ⊂ V , there usually are many complementary subspaces.
For example, consider V = R2 and U = {(x, 0) : x ∈ R}. What are its comple-
mentary subspaces U ′? We have dim V = 2 and dim U = 1, so we must have
dim U ′ = 1 as well. Let u′ = (x′, y′) be a basis of U ′. Then y′ 6= 0 (otherwise
0 6= u′ ∈ U ∩ U ′). Then we can scale u′ by 1/y′ to obtain a basis of the form
u′ = (x′, 1), and U ′ = L(u′) then is a complementary subspace for every x′ ∈ R —
note that (x, y) = (x− yx′, 0) + y(x′, 1) ∈ U + U ′.

6.27. Proof of Basis Extension Theorem. It remains to prove the Basis Ex-
tension Theorem 6.9 and the Exchange Lemma 6.10. Here we prove the Basis
Extension Theorem. A precise version of the statement is as follows.

Let V be a vector space, and let v1, . . . , vr, w1, . . . , ws ∈ V such that v1, . . . , vr are
linearly independent and V = L(v1, . . . , vr, w1, . . . , ws). Then there is t ∈ N0 and
indices i1, . . . , it ∈ {1, . . . , s} such that v1, . . . , vr, wi1 , . . . , wit is a basis of V.

Make sure you understand how we have formalized the notion of “suitably chosen
vectors from w1, . . . , ws!”

The idea of the proof is simply to add vectors from the wj’s as long as this
is possible while keeping the sequence linearly independent. When no further
lengthening is possible, we should have a basis. So we are looking for a maximal
linearly independent sequence v1, . . . , vr, wi1 , . . . , wit . Note that there cannot be
repetitions among the wi1 , . . . , wit if this sequence is to be linearly independent.
Therefore t ≤ s, and there must be such a sequence of maximal length. We have to
show that it generates V. It suffices to show that wj ∈ L(v1, . . . , vr, wi1 , . . . , wit)
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for all j ∈ {1, . . . , s}. This is clear if j = ik for some k ∈ {1, . . . , t}. Other-
wise, assume that wj is not a linear combination of v1, . . . , vr, wi1 , . . . , wit . Then
v1, . . . , vr, wi1 , . . . , wit , wj would be linearly independent, which would contradict
our choice of a linearly independent sequence of maximal length. So wj must be
a linear combination of our vectors, and the theorem is proved.

Here is an alternative proof, using induction on the number s of vectors wj.

The base case is s = 0. In this case, the assumptions tell us that v1, . . . , vr are
linearly independent and generate V, so we have a basis.

For the induction step, we assume the statement of the theorem is true for
w1, . . . , ws (and any choice of linearly independent vectors v1, . . . , vr), and we have
to prove it for w1, . . . , ws, ws+1. First assume that L(v1, . . . , vr, w1, . . . , ws) = V.
Then the induction hypothesis immediately gives the result. So we assume now
that L(v1, . . . , vr, w1, . . . , ws) ( V. Then ws+1 is not a linear combination of
v1, . . . , vr, hence v1, . . . , vr, ws+1 are linearly independent. Now we can apply the
induction hypothesis again (to v1, . . . , vr, ws+1 and w1, . . . , ws); it tells us that we
can extend v1, . . . , vr, ws+1 to a basis by adding suitable vectors from w1, . . . , ws.
This gives us what we want.

6.28. Proof of Exchange Lemma. Now we prove the Exchange Lemma 6.10.
Recall the statement.

If v1, v2, . . . , vn and w1, w2, . . . , wm are two bases of a vector space V, then for each
i ∈ {1, . . . , n} there is some j ∈ {1, . . . ,m} such that v1, . . . , vi−1, wj, vi+1, . . . , vn

is again a basis of V.

So fix i ∈ {1, . . . , n}. Since v1, . . . , vn are linearly independent, vi cannot be a
linear combination of the remaining v’s. So U = L(v1, . . . , vi−1, vi+1, . . . , vn) ( V .
This implies that there is some j ∈ {1, . . . ,m} such that wj /∈ U (if all wj ∈ U ,
then V ⊂ U). This in turn implies that v1, . . . , vi−1, wj, vi+1, . . . , vn is linearly
independent. If it is not a basis of V , then by the Basis Extension Theorem,
v1, . . . , vi−1, wj, vi+1, . . . , vn, vi must be a basis (we apply the Basis Extension The-
orem to the linearly independent vectors v1, . . . , vi−1, wj, vi+1, . . . , vn and the addi-
tional vector vi; together they generate V ). However, the vectors in this latter se-
quence are not linearly independent, since wj is a linear combination of v1, . . . , vn.
So v1, . . . , vi−1, wj, vi+1, . . . , vn must already be a basis of V.

7. Digression: Infinite-Dimensional Vector Spaces
and Zorn’s Lemma

We have seen that a vector space V such that the number of linearly independent
vectors in V is bounded has a (finite) basis and so has finite dimension. What can
we say about the existence of a basis in an infinite-dimensional vector space?

We have seen an example of an infinite-dimensional vector space that has a basis:
this was the space of polynomial functions on R, with basis given by the monomials
x 7→ xn, n ∈ N0.

On the other hand, you would be very hard put to write down a basis for (say)
C(R), or also a basis for R as a Q-vector space.

In order to prove the existence of a basis and other related results, we would need
an ‘infinite’ version of the Basis Extension Theorem.
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7.1. General Basis Extension Theorem. Let V be a vector space, X, Y ⊂ V
two subsets such that X is linearly independent and V = L(X ∪ Y ). Then there
is a subset Z ⊂ Y such that X ∪ Z is a basis of V.

Now, how can we prove such a statement? Recall that in the proof of the finite
version (if we formulate it for sets instead of sequences), we took a maximal subset
Z of Y such that X ∪Z is linearly independent and showed that X ∪Z is already
a basis. This last step will work here in the same way: assume that Z is maximal
as above, then for every y ∈ Y \ Z, X ∪ Z ∪ {y} is linearly dependent, and so
y ∈ L(X∪Z). This implies that V = L(X∪Y ) ⊂ L(X∪Z), so X∪Z generates V
and is therefore a basis.

However, the key point is the existence of a maximal set Z with the required
property. Note that if S is an arbitrary set of subsets of some set, S need not
necessarily have maximal elements. For example, S could be empty. Or consider
the set of all finite subsets of N. So we need some extra condition to ensure the
existence of maximal elements. (Of course, when S is finite (and nonempty), then
there is no problem — we can just take a set of maximal size.)

This condition is formulated in terms of chains.

7.2. Definition. Let X be a set, and let S be a set of subsets of X. A subset
C ⊂ S is called a chain if all elements of C are comparable, i.e., if for all U, V ∈ C,
we have U ⊂ V or V ⊂ U . (Note that this is trivially true when C is empty.)

7.3. Remark. The notion of ‘chain’ (as well as Zorn’s Lemma below) applies
more generally to (partially) ordered sets: a chain then is a subset that is totally
ordered.

Now a statement of the kind we need is the following.

7.4. Zorn’s Lemma. Let X be a set, and let S be a collection of subsets of X.
If for every chain C ⊂ S, there is a set U ∈ S such that Z ⊂ U for all Z ∈ C,
then S has a maximal element.

Note that the condition, when applied to the empty chain, ensures that S 6= ∅.
Also note that there can be more than one maximal element in S.

Let us see how we can apply this result to our situation. The set S we want to
consider is the set of all subsets Z ⊂ Y such that X ∪ Z is linearly independent.
We have to verify the assumption on chains. So let C ⊂ S be a chain. We have to
exhibit a set U ∈ S containing all the elements of C. In such a situation, our first
guess is to try U =

⋃
C (the union of all sets in C); usually it works. In our case,

we have to show that this U has the property that X ∪U is linearly independent.
Assume it is not. Then there is a finite non-trivial linear combination of elements
of X ∪ U that gives the zero vector. This linear combination will only involve
finitely many elements of U , which come from finitely many sets Z ∈ C. Since
C is a chain, there is a maximal set Zmax among these, and our nontrivial linear
combination only involves elements from X ∪ Zmax. But Zmax is in S, and so
X ∪Zmax is linearly independent, a contradiction. Therefore our assumption must
be false, and X ∪ U must be linearly independent.

7.5. Exercise. Use Zorn’s Lemma to prove that for every subset X of a vector
space V such that X contains the zero vector, there is a maximal linear subspace
of V contained in X.
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7.6. Discussion. Based on Zorn’s Lemma, we can prove the general Basis Exten-
sion Theorem. In particular, this shows that every vector space must have a basis
(take X = ∅ and Y = V ). However, Zorn’s Lemma is an extremely inconstructive
result — it does not give us any information on how to find a maximal element.
And in fact, nobody has ever been able to ‘write down’ (or explicitly construct) a
Q-basis of R, say. Still, such bases must exist.

The next question then is, how does one prove Zorn’s Lemma? It turns out that
it is equivalent (given the more ‘harmless’ axioms of set theory) to the Axiom of
Choice, which states the following.

Let I be a set, and let (Xi)i∈I be a family of nonempty sets indexed by I. Then
there is a ‘choice function’ f : I →

⋃
i∈I Xi such that f(i) ∈ Xi for all i ∈ I.

In other words, if all the Xi are nonempty, then the product
∏

i∈I Xi of these sets
is also nonempty. This looks like a natural property, however it has consequences
like the existence of Q-bases of R which are not so intuitive any more. Also, as
it turned out, the Axiom of Choice is independent from the other axioms of set
theory: it is not implied by them.

For some time, there was some discussion among mathematicians as to whether
the use of the Axiom of Choice (and therefore, of Zorn’s Lemma) should be al-
lowed or forbidden (because of its inconstructive character). By now, a pragmatic
viewpoint has been adapted by almost everybody: use it when you need it. For
example, interesting parts of analysis and algebra need the Axiom of Choice, and
mathematics would be quite a bit poorer without it.

Finally, a historical remark: Zorn’s Lemma was first discovered by Kazimierz
Kuratowski in 1922 (and rediscovered by Max Zorn about a dozen years later),
so it is not really appropriately named. In fact, when I was a student, one of my
professors told us that he talked to Zorn at some occasion, who said that he was
not at all happy that the statement was carrying his name. . .

8. Linear Maps

So far, we have defined the objects of our theory: vector spaces and their elements.
Now we want to look at relations between vector spaces. These are provided by
linear maps — maps between two vector spaces that preserve the linear structure.
But before we give a definition, we have to review what a map or function is and
their basic properties.

8.1. Review of maps. A map or function f : X → Y is a ‘black box’ that for
any given x ∈ X gives us back some f(x) ∈ Y that only depends on x. More
formally, we can define functions by identifying f with its graph

Γf = {(x, f(x)) : x ∈ X} ⊂ X × Y .

In these terms, a function or map from X to Y is a subset f ⊂ X×Y such that for
every x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f ; we then write f(x) = y.
It is important to keep in mind that the data of a function include the domain X
and target (or codomain) Y .

If f : X → Y is a map, then we call {f(x) : x ∈ X} ⊂ Y the image of f , im(f).
The map f is called injective or one-to-one (1–1) if no two elements of X are
mapped to the same element of Y . More formally, if x, x′ ∈ X and f(x) = f(x′),
then x = x′. The map f is called surjective or onto if its image is all of Y .
Equivalently, for all y ∈ Y there is some x ∈ X such that f(x) = y. The map f
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is called bijective if it is both injective and surjective. In this case, there is an
inverse map f−1 such that f−1(y) = x ⇐⇒ f(x) = y.

A map f : X → Y induces maps from subsets of X to subsets of Y and conversely,
which are denoted by f and f−1 again (so you have to be careful to check the
‘datatype’ of the argument). Namely, if A ⊂ X, we set f(A) = {f(x) : x ∈ A}
(for example, the image of f is then f(X)), and for a subset B ⊂ Y , we set
f−1(B) = {x ∈ X : f(x) ∈ B}; this is called the preimage of V under f . Note
that when f is bijective, there are two meanings of f−1(B) — one as just defined,
and one as g(B) where g is the inverse map f−1. Fortunately, both meanings agree
(Exercise), and there is no danger of confusion.

Maps can be composed: if f : X → Y and g : Y → Z, then we can define a map
X → Z that sends x ∈ X to g(f(x)) ∈ Z. This map is denoted by g ◦ f (“g after
f”) — keep in mind that it is f that is applied first!

Composition of maps is associative: if f : X → Y , g : Y → Z and h : Z → W ,
then (h ◦ g) ◦ f = h ◦ (g ◦ f). Every set X has a special map, the identity
map idX : X → X, x 7→ x. It acts as a neutral element under composition: for
f : X → Y , we have f ◦ idX = f = idY ◦f . If f : X → Y is bijective, then its
inverse satisfies f ◦ f−1 = idY and f−1 ◦ f = idX .

When talking about several sets and maps between them, we often picture them
in a diagram like the following.

X
f //

g

��

Y

g′

��
U

f ′
// V

X

f
��

h

  @
@@

@@
@@

Y
g // Z

We call such a diagram commutative if all possible ways of going from one set to
another lead to the same result. For the left diagram, this means that g′◦f = f ′◦g,
for the right diagram, this means that h = g ◦ f .

Now we want to single out among all maps between two vector spaces V and W
those that are ‘compatible with the linear structure.’

8.2. Definition. Let V and W be two F -vector spaces. A map f : V → W is
called an (F -)linear map or a homomorphism if

(1) for all v1, v2 ∈ V , we have f(v1 + v2) = f(v1) + f(v2),

(2) for all λ ∈ F and all v ∈ V , we have f(λv) = λf(v).

(Note: the first property states that f is a group homomorphism between the
additive groups of V and W .)

An injective homomorphism is called a monomorphism, a surjective homomor-
phism is called an epimorphism, and a bijective homomorphism is called an iso-
morphism. Two vector spaces V and W are said to be isomorphic, written V ∼= W ,
if there exists an isomorphism between them.

A linear map f : V → V is called an endomorphism of V ; if f is in addition
bijective, then it is called an automorphism of V.
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8.3. Lemma. Here are some simple properties of linear maps.

(1) If f : V → W is linear, then f(0) = 0.

(2) If f : V → W is an isomorphism, then the inverse map f−1 is also an
isomorphism.

(3) If f : U → V and g : V → W are linear maps, then g ◦ f : U → W is also
linear.

Proof.

(1) This follows from either one of the two properties of linear maps:

f(0) = f(0 + 0) = f(0) + f(0) =⇒ f(0) = 0

or

f(0) = f(0 · 0) = 0 · f(0) = 0 .

(Which of the zeros are scalars, which are vectors in V , in W?)

(2) The inverse map is certainly bijective; we have to show that it is linear.
So let w1, w2 ∈ W and set v1 = f−1(w1), v2 = f−1(w2). Then f(v1) = w1,
f(v2) = w2, hence f(v1 + v2) = w1 + w2. This means that

f−1(w1 + w2) = v1 + v2 = f−1(w1) + f−1(w2) .

The second property is checked in a similar way.

(3) Easy.

�

Associated to a linear map there are two important linear subspaces: its kernel
and its image.

8.4. Definition. Let f : V → W be a linear map. Then the kernel of f is defined
to be

ker(f) = {v ∈ V : f(v) = 0} .

8.5. Lemma. Let f : V → W be a linear map.

(1) ker(f) ⊂ V is a linear subspace. More generally, if U ⊂ W is a linear
subspace, then f−1(U) ⊂ V is again a linear subspace; it contains ker(f).

(2) im(f) ⊂ W is a linear subspace. More generally, if U ⊂ V is a linear sub-
space, then f(U) ⊂ W is again a linear subspace; it is contained in im(f).

(3) f is injective if and only if ker(f) = {0}.

Proof.

(1) We have to check the three properties of subspaces for ker(f). By the
previous remark, f(0) = 0, so 0 ∈ ker(f). Now let v1, v2 ∈ ker(f). Then
f(v1) = f(v2) = 0, so f(v1 + v2) = f(v1) + f(v2) = 0 + 0 = 0, and
v1 + v2 ∈ ker(f). Finally, let λ be a scalar and v ∈ ker(f). Then f(v) = 0,
so f(λv) = λf(v) = λ · 0 = 0, and λv ∈ ker(f).

The more general statement is left as an exercise.
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(2) We check again the subspace properties. We have f(0) = 0 ∈ im(f). If
w1, w2 ∈ im(f), then there are v1, v2 ∈ V such that f(v1) = w1, f(v2) = w2,
hence w1 + w2 = f(v1 + v2) ∈ im(f). If λ is a scalar and w ∈ im(f), then
there is v ∈ V such that f(v) = w, hence λw = f(λv) ∈ im(f).

The more general statement is proved in the same way.

(3) If f is injective, then there can be only one element of V that is mapped
to 0 ∈ W , and since we know that f(0) = 0, it follows that ker(f) = {0}.
Now assume that ker(f) = {0}, and let v1, v2 ∈ V such that f(v1) = f(v2).
Then f(v1−v2) = f(v1)−f(v2) = 0, so v1−v2 ∈ ker(f). By our assumption,
this means that v1 − v2 = 0, hence v1 = v2.

�

8.6. Remark. If you want to show that a subset U in a vector space V is a linear
subspace, it may be easier to find a linear map f : V → W such that U = ker(f)
than to check the properties directly.

It is time for some examples.

8.7. Examples.

(1) Let V be any vector space. Then the unique map f : V → {0} into the
zero space is linear. More generally, if W is another vector space, then
f : V → W , v 7→ 0, is linear. It is called the zero homomorphism; often it
is denoted by 0. Its kernel is all of V, its image is {0} ⊂ W .

(2) For any vector space, the identity map idV is linear; it is even an automor-
phism of V. Its kernel is trivial (= {0}); its image is all of V.

(3) If V = F n, then all the projection maps prj : F n → F , (x1, . . . , xn) 7→ xj

are linear.

(In fact, one can argue that the vector space structure on F n is defined in
exactly such a way as to make these maps linear.)

(4) Let P be the vector space of polynomial functions on R. Then the following
maps are linear.
(a) Evaluation: given a ∈ R, the map eva : P → R, p 7→ p(a) is linear.

The kernel of eva consists of all polynomials having a zero at a; the
image is all of R.

(b) Differentiation: D : P → P , p 7→ p′ is linear.
The kernel of D consists of the constant polynomials; the image of D
is P (since D ◦ Ia = idP ).

(c) Definite integration: given a < b, the map

Ia,b : P −→ R , p 7−→
b∫

a

p(x) dx

is linear.

(d) Indefinite integration: given a ∈ R, the map

Ia : P −→ P , p 7−→
(
x 7→

x∫
a

p(t) dt
)
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is linear. This map is injective; its image is the kernel of eva (see
below).

(e) Translation: given a ∈ R, the map

Ta : P −→ P , p 7−→
(
x 7→ p(x + a)

)
is linear. This map is an isomorphism: T−1

a = T−a.
The Fundamental Theorem of Calculus says that D ◦ Ia = idP and that
Ia,b ◦ D = evb− eva and Ia ◦ D = idP − eva. This implies that eva ◦Ia =
0, hence im(Ia) ⊂ ker(eva). On the other hand, if p ∈ ker(eva), then
Ia(p

′) = p − p(a) = p, so p ∈ im(Ia). Therefore we have shown that
im(Ia) = ker(eva).

The relation D◦Ia = idP implies that Ia is injective and that D is surjective.
Let C ⊂ P be the subspace of constant polynomials, and let Za ⊂ P be
the subspace of polynomials vanishing at a ∈ R. Then C = ker(D) and
Za = ker(eva) = im(Ia), and C and Za are complementary subspaces. D

restricts to an isomorphism Za
∼→ P , and Ia restricts (on the target side)

to an isomorphism P
∼→ Za (Exercise!).

One nice property of linear maps is that they are themselves elements of vector
spaces.

8.8. Lemma. Let V and W be two F -vector spaces. Then the set of all linear
maps V → W , with addition and scalar multiplication defined point-wise, forms
an F -vector space. It is denoted by Hom(V, W ).

Proof. It is easy to check the vector space axioms for the set of all maps V → W
(using the point-wise definition of the operations and the fact that W is a vector
space). Hence it suffices to show that the linear maps form a linear subspace:

The zero map is a homomorphism. If f, g : V → W are two linear maps, we have
to check that f + g is again linear. So let v1, v2 ∈ V ; then

(f + g)(v1 + v2) = f(v1 + v2) + g(v1 + v2) = f(v1) + f(v2) + g(v1) + g(v2)

= f(v1) + g(v1) + f(v2) + g(v2) = (f + g)(v1) + (f + g)(v2) .

Similarly, if λ ∈ F and v ∈ V , we have

(f + g)(λv) = f(λv) + g(λv) = λf(v) + λg(v) = λ
(
f(v) + g(v)

)
= λ · (f + g)(v) .

Now let µ ∈ F , and let f : V → W be linear. We have to check that µf is again
linear. So let v1, v2 ∈ V ; then

(µf)(v1 + v2) = µf(v1 + v2) = µ
(
f(v1) + f(v2)

)
= µf(v1) + µf(v2) = (µf)(v1) + (µf)(v2) .

Finally, let λ ∈ F and v ∈ V . Then

(µf)(λv) = µf(λv) = µ
(
λf(v)

)
= (µλ)f(v) = λ

(
µf(v)

)
= λ · (µf)(v) .

�

Now the next question is, how do we specify a general linear map? It turns out
that it suffices to specify the images of the elements of a basis. If our vector
spaces are finite-dimensional, this means that only a finite amount of information
is necessary (if we consider elements of the field of scalars as units of information).
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8.9. Theorem. Let V and W be two F -vector spaces. Let v1, . . . , vn be a basis
of V , and let w1, . . . , wn ∈ W . Then there is a unique linear map f : V → W
such that f(vj) = wj for all j ∈ {1, . . . , n}.
More generally, let B ⊂ V be a basis, and let φ : B → W be a map. Then there
is a unique linear map f : V → W such that f |B = φ (i.e., f(b) = φ(b) for all
b ∈ B).

Proof. The statement has two parts: existence and uniqueness. In many cases, it
is a good idea to prove uniqueness first, since this usually tells us how to construct
the object we are looking for, thus helping with the existence proof. So let us look
at uniqueness now.

We show that there is only one way to define a linear map f such that f(vj) = wj

for all j. Let v ∈ V be arbitrary. Then v is a linear combination on the basis:

v = λ1v1 + λ2v2 + · · ·+ λnvn .

If f is to be linear, we must then have

f(v) = λ1f(v1) + λ2f(v2) + · · ·+ λnf(vn) = λ1w1 + λ2w2 + · · ·+ λnwn ,

which fixes f(v). So there is only one possible choice for f .

To show existence, it suffices to prove that f as defined above is indeed linear. Note
that f is well-defined, since every v ∈ V is given by a unique linear combination
of the vj, see Lemma 6.6. Let v, v′ ∈ V with

v = λ1v1 + λ2v2 + · · ·+ λnvn

v′ = λ′1v1 + λ′2v2 + · · ·+ λ′nvn , so

v + v′ = (λ1 + λ′1)v1 + (λ2 + λ′2)v2 + · · ·+ (λn + λ′n)vn

then

f(v + v′) = (λ1 + λ′1)w1 + (λ2 + λ′2)w2 + · · ·+ (λn + λ′n)wn

= (λ1w1 + λ2w2 + · · ·+ λnwn) + (λ′1w1 + λ′2w2 + · · ·+ λ′nwn)

= f(v) + f(v′)

and similarly for f(λv) = λf(v).

The version with basis sets is proved in the same way. �

We can use the images of basis vectors to characterize injective and surjective
linear maps.

8.10. Proposition. Let V and W be vector spaces, f : V → W a linear map, and
let v1, . . . , vn be a basis of V. Then

(1) f is injective if and only if f(v1), . . . , f(vn) are linearly independent;

(2) f is surjective if and only if L(f(v1), . . . , f(vn)) = W ;

(3) f is an isomorphism if and only if f(v1), . . . , f(vn) is a basis of W.

Proof. The proof of the first two statements is an exercise; the third follows from
the first two. �

This leads to an important fact: essentially (‘up to isomorphism’), there is only
one F -vector space of any given finite dimension n.
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8.11. Corollary. If V and W are two F -vector spaces of the same finite dimen-
sion n, then V and W are isomorphic. In particular, if V is an F -vector space of
dimension n < ∞, then V is isomorphic to F n: V ∼= F n.

Proof. Let v1, . . . , vn be a basis of V , and let w1, . . . , wn be a basis of W . By
Thm. 8.9, there exists a linear map f : V → W such that f(vj) = wj for all
j ∈ {1, . . . , n}. By Prop, 8.10, f is an isomorphism. For the second statement,
take W = F n. �

Note, however, that in general there is no natural (or canonical) isomorphism

V
∼→ F n. The choice of isomorphism is equivalent to the choice of a basis, and

there are many bases of V. In particular, we may want to choose different bases
of V for different purposes, so it does not make sense to identify V with F n in a
specific way.

There is an important result that relates the dimensions of the kernel, image and
domain of a linear map.

8.12. Definition. Let f : V → W be a linear map. Then we call the dimension
of the image of f the rank of f : rk(f) = dim im(f).

8.13. Theorem (Dimension Formula for Linear Maps). Let f : V → W be
a linear map. Then

dim ker(f) + rk(f) = dim V .

Proof. By Lemma 6.25, there is a complementary subspace U of ker(f) in V .
(If dim V = ∞, this is still true by the General Basis Extension Theorem 7.1,
based on Zorn’s Lemma.) We show that f restricts to an isomorphism between
U and im(f). This implies that dim U = dim im(f). On the other hand, dim V =
dim ker(f) + dim U, so the dimension formula follows.

Let f ′ : U → im(f) be the linear map given by restricting f . We note that
ker(f ′) = ker(f) ∩ U = {0}, so f ′ is injective. To show that f ′ is also surjective,
take w ∈ im(f). Then there is v ∈ V such that f(v) = w. We can write v = u′+u
with u′ ∈ ker(f) and u ∈ U . Now

f ′(u) = f(u) = 0 + f(u) = f(u′) + f(u) = f(u′ + u) = f(v) = w ,

so w ∈ im(f ′) as well. �

For a proof working directly with bases, see Chapter 4 in Jänich’s book [J].

As a corollary, we have the following criterion for when an endomorphism is an
automorphism.

8.14. Corollary. Let V be a finite-dimensional vector space, and let f : V → V
be a linear map. Then the following statements are equivalent.

(1) f is an isomorphism.

(2) f is injective.

(3) f is surjective.

Proof. Note that f is injective if and only if dim ker(f) = 0 and f is surjective if
and only if rk(f) = dim V . By Thm.8.13, these two statements are equivalent. �
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9. Quotient Spaces

We have seen in the last section that the kernel of a linear map is a linear subspace.
One motivation for introducing quotient spaces is the question, is any given linear
subspace the kernel of a linear map?

But before we go into this, we need to review the notion of an equivalence relation.

9.1. Review of Equivalence Relations. Recall the following definition. An
equivalence relation on a set X is a relation ∼ on X (formally, we can consider the
relation to be a subset R ⊂ X ×X, and we write x ∼ y when (x, y) ∈ R) that is

(1) reflexive: x ∼ x for all x ∈ X;
(2) symmetric: for all x, y ∈ X, if x ∼ y, then y ∼ x;
(3) transitive: for all x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

One extreme example is the relation of equality on X. The other extreme example
is when all elements of X are ‘equivalent’ to each other.

The most important feature of an equivalence relation is that it leads to a partition
of X into equivalence classes: for every x ∈ X, we consider its equivalence class
Cx = {y ∈ X : x ∼ y}. Note that x ∈ Cx (by reflexivity), so Cx 6= ∅. Then x ∼ y
is equivalent to Cx = Cy, and x 6∼ y is equivalent to Cx ∩ Cy = ∅. To see this,
let z ∈ Cx, so x ∼ z, so z ∼ x, and (since x ∼ y) therefore z ∼ y, so y ∼ z, and
z ∈ Cy. The other inclusion follows in a similar way. Conversely, assume that
z ∈ Cx ∩ Cy. Then x ∼ z and y ∼ z, so (using symmetry and transitivity) x ∼ y.

So two equivalence classes are either equal or disjoint. We can then consider the
quotient set X/∼, which is the set of all equivalence classes,

X/∼ = {Cx : x ∈ X} .

Note that we have a natural surjective map π : X → X/∼, x 7→ Cx.

We use this construction when we want to ‘identify’ objects with one another that
are possibly distinct, but have a common property.

9.2. Example. Let X = Z. I claim that

n ∼ m ⇐⇒ n−m is even

defines an equivalence relation. This is easy to check (Exercise). What are the
equivalence classes? Well, C0 = {n ∈ Z : n is even} is the set of all even integers,
and C1 = {n ∈ Z : n− 1 is even} is the set of all odd integers. Together, they
partition Z, and Z/∼ = {C0, C1}. The natural map Z → Z/∼ maps all even
numbers to C0 and all odd numbers to C1.

But now on to quotient spaces.

9.3. Definition and Lemma. Let V be an F -vector space, U ⊂ V a linear
subspace. For v, v′ ∈ V , we set

v ≡ v′ mod U ⇐⇒ v − v′ ∈ U .

This defines an equivalence relation on V , and the equivalence classes have the
form

Cv = v + U = {v + u : u ∈ U} ;
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these sets v + U are called the cosets of U in V . We write

V/U =
V

U
= {v + U : v ∈ V }

for the quotient set. We define an addition and scalar multiplication on V/U by

(v + U) + (v′ + U) = (v + v′) + U , λ(v + U) = λv + U .

These operations are well-defined and turn V/U into an F -vector space, the quo-
tient vector space of V mod U . The natural map π : V → V/U is linear; it is
called the canonical epimorphism. We have ker(π) = U .

Proof. There is a number of statements that need proof. First we need to show
that we have indeed defined an equivalence relation:

(1) v − v = 0 ∈ U , so v ≡ v mod U ;
(2) if v ≡ v′ mod U , then v − v′ ∈ U , so v′ − v = −(v − v′) ∈ U , hence

v′ ≡ v mod U ;
(3) if v ≡ v′ mod U and v′ ≡ v′′ mod U , then v′ − v ∈ U and v′′ − v′ ∈ U , so

v′′ − v = (v′ − v) + (v′′ − v′) ∈ U , hence v ≡ v′′ mod U .

Next we have to show that the equivalence classes have the form v + U . So let
v ∈ V ; then v ≡ v′ mod U if and only if u = v − v′ ∈ U , if and only if v′ = v + u
for some u ∈ U , if and only if v′ ∈ v + U .

Next we have to check that the addition and scalar multiplication on V/U are
well-defined. Note that a given coset can (usually) be written as v + U for many
different v ∈ V , so we have to check that our definition does not depend on the
specific representatives chosen. So let v, v′, w, w′ ∈ V such that v + U = w + U
and v′ + U = w′ + U . We have to show that (v + v′) + U = (w + w′) + U ,
which is equivalent to (w + w′) − (v + v′) ∈ U . But this follows easily from
w− v, w′ − v′ ∈ U . So addition is OK. For scalar multiplication, we have to show
that λv + U = λw + U . But w − v ∈ U implies λw − λv ∈ U , so this is fine, too.

Then we have to show that V/U with the addition and scalar multiplication we
have defined is an F -vector space. This is clear from the definitions and the
validity of the vector space axioms for V, if we take U = 0+U as the zero element
and (−v) + U as the additive inverse of v + U .

It remains to show that the canonical map V → V/U is linear and has kernel U .
But linearity is again clear from the definitions:

π(v + v′) = (v + v′) + U = (v + U) + (v′ + U) = π(v) + π(v′) etc.

In fact, the main reason for defining the vector space structure on V/U in the way
we have done it is to make π linear! Finally, ker(π) = {v ∈ V : v + U = U} =
U . �

So we see that indeed every linear subspace of V is the kernel of some linear map
f : V → W.

However, the following property of quotient spaces is even more important.
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9.4. Proposition. Let f : V → W be a linear map and U ⊂ V a linear subspace.
If U ⊂ ker(f), then there is a unique linear map φ : V/U → W such that f = φ◦π,
where π : V → V/U is the canonical epimorphism. In other words, there is a
unique linear map φ that makes the following diagram commutative.

V
f //

π
��

W

V/U
φ

<<z
z

z
z

If ker(f) = U , then φ is injective.

Note that this property allows us to construct linear maps with domain V/U .

Proof. It is clear that we must have φ(v + U) = f(v) (this is what f = φ ◦ π
means). This already shows uniqueness. For existence, we need to show that φ,
defined in this way, is well-defined. So let v, w ∈ V such that v + U = w + U .
We have to check that f(v) = f(w). But we have w − v ∈ U ⊂ ker(f), so
f(w) − f(v) = f(w − v) = 0. It is clear from the definitions that φ is linear.
Finally,

ker(φ) = {v + U : f(v) = 0} = {U}
if ker(f) = U ; this is the zero subspace of V/U , hence φ is injective. �

9.5. Corollary. If f : V → W is a linear map, then V/ ker(f) ∼= im(f).

Proof. Let U = ker(f). By Prop. 9.4, there is a linear map φ : V/U → W such
that f = φ ◦ π, and φ is injective. So φ gives rise to an isomorphism V/U →
im(φ) = im(f). �

9.6. Corollary. Let V be a vector space and U ⊂ V a linear subspace. Then

dim U + dim V/U = dim V .

Proof. Let π : V → V/U be the canonical epimorphism. By Thm. 8.13, we have
dim ker(π) + dim im(π) = dim V . But ker(π) = U and im(π) = V/U , so the claim
follows. �

9.7. Definition. Let V be a vector space and U ⊂ V a linear subspace. Then we
call dim V/U the codimension of U in V, written codimV U .

9.8. Examples. Note that codimV U can be finite, even though U and V both
are infinite-dimensional. A trivial example is codimV V = 0.

For some less trivial examples, consider again the vector space P of polynomial
functions on R. For the subspace C of constant functions, we have dim C = 1
and codimP C = ∞. For the subspace Z = {p ∈ P : p(0) = 0} of polynomials
vanishing at 0, we have dim Z = ∞ and codimP Z = 1. (Indeed, Z = ker(ev0), so
P/Z ∼= R = im(ev0).) Finally, for the subspace

E = {p ∈ P : ∀x ∈ R : p(−x) = p(x)}

of even polynomials, we have dim E = ∞ and codimP E = ∞.
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9.9. Exercise. Let U1, U2 ⊂ V be linear subspaces of a (not necessarily finite-
dimensional) vector space V. Show that

codimV (U1 + U2) + codimV (U1 ∩ U2) = codimV U1 + codimV U2 .

For this exercise, the following results may be helpful.

9.10. Proposition. Let U1, U2 ⊂ V be two linear subspaces of the vector space V.
Then there is a natural isomorphism

U1

U1 ∩ U2

∼−→ U1 + U2

U2

.

Proof. Exercise. �

9.11. Proposition. Let U ⊂ V ⊂ W be vector spaces. Then V/U ⊂ W/U is a
linear subspace, and there is a natural isomorphism

W

V

∼−→ W/U

V/U
.

Proof. It is clear that V/U = {v + U : v ∈ V } is a linear subspace of W/U =
{w + U : w ∈ W}. Consider the composite linear map

f : W −→ W/U −→ W/U

V/U

where both maps involved in the composition are canonical epimorphisms. What
is the kernel of f? The kernel of the second map is V/U , so the kernel of f consists
of all w ∈ W such that w + U ∈ V/U . This is equivalent to w − v ∈ U for some
v ∈ V , or w ∈ U + V . Since U ⊂ V , we have U + V = V , hence ker(f) = V .
The map φ : W/V → (W/U)/(V/U) given to us by Prop. 9.4 then is injective and
surjective (since f is surjective), hence an isomorphism. �

10. Digression: Finite Fields

Before we embark on studying matrices, I would like to discuss finite fields. First
a general notion relating to fields.

10.1. Lemma and Definition. Let F be a field with unit element 1F . As in any
abelian group, integral multiples of elements of F are defined:

n · λ =


λ + λ + · · ·+ λ (n summands) if n > 0,

0 if n = 0,

(−n) · (−λ) if n < 0.

Consider the set S = {n ∈ N : n · 1F = 0}. If S = ∅, we say that F has charac-
teristic zero. In this case, all integral multiples of 1F are distinct. Otherwise, the
smallest element p of S is a prime number, and we say that F has characteristic p.
We write char F = 0 or char F = p.
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Proof. First assume that S is empty. Then we have to show that m · 1F and n · 1F

are distinct when m and n are distinct integers. So assume m · 1F = n · 1F and
(without loss of generality) n > m. Then we have (n−m) · 1F = 0, so n−m ∈ S,
a contradiction.

We also have to show that the smallest element of S is a prime number when S
is nonempty. So assume the smallest element n of S is not prime. Then n = km
with integers 2 ≤ k,m < n. But then we have

0 = n · 1F = km · 1F = (k · 1F )(m · 1F ) .

Since F is a field, one of the two factors must be zero, so k ∈ S or m ∈ S. But
this contradicts the assumption that n is the smallest element of S. �

10.2. Corollary. If F is a finite field, then char F = p for some prime number p.

Proof. If char F = 0, then the integral multiples of 1F are all distinct, so F must
be infinite. �

In order to see that finite fields of characteristic p exist, we will construct the
smallest of them.

10.3. Definition and Lemma. Let p be a prime number. The following defines
an equivalence relation on Z:

a ≡ b mod p ⇐⇒ p divides a− b.

Its equivalence classes have the form

a + pZ = {a + kp : k ∈ Z} .

Let Fp = {a + pZ : a ∈ Z} be the quotient set. Then

Fp = {0 + pZ, 1 + pZ, 2 + pZ, . . . , (p− 1) + pZ} .

The following addition and multiplication on Fp are well-defined:

(a + pZ) + (b + pZ) = (a + b) + pZ , (a + bZ)(b + pZ) = ab + pZ .

Fp with this addition and multiplication is a field, and #Fp = p and char Fp = p.

Proof. That we have defined an equivalence relation is seen in much the same way
as in the case of quotient vector spaces. The same statement applies to the form
of the equivalence classes and the proof that addition is well-defined. To see that
multiplication is well-defined, assume that

a ≡ a′ mod p and b ≡ b′ mod p .

Then there are k, l ∈ Z such that a′ = a + kp, b′ = b + lp. Then

a′b′ = (a + kp)(b + lp) = ab + (kb + al + klp)p ,

so a′b′ + pZ = ab + pZ.

It is then clear that all the field axioms are satisfied (with zero 0 + pZ and one
1+pZ), except possibly the existence of multiplicative inverses. For this, we show
first that (a+pZ)(b+pZ) = 0+pZ implies that a+pZ = 0+pZ or b+pZ = 0+pZ.
Indeed, the vanishing of the product means that p divides ab, so p (as a prime
number) must divide a or b.

Now consider a + pZ 6= 0 + pZ. Then I claim that the map

Fp −→ Fp , x + pZ 7−→ (a + pZ)(x + pZ)
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is injective. Indeed, if (a + pZ)(x + pZ) = (a + pZ)(y + pZ), then

(a + pZ)
(
(x + pZ)− (y + pZ)

)
= 0 + pZ ,

hence x+pZ = y +pZ. Since Fp is finite, the map must then be surjective as well,
so there is x + pZ ∈ Fp such that (a + pZ)(x + pZ) = 1 + pZ.

That #Fp = p is clear from the description of the equivalence classes. Finally,
char Fp = p follows from n · (1 + pZ) = n + pZ. �

10.4. Theorem. Let F be a field of characteristic p. Then F is a vector space
over Fp. In particular, if F is finite, then #F = pn for some n ∈ N.

Proof. We define scalar multiplication Fp × F → F by (a + pZ) · x = a · x (where
on the right, we use integral multiples). We have to check that this is well-defined.
So let a′ = a + kp. Then

(a′ + pZ) · x = a′ · x = a · x + kp · x = a · x + (p · 1F )(k · x) = a · x
(since p · 1F = 0). The relevant axioms are then clearly satisfied (they are for
integral multiples, as one can prove by induction).

If F is finite, then its dimension over Fp must be finite, say n. Then every element
of F is a unique linear combination with coefficients from Fp of n basis elements,
hence F must have pn elements. �

So we see that there can be no field with exactly six elements, for example.

We know that for every prime number p, there is a field with p elements. What
about existence of fields with pn elements for every n?

10.5. Theorem. If p is a prime number and n ∈ N, then there exists a field with
pn elements, and all such fields are isomorphic (in a suitable sense).

Proof. The proof of this result is beyond this course. You should see it in the
‘Introductory Algebra’ course. �

10.6. Example. Let us show that there is a field F4 with four elements. It will
be of characteristic 2. Its elements will be 0, 1, α and α + 1 (since α + 1 has to be
something and cannot be one of 0, 1 or α, it has to be the fourth element). What
is α2? It cannot be 0 or 1 or α, so we must have

α2 = α + 1 .

This implies α(α + 1) = 1, which shows that our new two elements have multi-
plicative inverses. Here are the addition and multiplication tables.

+ 0 1 α α + 1
0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1

α + 1 α + 1 α 1 0

· 0 1 α α + 1
0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0 α + 1 1 α

11. Matrices

Matrices are a convenient way of specifying linear maps from F n to Fm. Since
every finite-dimensional F -vector space is isomorphic to some F n, they can also be
used to describe linear maps between finite-dimensional vector spaces in general.
Last, but not least, matrices are a very convenient tool for performing explicit
computations with linear maps.
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11.1. Definition. Recall that by Thm. 8.9, a linear map f : F n → Fm is uniquely
determined by the images of a basis. Now, F n has a canonical basis e1, . . . , en

(where ej = (δ1j, . . . , δnj) and δij = 1 if i = j and 0 otherwise; δij is called the
Kronecker symbol), and so f is uniquely specified by

f(e1) = (a11, a21, . . . , am1) ∈ Fm

f(e2) = (a12, a22, . . . , am2) ∈ Fm

...
...

...

f(en) = (a1n, a2n, . . . , amn) ∈ Fm .

We arrange the various coefficients aij ∈ F in a rectangular array

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 = (aij)1≤i≤m,1≤j≤n

and call this an m × n matrix (with entries in F ). The aij are called the entries
or coefficients of A. For i ∈ {1, . . . ,m}, (ai1, ai2, . . . , ain) is a row of A, and for
j ∈ {1, . . . , n},

(a1j, a2j, . . . , amj)
> :=


a1j

a2j
...

amj


is called a column of A. Note that the coefficients of f(ej) appear in the jth column
of A. The set of all m×n matrices with entries in F is denoted by Mat(m×n, F ).
Note that as a boundary case, m = 0 or n = 0 (or both) is allowed; in this case
Mat(m× n, F ) has only one element, which is an empty matrix and corresponds
to the zero homomorphism.

If m = n, we sometimes write Mat(n, F ) for Mat(n× n, F ). The matrix I = In ∈
Mat(n, F ) that corresponds to the identity map idF n is called the identity matrix;
we have

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = (δij)1≤i,j≤n .

11.2. Remark. By Thm. 8.9, the matrices in Mat(m × n, F ) correspond bijec-
tively to linear maps in Hom(F n, Fm). Therefore, we will usually not distinguish
between a matrix A and the linear map F n → Fm it describes.

In this context, the elements of F n (and similarly for Fm) are considered as column
vectors, and we write the linear map given by the matrix A = (aij), as applied to
x = (xj) ∈ F n in the form

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




x1

x2
...

xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 .

Note that the result is again a column vector, this time of length m (the length
of the columns of A). Note also that Aej is the jth column of A, hence A really
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corresponds (in the sense introduced above) to the linear map we have defined
here.

11.3. Definition. We know that Hom(F n, Fm) has the structure of an F -vector
space (see Lemma 8.8). We can ‘transport’ this structure to Mat(m× n, F ) using
the identification of matrices and linear maps. So for A, B ∈ Mat(m × n, F ), we
define A + B to be the matrix corresponding to the linear map x 7→ Ax + Bx.
It is then a trivial verification to see that (aij) + (bij) = (aij + bij), i.e., that
addition of matrices is done coefficient-wise. Similarly, for λ ∈ F and A = (aij) ∈
Mat(m × n, F ), we define λA to be the matrix corresponding to the linear map
x 7→ λ ·Ax; we then see easily that λ(aij) = (λaij). With this addition and scalar
multiplication, Mat(m×n, F ) becomes an F -vector space, and it is clear that it is
‘the same’ as (i.e., isomorphic to) Fmn — the only difference is the arrangement
of the coefficients in a rectangular fashion instead of in a row or column.

11.4. Definition. By Lemma 8.3, the composition of two linear maps is again
linear. How is this reflected in terms of matrices?

Let A ∈ Mat(l × m, F ) and B ∈ Mat(m × n, F ). Then B gives a linear map
F n → Fm, and A gives a linear map Fm → F l. We define the product AB to be

the matrix corresponding to the composite linear map F n B−→ Fm A−→ F l. So AB
will be a matrix in Mat(l × n, F ).

To find out what this means in terms of matrix entries, recall that the kth column
of AB gives the image of the basis vector ek. So the kth column of AB is given
by ABek = ABk, where Bk = Bek denotes the kth column of B. The ith entry of
this column is then

ai1b1k + ai2b2k + · · ·+ aimbmk =
m∑

j=1

aijbjk .

As a mnemonic, to compute the entry in row i and column k of AB, we take row i
of A: (ai1, ai2, . . . , aim) and column k of B: (b1k, b2k, . . . , bmk)

>, and compute their
‘dot product’

∑m
j=1 aijbjk.

If the linear map corresponding to A ∈ Mat(m × n, F ) is an isomorphism, then
A is called invertible. This implies that m = n. The matrix corresponding to the
inverse linear map is (obviously) denoted A−1; we then have AA−1 = A−1A = In,
and A−1 is uniquely determined by this property.

11.5. Remark. From the corresponding statements on linear maps, we obtain
immediately that matrix multiplication is associative:

A(BC) = (AB)C

for A ∈ Mat(k× l, F ), B ∈ Mat(l×m, F ), C ∈ Mat(m×n, F ), and is distributive
with respect to addition:

A(B + C) = AB + AC for A ∈ Mat(l ×m, F ), B, C ∈ Mat(m× n, F );

(A + B)C = AC + BC for A, B ∈ Mat(l ×m, F ), C ∈ Mat(m× n, F ).

However, matrix multiplication is not commutative in general — BA need not
even be defined even though AB is — and AB = 0 (where 0 denotes a zero matrix
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of suitable size) does not imply that A = 0 or B = 0. For a counterexample (to
both properties), consider (over a field of characteristic 6= 2)

A =

(
1 1
0 0

)
and B =

(
0 1
0 1

)
.

Then

AB =

(
0 2
0 0

)
6=

(
0 0
0 0

)
= BA .

The identity matrix acts as a multiplicative identity:

ImA = A = AIn for A ∈ Mat(m× n, F ).

If A, B ∈ Mat(n, F ) are both invertible, then AB is also invertible, and (AB)−1 =
B−1A−1 (note the reversal of the factors!).

11.6. Definition. Let A ∈ Mat(m×n, F ). Then the rank of A, rk(A), is the rank
of A, considered as a linear map F n → Fm. Note that we have rk(A) ≤ min{m, n},
since it is the dimension of a subspace of Fm, generated by n vectors.

By this definition, the rank of A is the same as the column rank of A, i.e., the
dimension of the linear hull of the columns of A (as a subspace of Fm). We can
as well define the row rank of A to be the dimension of the linear hull of the rows
of A (as a subspace of F n). The following result tells us that these additional
definitions are not really necessary.

11.7. Proposition. Let A ∈ Mat(m × n, F ) be a matrix. Then the row and
column ranks of A are equal.

Proof. We first note that the dimension of the linear hull of a sequence of vectors
equals the length of a maximal linearly independent subsequence (which is then a
basis of the linear hull). If we call a row (column) of A ‘redundant’ if it is a linear
combination of the remaining rows (columns), then the row (column) rank of the
matrix is therefore unchanged if we remove a redundant row (column). We want
to show that removing a redundant column also does not change the row rank
and conversely. So suppose that the jth column is redundant. Now assume that
a sequence of rows is linearly dependent after removing the jth column. Since the
jth column is a linear combination of the other columns, this dependence relation
extends to the jth column, hence the rows are also linearly dependent before
removing the jth column. This shows that the row rank does not drop (since
linearly independent rows stay linearly independent), and as it clearly cannot
increase, it must be unchanged. Similarly, we see that removing a redundant row
leaves the column rank unaffected.

We now successively remove redundant rows and columns until this is no longer
possible. Let the resulting matrix A′ have r rows and s columns. Without loss of
generality, we can assume r ≤ s. The column rank is s (since there are s linearly
independent columns), but can at most be r (since the columns have r entries),
so r = s, and row and column rank of A′ are equal. But A has the same row and
column ranks as A′, hence the row and column ranks of A must also be equal. �

There is another way of expressing this result. To do this, we need to introduce
another notion.
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11.8. Definition. Let A = (aij) ∈ Mat(m × n, F ) be a matrix. The transpose
of A is the matrix

A> = (aji)1≤i≤n,1≤j≤m ∈ Mat(n×m, F ) .

(So we get A> from A by a ‘reflection on the main diagonal.’)

11.9. Remark. The result of Prop. 11.7 can be stated as rk(A) = rk(A>).

As simple properties of transposition, we have that

(A + B)> = A> + B> , (λA)> = λA> , (AB)> = B>A>

(note the reversal of factors!) — this is an exercise. If A ∈ Mat(n, F ) is invertible,
this implies that A> is also invertible, and (A>)−1 = (A−1)>.

12. Computations with Matrices: Row and Column Operations

Matrices are not only a convenient means to specify linear maps, they are also
very suitable for doing computations. The main tool for that are the so-called
‘elementary row and column operations.’

12.1. Definition. Let A be a matrix with entries in a field F . We say that we
perform an elementary row operation on A, if we

(1) multiply a row of A by some λ ∈ F \ {0}, or

(2) add a scalar multiple of a row of A to another (not the same) row of A, or

(3) interchange two rows of A.

Note that the third type of operation is redundant, since it can be achieved by a
sequence of operations of the first two types (Exercise).

We define elementary column operations on A in a similar way, replacing the word
‘row’ by ‘column’ each time it appears.

12.2. Remark. If A′ is obtained from A by a sequence of elementary row opera-
tions, then there is an invertible matrix B such that A′ = BA. Similarly, if A′ is
obtained from A by a sequence of elementary column operations, then there is an
invertible matrix C such that A′ = AC. In both cases, we have rk(A′) = rk(A).

Proof. Let A ∈ Mat(m× n, F ). We denote by Eij ∈ Mat(m, F ) the matrix whose
only non-zero entry is at position (i, j) and has value 1. (So Eij = (δikδjl)1≤k,l≤m.)
Also, we set Mi(λ) = Im + (λ− 1)Eii; this is a matrix whose non-zero entries are
all on the diagonal, and have the value 1 except the entry at position (i, i), which
has value λ.

Then it is easily checked that multiplying the ith row of A by λ amounts to
replacing A by Mi(λ)A, and that adding λ times the jth row of A to the ith row
of A amounts to replacing A by (Im + λEij)A.

Now we have that Mi(λ) and Im + λEij (for i 6= j) are invertible, with inverses
Mi(λ

−1) and Im − λEij, respectively. (We can undo the row operations by row
operations of the same kind.) Let B1, B2, . . . , Br be the matrices corresponding
to the row operations we have performed on A to obtain A′, then

A′ = Br

(
Br−1 · · ·

(
B2(B1A)

)
· · ·

)
= (BrBr−1 · · ·B2B1)A ,

and B = BrBr−1 · · ·B2B1 is invertible as a product of invertible matrices.
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The statement on column operations is proved in the same way, or by applying
the result on row operations to A>.

Finally, the statement on the ranks follows from the fact that invertible matrices
represent isomorphisms, or also from the simple observation that elementary row
(column) operations preserve the row (column) rank, together with Prop. 11.7. �

The following algorithm is the key to most computations with matrices.

12.3. The Row Echelon Form Algorithm. Let A ∈ Mat(m×n, F ) be a matrix.
The following procedure applies successive elementary row operations to A in order
to transform it into a matrix A′ in row echelon form. This means that A′ has the
following shape.

A′ =



0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


So there are 0 ≤ r ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n such that if A′ = (a′ij),
then a′ij = 0 if i > r or if i ≤ r and j < ji, and a′iji

= 1 for 1 ≤ i ≤ r.

1. Set A′ = A, r = 0 and j0 = 0.

2. (At this point, a′ij = 0 if i > r and j ≤ jr or if 1 ≤ i ≤ r and 1 ≤ j < ji. Also,
a′iji

= 1 for 1 ≤ i ≤ r.)

If the (r + 1)st up to the mth rows of A′ are zero, then stop.

3. Find the smallest j such that there is some a′ij 6= 0 with r < i ≤ m. Replace
r by r + 1, set jr = j, and interchange the rth and the ith row of A′ if r 6= i.
Note that jr > jr−1.

4. Multiply the rth row of A′ by (a′rjr
)−1.

5. For each i = r + 1, . . . ,m, add −a′ijr
times the rth row of A′ to the ith row

of A′.

6. Go to Step 2.

Proof. The only changes that are done to A′ are elementary row operations of the
third, first and second kinds in steps 3, 4 and 5, respectively. Since in each pass
through the loop, r increases, and we have to stop when r = m, the procedure
certainly terminates. We have to show that when it stops, A′ is in row echelon
form.

We check that the claim made at the beginning of step 2 is correct. It is trivially
satisfied when we reach step 2 for the first time. We now assume it is OK when
we are in step 2 and show that it is again true when we come back to step 2. Since
the first r rows are not changed in the loop, the part of the statement referring
to them is not affected. In step 3, we increase r and find jr (for the new r) such
that a′ij = 0 if i ≥ r and j < jr. By our assumption, we must have jr > jr−1.
The following actions in steps 3 and 4 have the effect of producing an entry with
value 1 at position (r, jr). In step 5, we achieve that a′ijr

= 0 for i > r. So a′ij = 0
for i > r and j ≤ jr and for i = r and j < jr. This shows that the condition in
step 2 is again satisfied.
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So at the end of the algorithm, the statement in step 2 is true. Also, we have seen
that 0 < j1 < j2 < · · · < jr, hence A′ has row echelon form when the procedure is
finished. �

12.4. Proposition. The value of the number r at the end of the Row Echelon
Form Algorithm is the rank of A. More precisely, the r nonzero rows form a basis
of the row space of A.

Proof. It is clear that the first r rows of A′ are linearly independent. Since all
remaining rows are zero, the (row) rank of A′ is r. But elementary row operations
do not change the rank, so rk(A) = rk(A′) = r. Since elementary row operations
do not even change the row space (exercise), the second claim also follows. �

12.5. Example. Consider the following matrix.

A =

1 2 3
4 5 6
7 8 9


Let us bring it into row echelon form and find its rank!

Since the upper left entry is nonzero, we have j1 = 1. We subtract 4 times the
first row from the second and 7 times the first row from the third. This leads to

A′ =

1 2 3
0 −3 −6
0 −6 −12

 .

Now we have to distinguish two cases. If char(F ) = 3, then

A′ =

1 2 0
0 0 0
0 0 0


is already in row echelon form, and rk(A) = 1. Otherwise, −3 6= 0, so we divide
the second row by −3 and then add 6 times the new second row to the third. This
gives

A′ =

1 2 3
0 1 2
0 0 0

 .

This is in row echelon form, and we find rk(A) = 2.

12.6. Proposition. If A ∈ Mat(n, F ) is invertible, then we can transform it into
the identity matrix In by elementary row operations. The same operations, applied
to In in the same order, produce the inverse A−1.

Proof. If A is invertible, then its rank is n. So the row echelon form our algorithm
produces looks like this:

A′ =


1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1


(A′ is an upper triangular matrix.)
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By adding suitable multiples of the ith row to the rows above it, we can clear all
the entries away from the diagonal and get In.

By Remark 12.2, In = BA, where the left multiplication by B corresponds to the
row operations performed on A. This implies that A−1 = B = BIn, hence we
obtain A−1 by performing the same row operations on In. �

12.7. Example. Let us see how to invert the following matrix (where we assume
char(F ) 6= 2).

A =

1 1 1
1 2 4
1 3 9


It is convenient to perform the row operations on A and on I in parallel: 1 1 1 1 0 0

1 2 4 0 1 0
1 3 9 0 0 1

 −→

 1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1


−→

 1 0 −2 2 −1 0
0 1 3 −1 1 0
0 0 2 1 −2 1


−→

 1 0 0 3 −3 1
0 1 0 −5

2
4 −3

2
0 0 1 1

2
−1 1

2


So

A−1 =

 3 −3 1
−5

2
4 −3

2
1
2

−1 1
2

 .

12.8. Remark. This inversion procedure will also tell us whether the matrix is
invertible or not. Namely, if at some point in the computation of the row echelon
form, the lower part of the next column has no non-zero entries, then the matrix is
not invertible. This corresponds to a gap (ji+1 ≥ ji +2) in the sequence j1, . . . , jr,
which implies that r < n.

12.9. Corollary. If A ∈ Mat(n, F ) is invertible, then A can be written as a prod-
uct of matrices Mi(λ) (λ 6= 0) and In + λEij (i 6= j). (Notation as in the proof of
Remark 12.2.)

Proof. By Prop. 12.6, A−1 can be transformed into In by a sequence of elementary
row operations, and A = (A−1)−1 then equals the matrix B such that left mul-
tiplication by B effects the row operations. A look at the proof of Remark 12.2
shows that B is a product of matrices of the required form. �

The next application of the Row Echelon Form Algorithm is to compute a basis
for the kernel of a matrix (considered as a linear map F n → Fm).
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12.10. Definition. A matrix A = (aij) ∈ Mat(m×n, F ) is in reduced row echelon
form, if it is in row echelon form and in addition aijk

= 0 for all i 6= k. This means
that the entries above the leading 1’s in the nonzero rows are zero as well:

A =



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


It is clear that every matrix can be transformed into reduced row echelon form by
a sequence of elementary row operations — we only have to change Step 5 of the
algorithm to

5. For each i = 1, . . . , r− 1, r + 1, . . . ,m, add −a′ijr
times the rth row of A′ to the

ith row of A′.

12.11. Remark. The reduced row echelon form is unique in the sense that if
A, A′ ∈ Mat(m × n, F ) are both in reduced row echelon form, and A′ = BA
with B ∈ Mat(m, F ) invertible, then A = A′.

In other words, if we declare two m × n matrices to be equivalent if one can
be obtained from the other by row operations, then the matrices in reduced row
echelon form give a complete system of representatives of the equivalence classes.

Proof. Exercise. �

12.12. Lemma. If A = (aij) ∈ Mat(m × n, F ) is in reduced row echelon form,
then dim ker(A) = n− r, and a basis of ker(A) is given by

vk = ek −
∑

1≤i≤r
ji<k

aikeji
, k ∈ {1, . . . , n} \ {j1, . . . , jr} ,

where e1, . . . , en is the canonical basis of F n.

Proof. It is clear that the given vectors are linearly independent, since vk is the
only vector in the list whose kth entry is nonzero. We know that dim ker(A) =
n − rk(A) = n − r. So we only have to check that Avk = 0 for all k. For this,
note that Aek = (a1k, a2k, . . . , amk)

> is the kth column of A, that Aeji
= e′i, where

e′1, . . . , e
′
m is the canonical basis of Fm, and that aik = 0 if i > r or ji > k. So

Avk = Aek −
∑

1≤i≤r
ji<k

aike
′
i =

m∑
i=1

aike
′
i −

m∑
i=1

aike
′
i = 0 .

�

12.13. Lemma. If A ∈ Mat(m× n, F ) is a matrix and A′ is obtained from A by
a sequence of elementary row operations, then ker(A) = ker(A′).

Proof. By Remark 12.2, A′ = BA with an invertible matrix B. We then have

x ∈ ker(A) ⇐⇒ Ax = 0 ⇐⇒ BAx = 0 ⇐⇒ A′x = 0 ⇐⇒ x ∈ ker(A′) .

�
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We can therefore compute (a basis of) the kernel of A by first bringing it into
reduced row echelon form; then we read off the basis as described in Lemma 12.12.

12.14. Example. Let us compute the kernel of the ‘telephone matrix’

A =

1 2 3
4 5 6
7 8 9

 .

We have seen earlier that we can transform it into the row echelon form (for
char(F ) 6= 3) 1 2 3

0 1 2
0 0 0

 .

From this, we obtain the reduced row echelon form1 0 −1
0 1 2
0 0 0

 .

Hence the kernel has dimension 1 and is generated by (1,−2, 1)>.

If char(F ) = 3, the reduced row echelon form is1 2 0
0 0 0
0 0 0

 .

Here, the kernel has dimension 2; a basis is given by (1, 1, 0)>, (0, 0, 1)>.

As a final application, we show how we can write a given linear subspace of F n

(given as the linear hull of some vectors) as the kernel of a suitable m×n matrix.

12.15. Proposition. Let V = L
(
v1, . . . , vk

)
⊂ F n be a linear subspace. Write

vi = (aij)1≤j≤n, and let A = (aij) be the k × n matrix whose rows are given by
the coefficients of the vi. If U = L

(
w1, . . . , wm

)
is the kernel of A, then V is the

kernel of the m× n matrix B whose rows are given by the coefficients of the wj.

Proof. Let l = dim V ; then dim U = n − l. In terms of matrices, we have the
relation AB> = 0, which implies BA> = 0, hence the vi, which are the columns
of A>, are in the kernel of B. We also know that rk(A) = l, rk(B) = n−l, therefore
dim ker(B) = n − rk(B) = l = dim V . Since, as we have seen, V ⊂ ker(B), this
implies V = ker B. �

Of course, we use the Row Echelon Form Algorithm in order to compute (a basis
of) the kernel of the matrix A.

12.16. Example. Let us use Prop. 12.15 to find the intersection of two linear
subspaces. Consider

U = L
(
(1, 1, 1), (1, 2, 3)

)
and V = L

(
(1, 0, 0), (1,−1, 1)

)
as linear subspaces of R3. We want to find (a basis of) U ∩ V .

To do this, we first write U and V as kernels of suitable matrices. To get that
for U , we apply the Row Echelon Form Algorithm to the following matrix.(

1 1 1
1 2 3

)
−→

(
1 1 1
0 1 2

)
−→

(
1 0 −1
0 1 2

)
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The kernel of this matrix is therefore generated by (1,−2, 1)>, and U is the kernel
of

(
1 −2 1

)
.

For V , we proceed as follows.(
1 0 0
1 −1 1

)
−→

(
1 0 0
0 −1 1

)
−→

(
1 0 0
0 1 −1

)
So V is the kernel of the matrix

(
0 1 1

)
.

Then U ∩ V will be the kernel of the following matrix, which we compute using
the Row Echelon Form Algorithm again.(

1 −2 1
0 1 1

)
−→

(
1 0 3
0 1 1

)
We see that U ∩ V = L

(
(−3,−1, 1)

)
.

12.17. Remark. Let A ∈ Mat(k×n, F ) and B ∈ Mat(m×n, F ). Performing row
operations, we can find a basis for the row space of a given matrix, and we can find
a basis for the kernel of a given matrix. If we stack the matrix A on top of B to
form a matrix C ∈ Mat((k + m)× n, F ), then the row space of C will be the sum
of the row spaces of A and of B, and the kernel of C will be the intersection of the
kernels of A and of B. Since we can switch between representing a linear subspace
of F n as a row space (i.e., as the linear hull of given vectors) or as the kernel of a
matrix (i.e., of a linear map F n → Fm for some m), we can use our Row Echelon
Form Algorithm in order to compute (bases of) sums and intersections of linear
subspaces.

13. Linear Equations

One of the very useful applications of Linear Algebra is to linear equations.

13.1. Definition. Let f : V → W be a linear map between two F -vector spaces.
The equation

f(x) = 0 ,

to be solved for x ∈ V, is called a homogeneous linear equation. If V = F n

and W = Fm (with m > 1), we also speak of a homogeneous system of linear
equations. (Since the equation consists of m separate equations in F , coming from
the coordinates of Fm.)

If b ∈ W \ {0}, the equation

f(x) = b

(again to be solved for x ∈ V ) is called an inhomogeneous linear equation, or in
the case V = F n, W = Fm, an inhomogeneous system of linear equations. The
equation or system of equations is called consistent, if it has a solution, i.e., if
b ∈ im(f).

With the theory we have built so far, the following result is essentially trivial.



48

13.2. Theorem. Let f : V → W be a linear map between two F -vector spaces.

(1) The solution set of the homogeneous linear equation f(x) = 0 forms a
linear subspace U of V.

(2) Let b ∈ W \ {0}. If the inhomogeneous linear equation f(x) = b is con-
sistent, and a ∈ V is a solution, then the set of all solutions is the coset
a + U .

Proof.

(1) The solution set U is exactly the kernel of f , which is a linear subspace
of V by Lemma 8.5.

(2) Let x be any solution. Then f(x − a) = f(x) − f(a) = b − b = 0, so
x− a ∈ U , and x ∈ a + U . Conversely, if x ∈ a + U , then f(x) = f(a) = b.

�

13.3. Example. Consider the wave equation

∂2f

∂t2
= c2 ∂2f

∂x2

for f ∈ C2(R × [0, π]), with boundary conditions f(t, 0) = f(t, π) = 0 and initial
conditions f(0, x) = f0(x) and ∂f

∂t
(0, x) = 0. If we ignore the first initial condition

for a moment, we can consider this as a homogeneous linear equation, where we
let

V = {f ∈ C2(R×[0, π]) : ∀t ∈ R : f(t, 0) = f(t, π) = 0, ∀x ∈ ]0, π[ : ∂f
∂t

(0, x) = 0}
and W = C(R× [0, π]), and the linear map V → W is the wave operator

w : f 7−→ ∂2f

∂t2
− c2 ∂2f

∂x2
.

We can find fairly easily a bunch of solutions using the trick of ‘separating the
variables’ — we look for solutions of the form f(t, x) = g(t)h(x). This leads to an
equation

1

c2

g′′(t)

g(t)
=

h′′(x)

h(x)
,

and the common value of both sides must be constant. The boundary conditions
then force h(x) = sin kx (up to scaling) for some k ≥ 1, and then g(t) = cos kct
(again up to scaling). Since we know that the solution set is a linear subspace, we
see that all linear combinations

f(t, x) =
n∑

k=1

ak cos kct sin kx

are solutions. Such a solution has

f(0, x) =
n∑

k=1

ak sin kx ,

so if f0 is of this form, we have found a (or the) solution to the original prob-
lem. Otherwise, we have to use some input from Analysis, which tells us that we
can approximate f0 by linear combinations as above and that the corresponding
solutions will approximate the solution we are looking for.

Let us now look at the more familiar case where V = F n and W = Fm, so that
we have a system of m linear equations in n variables. This is most conveniently
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written in matrix notation as Ax = 0 in the homogeneous case and Ax = b in
the inhomogeneous case, where x ∈ F n and 0 ∈ Fm or b ∈ Fm are considered as
column vectors.

13.4. Algorithm. To solve a homogeneous system of linear equations Ax = 0,
use elementary row operations to bring A into reduced row echelon form; then read
off a basis of the kernel (which is the solution space) according to Lemma 12.12.

13.5. Algorithm. To solve an inhomogeneous system of linear equations Ax = b,
let A′ = (A|b) denote the extended matrix of the system (the matrix A with b
attached as an (n + 1)st column). Use elementary row operations to bring A′

into reduced row echelon form. The system is consistent if and only if n + 1 is
not one of the jk, i.e., the last column does not contain the leading ‘1’ of a row.
In this case, the first n coordinates of −vn+1 (in the notation of Lemma 12.12)
give a solution of the system. A basis of the solution space of the corresponding
homogeneous system can be read off from the first n columns of the reduced row
echelon form of A′.

Note that the last column does not contain a leading ‘1’ of a row if and only if the
rank of the first n columns equals the rank of all n + 1 columns, i.e., if and only
if rk(A) = rk(A′). The latter is equivalent to saying that b is in the linear hull of
the columns of A, which is the image of A as a linear map. The statement on how
to find a solution is then easily verified.

13.6. Example. Consider the following system of linear equations:

x + y + z + w = 0
x + 2y + 3z + 4w = 2
x + 3y + 5z + 7w = 4

We will solve it according to the procedure outlined above. The extended matrix is

A′ =

1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 .

We transform it into reduced row echelon form:1 1 1 1 0
1 2 3 4 2
1 3 5 7 4

 −→

1 1 1 1 0
0 1 2 3 2
0 2 4 6 4

 −→

1 0 −1 −2 −2
0 1 2 3 2
0 0 0 0 0


Since the last column does not contain the leading 1 of a row, the system is
consistent, and a solution is given by (x, y, z, w) = (−2, 2, 0, 0). The kernel of the
non-extended matrix has basis (1,−2, 1, 0), (2,−3, 0, 1). So all solutions are given
by

(x, y, z, w) = (−2 + r + 2s, 2− 2r − 3s, r, s) ,

where r and s are arbitrary.
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14. Matrices and Linear Maps

So far, we have considered matrices as representing linear maps between F n

and Fm. But on the other hand, we have seen earlier (see Cor. 8.11) that any
n-dimensional F -vector space is isomorphic to F n, the isomorphism coming from
the choice of a basis. This implies that we can use matrices to represent linear
maps between arbitrary finite-dimensional vector spaces. One important thing to
keep in mind here is that this representation will depend on the bases chosen for
the two vector spaces — it does not make sense to say that A is “the matrix of f”,
one has to say that A is the matrix of f with respect to the chosen bases.

14.1. Definition. If V is an F -vector space with basis v1, . . . , vn, then the iso-
morphism

Φ(v1,...,vn) : F n −→ V , (λ1, . . . , λn) 7−→ λ1v1 + . . . λnvn

is called the canonical basis isomorphism with respect to the basis v1, . . . , vn.

14.2. Definition. Let V and W be F -vector spaces with bases v1, . . . , vn and
w1, . . . , wm, respectively. Let f : V → W be a linear map. Then the matrix
A ∈ Mat(m× n, F ) that is defined by the commutative diagram

V
f // W

F n

Φ(v1,...,vn) ∼=

OO

A // Fm

Φ(w1,...,wm)∼=

OO

is called the matrix associated to f relative to the chosen bases. In terms of maps,
we then have

Φ(w1,...,wm) ◦ A ◦ Φ−1
(v1,...,vn) = f and Φ−1

(w1,...,wm) ◦ f ◦ Φ(v1,...,vn) = A .

Now what happens when we change to a different basis? Let v1, . . . , vn and
v′1, . . . , v

′
n be two bases of the F -vector space V. For simplicity, write Φ = Φ(v1,...,vn)

and Φ′ = Φ(v′
1,...,v′

n). Then we have a diagram as follows.

V

F n

Φ′

∼=

>>||||||||
P // F n

Φ

∼=

``BBBBBBBB

14.3. Definition. The matrix P defined by the diagram above is called the basis
change matrix associated to changing the basis from v1, . . . , vn to v′1, . . . , v

′
n. Since

Φ−1 ◦ Φ′ is an isomorphism, P ∈ Mat(n, F ) is invertible.

Conversely, given an invertible matrix P ∈ Mat(n, F ) and the basis v1, . . . , vn,
we can define Φ′ = Φ ◦ P and hence the new basis v′1 = Φ′(e1), . . . , v

′
n = Φ′(en)

(where, as usual, e1, . . . , en is the canonical basis of F n).
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14.4. Lemma. Let V and W be F -vector spaces, let v1, . . . , vn and v′1, . . . , v
′
n be

bases of V , and let w1, . . . , wm and w′
1, . . . , w

′
m be bases of W . Let f : V → W

be a linear map, and let A be the matrix associated to f relative to the bases
v1, . . . , vn and w1, . . . , wm, and let A′ be the matrix associated to f relative to the
bases v′1, . . . , v

′
n and w′

1, . . . , w
′
m. Then

A′ = Q−1AP

where P is the basis change matrix associated to changing the basis of V from
v1, . . . , vn to v′1, . . . , v

′
n, and Q is the basis change matrix associated to changing

the basis of W from w1, . . . , wm to w′
1, . . . , w

′
m.

Proof. Write Φ = Φ(v1,...,vn), Φ′ = Φ(v′
1,...,v′

n), Ψ = Φ(w1,...,wm) and Ψ′ = Φ(w′
1,...,w′

m).
We have a commutative diagram

V
f // W

F n

Φ′
==zzzzzzzz

P //

A′

44F n

Φ

OO

A // Fm

Ψ

OO

Fm

Ψ′
bbEEEEEEEE

Qoo

from which the statement can be read off. �

14.5. Corollary. If f : V → W is a linear map between finite-dimensional F -
vector spaces and A ∈ Mat(m×n, F ) is the matrix associated to f relative to some
choice of bases of V and W , then the set of all matrices associated to f relative
to any choice of bases is

{QAP : P ∈ Mat(n, F ), Q ∈ Mat(m, F ), P and Q invertible} .

Proof. By Lemma 14.4, every matrix associated to f is in the given set. Conversely,
given invertible matrices P and Q, we can change the bases of V and W in such
a way that P and Q−1 are the corresponding basis change matrices. Then (by
Lemma 14.4 again) QAP is the matrix associated to f relative to the new bases.

�

If we choose bases that are well-adapted to the linear map, then we will obtain a
very nice matrix. This is used in the following result.

14.6. Corollary. Let A ∈ Mat(m × n, F ). Then there are invertible matrices
P ∈ Mat(n, F ) and Q ∈ Mat(m, F ) such that

QAP =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 0


=

(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
,

where r = rk(f).
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Proof. Let V = F n, W = Fm, and let f : V → W be the linear map given by A.
Let v1, . . . , vn be a basis of V such that vr+1, . . . , vn is a basis of ker(f). Then
w1 = f(v1), . . . , wr = f(vr) are linearly independent in W , and we can extend to
a basis w1, . . . , wm. We then have

f(vi) =

{
wi if 1 ≤ i ≤ r

0 if r + 1 ≤ i ≤ n.

So the matrix A′ associated to f relative to these bases has the required form.
Let P and Q−1 be the basis change matrices associated to changing the bases of
V and W from the canonical bases to the new ones. By Lemma 14.4, we then
have A′ = QAP (since A is the matrix associated to f relative to the canonical
bases). �

14.7. Remarks.

(1) If we say that two matrices A, A′ ∈ Mat(m × n, F ) are equivalent if there
are invertible matrices P ∈ Mat(n, F ) and Q ∈ Mat(m, F ) such that
A′ = QAP (exercise: this really defines an equivalence relation), then
Cor. 14.6 tells us that A and A′ are equivalent if and only if rk(A) = rk(A′).
To see this, first note that if A and A′ are equivalent, they must have
the same rank (since the rank does not change under multiplication by
invertible matrices). Then Cor. 14.6 tells us that if A has rank r, it is
equivalent to the matrix given there, so any two matrices of rank r are
equivalent to the same matrix.

(2) Recall that by Remark 12.2, row operations on a matrix A correspond to
multiplication on the left by an invertible matrix, and column operations
on A correspond to multiplication on the right by an invertible matrix.
Interpreting A as the matrix associated to a linear map relative to some
bases, we see that row operations correspond to changing the basis of the
target space (containing the columns) of A, whereas column operations
correspond to changing the basis of the domain space (containing the rows)
of A. The result of Cor. 14.6 then also means that any matrix A can be
transformed into the given simple form by elementary row and column
operations. The advantage of this approach is that by keeping track of the
operations, we can also determine the matrices P and Q explicitly, much
in the same way as when inverting a matrix.

14.8. Endomorphisms. If we consider endomorphims f : V → V , then there is
only one basis to choose. If A is the matrix associated to f relative to one basis,
and P is the basis change matrix associated to changing that basis to another one,
then the matrix associated to f relative to the new basis will be A′ = P−1AP , see
Lemma 14.4. Matrices A, A′ ∈ Mat(n, F ) such that there is an invertible matrix
P ∈ Mat(n, F ) with A′ = P−1AP are said to be similar. This defines again an
equivalence relation (exercise).

We have seen that it is easy to classify matrices with respect to equivalence: the
equivalence class is determined by the rank. In contrast to this, the classification
of matrices with respect to similarity is much more complicated. For example, the
‘multiplication by λ’ endomorphism (for λ ∈ F ) has matrix λIn regardless of the
basis, and so λIn and µIn are not similar if λ 6= µ.
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14.9. Example. As another example, consider the matrices

Mλ,t =

(
λ t
0 λ

)
.

The corresponding endomorphism fλ,t has ker(fλ,t − µ id) = 0 if λ 6= µ, and has
nontrivial kernel otherwise. This shows that Mλ,t and Mµ,u can be similar only
when λ = µ. Since dim ker(fλ,t − λ id) is 1 if t 6= 0 and 2 if t = 0, Mλ,0 and Mλ,1

are not similar. On the other hand, Mλ,t is similar to Mλ,1 if t 6= 0, since(
λ t
0 λ

)
=

(
1 0
0 t−1

) (
λ 1
0 λ

) (
1 0
0 t

)
.

This example gives you a first glimpse of the classification theorem, the ‘Jordan
Normal Form Theorem’, which will be a topic later.

14.10. The Trace. For purposes of classification, it is useful to have invariants,
i.e., functions that are constant on the equivalence classes. In the case of equiva-
lence of matrices, the rank is an invariant, and in this case, it gives the complete
classification. The rank is (of course) still an invariant with respect to similar-
ity, but as the example above shows, it is by no means sufficient to separate the
classes. Here is another invariant.

14.11. Definition. For A = (aij) ∈ Mat(n, F ), we define the trace of A to be

Tr(A) = a11 + a22 + · · ·+ ann .

14.12. Lemma. If A ∈ Mat(m × n, F ) and B ∈ Mat(n × m, F ), so that both
products AB and BA are defined, then

Tr(AB) = Tr(BA) .

Proof. The (i, i)-entry of AB is
∑n

j=1 aijbji. The (j, j)-entry of BA is
∑m

i=1 bjiaij.
So we get

Tr(AB) =
m∑

i=1

n∑
j=1

aijbji =
n∑

j=1

m∑
i=1

bjiaij = Tr(BA) .

�

14.13. Corollary. Let A, A′ ∈ Mat(n, F ) be similar. Then Tr(A) = Tr(A′).

Proof. There is an invertible matrix P ∈ Mat(n, F ) such that A′ = P−1AP . It
follows that

Tr(A′) = Tr(P−1 · AP ) = Tr(AP · P−1) = Tr(A) .

�

This allows us to make the following definition.
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14.14. Definition. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism of V. We define the trace of f , Tr(f), to be the trace of any
matrix associated to f relative to some basis of V.

Note that Tr(f) is well-defined, since all matrices associated to f have the same
trace according to Cor. 14.13.

In the next section, we will introduce another invariant, which is even more im-
portant than the trace: the determinant.

14.15. Remark. To finish off this section, let us remark that, having chosen bases
of the F -vector spaces V and W of dimensions n and m, respectively, we obtain
an isomorphism

Hom(V, W )
∼=−→ Mat(m× n, F ) , f 7−→ A ,

where A is the matrix associated to f relative to the chosen bases. In particular,
we see that dim Hom(V, W ) = mn.

15. Determinants

Let V be a real vector space of dimension n. The determinant will be a number
associated to an endomorphism f of V that tells us how f scales ‘oriented volume’
in V. So we have to think a little bit about functions that define ‘oriented volume’.

We will only consider parallelotopes; these are the bodies spanned by n vectors
in V :

P (v1, . . . , vn) = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ [0, 1]}
If V = Rn, then P (v1, . . . , vn) is the image of the ‘unit cube’ P (e1, . . . , en) under
the linear map that sends the canonical basis vectors e1, . . . , en to v1, . . . , vn.

Now let D : V n → R be a function that is supposed to measure oriented volume of
parallelotopes — D(v1, . . . , vn) gives the volume of P (v1, . . . , vn). What properties
should such a function D satisfy?

One property should certainly be that the volume vanishes when the parallelotope
is of lower dimension, i.e., when its spanning vectors are linearly dependent. It
will be sufficient to only consider the special case when two of the vectors are
equal:

D(v1, . . . , vn) = 0 if vi = vj for some 1 ≤ i < j ≤ n.

Also, volume should scale corresponding to scaling of the vectors:

D(v1, . . . , vi−1, λvi, vi+1, . . . , vn) = λD(v1, . . . , vn) .

Finally, volumes are additive in the following sense:

D(v1, . . . , vi−1, vi + v′i, vi+1, . . . , vn)

= D(v1, . . . , vi−1, vi, vi+1, . . . , vn) + D(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn) .

The last two properties can be stated simply by saying that D is linear in each
argument separately. Such a function is said to be multilinear. A multilinear
function satisfying the first property is said to be alternating. So the functions we
are looking for are alternating multilinear functions from V n to R.

Note that it makes sense to talk about alternating multilinear functions over any
field F , not just over R (even though we cannot talk about volumes any more).
So we will from now on allow arbitrary fields again.
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15.1. Definition. Let V be an n-dimensional F -vector space. An alternating
multilinear function D : V n → F is called a determinantal function on V.

How many determinantal functions are there? First, it is pretty clear that the set
of all determinantal functions on V forms an F -vector space. So the question we
should ask is, what is the dimension of this vector space?

Before we state the relevant theorem, let us first prove a few simple properties of
determinantal functions.

15.2. Lemma. Let V be an n-dimensional F -vector space, and let D : V n → F
be a determinantal function on V.

(1) If v1, . . . , vn ∈ V are linearly dependent, then D(v1, . . . , vn) = 0.

(2) If we add a scalar multiple of vi to vj, where i 6= j, then D(v1, . . . , vn) is
unchanged.

(3) If we interchange two of the vectors v1, . . . , vn ∈ V , then D(v1, . . . , vn)
changes sign.

Proof.

(1) If v1, . . . , vn are linearly dependent, then one of them, say vi, will be a
linear combination of the others, say

vi =
∑
j 6=i

λjvj .

This implies

D(v1, . . . , vi, . . . , vn) = D(v1, . . . ,
∑
j 6=i

λjvj, . . . , vn)

=
∑
j 6=i

λjD(v1, . . . , vj, . . . , vj, . . . , vn)

=
∑
j 6=i

λj · 0 = 0 .

(2) Say, we replace vj by vj + λvi. Assuming that i < j, we have

D(v1, . . . ,vi, . . . , vj + λvi, . . . , vn)

= D(v1, . . . , vi, . . . , vj, . . . , vn) + λD(v1, . . . , vi, . . . , vi, . . . , vn)

= D(v1, . . . , vn) + λ · 0 = D(v1, . . . , vn) .

(3) To interchange vi and vj (with i < j), we proceed as follows.

D(v1, . . . , vi, . . . , vj, . . . , vn) = D(v1, . . . , vi, . . . , vj + vi, . . . , vn)

= D(v1, . . . , vi − (vj + vi), . . . , vj + vi, . . . , vn)

= D(v1, . . . ,−vj, . . . , (vj + vi) + (−vj), . . . , vn)

= −D(v1, . . . , vj, . . . , vi, . . . , vn) .

Alternatively, we can use that (omitting all except the ith and jth argu-
ments)

0 = D(vi + vj, vi + vj)

= D(vi, vi) + D(vi, vj) + D(vj, vi) + D(vj, vj)

= D(vi, vj) + D(vj, vi) .

�
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15.3. Theorem. Let V be an n-dimensional F -vector space, with basis v1, . . . , vn,
and let λ ∈ F . Then there is a unique determinantal function D : V n → F such
that D(v1, . . . , vn) = λ. In particular, the determinantal functions on V form a
one-dimensional F -vector space.

Proof. As usual, we have to prove existence and uniqueness, and we will start
with uniqueness. Let w1, . . . , wn be vectors in V , and let A be the matrix whose
columns are given by the coefficients of the wj when written as linear combinations
of the vi. If the wj are linearly dependent, then D(w1, . . . , wn) = 0. Otherwise,
the matrix A is invertible, and we can transform it into the identity matrix by
elementary column operations. The multilinearity of D and Lemma 15.2 tell us
how the value of D changes in the process: we see that

D(w1, . . . , wn) = (−1)kδ−1D(v1, . . . , vn) = (−1)kδ−1λ ,

where k is the number of times we have swapped two columns and δ is the product
of all the scaling factors we have used when scaling a column. Note that the
identity matrix corresponds to v1, . . . , vn. This shows that there is at most one
choice for D(w1, . . . , wn).

We cannot use the observation made in the uniqueness proof easily to show exis-
tence (we would have to show that (−1)kδ−1 does not depend on the sequence of
elementary column operations we have performed in order to obtain In). Instead,
we use induction on the dimension n of V.

As the base case, we consider n = 0. Then V = {0}, the basis is empty, and
V 0 has just one element (which coincides with the empty basis). So the function
that sends this element to λ is trivially a determinantal function with the required
property. (If you suffer from horror vacui, i.e. you are afraid of the empty set,
you can consider n = 1. Then V = L(v1), and the required function is given by
sending µv1 ∈ V 1 = V to µλ.)

For the induction step, we assume n ≥ 1 and let W = L(v2, . . . , vn). By the induc-
tion hypothesis, there is a determinantal function D′ on W that takes the value λ
on (v2, . . . , vn). Any element wj ∈ V can be written uniquely as wj = µjv1 + w′

j

with w′
j ∈ W . We now set

D(w1, . . . , wn) =
n∑

j=1

(−1)j−1µjD
′(w′

1, . . . , w
′
j−1, w

′
j+1, . . . , w

′
n)

and have to check that D is a determinantal function on V . We first verify that
D is linear in wk. This follows from the observation that each term in the sum is
linear in wk = µkv1 + w′

k — the term with j = k only depends on wk through µk,
and the other terms only depend on wk through w′

k, which is linear in wk; also
D′ is linear in each of its arguments. Next assume that wk = wl for k < l. Then
w′

k = w′
l, and so in all terms that have j /∈ {k, l}, the value of D′ is zero. The

remaining terms are, writing wk = wl = µv1 + w′,

(−1)k−1µD′(w′
1, . . . , w

′
k−1, w

′
k+1, . . . , w

′
l−1, w

′, w′
l+1, . . . , w

′
n)

+ (−1)l−1µD′(w′
1, . . . , w

′
k−1, w

′, w′
k+1, . . . , w

′
l−1, w

′
l+1, . . . , w

′
n) .

These terms cancel since we have to swap adjacent arguments (l− k− 1) times to
go from one value of D′ to the other, which results in a sign of (−1)l−k−1.

Finally, we have D(v1, v2, . . . , vn) = 1 ·D′(v2, . . . , vn) = λ. �



57

We can now make use of this fact in order to define determinants of matrices and
of endomorphisms.

15.4. Definition. Let n ≥ 0. The determinant on Mat(n, F ) is the unique deter-
minantal function on the columns of the n× n matrices that takes the value 1 on
the identity matrix In. If A ∈ Mat(n, F ), then then its value det(A) on A is called
the determinant of A.

If A = (aij) is written as an n× n array of entries, we also write

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
15.5. Remarks.

(1) Note that det(A) 6= 0 is equivalent to “A invertible”.

(2) The uniqueness proof gives us a procedure to compute determinants: we
perform elementary column operations on A, keeping track of the scalings
and swappings, until we get a zero column (then det(A) = 0), or we reach
the identity matrix.

15.6. Example. We compute a determinant by elementary column operations.
Note that we can avoid divisions (and hence fractions) by choosing the operations
cleverly.∣∣∣∣∣∣∣∣
1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
2 −3 −2 −5
3 −2 −7 −11
4 −5 −11 −14

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
2 1 −2 −5
3 12 −7 −11
4 17 −11 −14

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 17 49
−30 17 23 71

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 17 −2
−30 17 23 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−21 12 1 17
−30 17 −1 23

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
−51 29 −1 40

∣∣∣∣∣∣∣∣
= 2 · 40

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 80

15.7. Lemma (Expansion by Rows). Let A ∈ Mat(n, F ) with n ≥ 1. For
1 ≤ i, j ≤ n, denote by Aij the matrix obtained from A by deleting the ith row and
jth column. Then for all 1 ≤ i ≤ n, we have

det(A) =
n∑

j=1

(−1)j−iaij det(Aij) .

This is called the expansion of the determinant by the ith row.

Proof. As in the proof of Thm. 15.3 above, we check that the right hand side is a
determinantal function that takes the value 1 on In. �
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15.8. Examples. For n = 0, we find that the empty determinant is 1. For n = 1
and A = (a), we have det(A) = a. For n = 2 and n = 3, we obtain by an
application of the lemma the following formulas.∣∣∣∣a b

c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei + bfg + cdh− afh− bdi− ceg

We will see later how this generalizes to larger n.

15.9. Definition. Let V be an F -vector space of dimension n, and let f : V → V
be an endomorphism. We fix a nontrivial determinantal function D : V n → F .
Then

D′ : V n −→ F , (v1, . . . , vn) 7−→ D
(
f(v1), . . . , f(vn)

)
is again a determinantal function, hence there is λ ∈ F such that D′ = λD (since
D is a basis of the space of determinantal functions on V ). We set det(f) = λ and
call det(f) the determinant of f .

Note that this is well-defined, since any other choice of D differs from the one we
have made by a non-zero scalar, by which D′ is also multiplied, and so it drops
out when computing λ.

15.10. Theorem. Let V be an F -vector space of dimension n, and let f, g : V →
V be two endomorphisms. Then det(f ◦ g) = det(f) det(g).

Proof. Let D be a fixed nontrivial determinantal function on V , and let D′ be “D
after f” and let D′′ be “D after g” as in the definition above. Then

D
(
f ◦ g(v1), . . . , f ◦ g(v2)

)
= D′(g(v1), . . . , g(vn)

)
= det(f)D

(
g(v1), . . . , g(vn)

)
= det(f)D′′(v1, . . . , vn)

= det(f) det(g)D(v1, . . . , vn) .

The definition then implies that det(f ◦ g) = det(f) det(g). �

15.11. Lemma. Let V be an F -vector space of dimension n, let f : V → V be an
endomorphism. We fix a basis v1, . . . , vn of V and let A be the matrix associated
to f relative to this basis. Then det(A) = det(f).

Proof. Let D : V n → F be the determinantal function that takes the value 1 on
the fixed basis. The columns of A contain the coefficients of f(v1), . . . , f(vn) with
respect to this basis, hence

det(A) = D
(
f(v1), . . . , f(vn)

)
= det(f)D(v1, . . . , vn) = det(f) .

�
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15.12. Theorem (Multiplicativity of the Determinant).
Let A, B ∈ Mat(n, F ). Then det(AB) = det(A) det(B).

Proof. Consider V = F n and let (for sake of clarity) fA, fB : V → V be the
endomorphisms given by A and B. By Lemma 15.11 and Thm. 15.10, we have

det(AB) = det(fA ◦ fB) = det(fA) det(fB) = det(A) det(B) .

�

15.13. Theorem. Let A ∈ Mat(n, F ). Then det(A>) = det(A).

Proof. We show that A 7→ det(A>) is a determinantal function of the columns
of A. First, we have

det(A) = 0 ⇐⇒ rk(A) < n ⇐⇒ rk(A>) < n ⇐⇒ det(A>) = 0 ,

so our function is alternating. Second, we have to show that det(A>) is linear in
each of the columns of A. This is obviously equivalent to saying that det(A) is
linear in each of the rows of A. To check that this is the case for the ith row, we
expand det(A) by the ith row according to Lemma 15.7. For A = (aij),

det(A) =
n∑

j=1

(−1)j−iaij det(Aij) .

Now in Aij the ith row of A has been removed, so det(Aij) does not depend
on the ith row of A; linearity is then clear from the formula. Finally, we have
det(I>n ) = det(In) = 1, so det(A>) must coincide with det(A) because of the
uniqueness of determinantal functions. �

15.14. Corollary (Expansion by Columns). We can also expand determinants
by columns. Let n ≥ 1 and A = (aij) ∈ Mat(n, F ); we use the notation Aij as
before. Then for 1 ≤ j ≤ n,

det(A) =
n∑

i=1

(−1)j−iaij det(Aij) .

Proof. We have

det(A) = det(A>) =
n∑

j=1

(−1)j−iaji det
(
(A>)ij

)
=

n∑
j=1

(−1)j−iaji det
(
(Aji)

>)
=

n∑
j=1

(−1)j−iaji det(Aji)

=
n∑

i=1

(−1)j−iaij det(Aij) .

�

15.15. Example. A matrix A ∈ Mat(n, F ) is said to be orthogonal if AA> = In.
What can we deduce about det(A)? Well,

1 = det(In) = det(AA>) = det(A) det(A>) = det(A)2 ,

so det(A) = ±1.
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15.16. Definition. Let A ∈ Mat(n, F ) with n ≥ 1. Then the adjugate matrix
of A (sometimes called the adjoint matrix, but this has also other meanings) is
the matrix Ã ∈ Mat(n, F ) whose (i, j)-entry is (−1)j−i det(Aji). Here Aij is, as
before, the matrix obtained from A by removing the ith row and jth column. Note
the reversal of indices — Ãij = (−1)j−i det(Aji) and not det(Aij)!

15.17. Proposition. Let A ∈ Mat(n, F ) with n ≥ 1. Then

AÃ = ÃA = det(A)In .

In particular, if A is invertible, then det(A) 6= 0, and

A−1 = det(A)−1Ã .

Proof. The (i, k)-entry of AÃ is

n∑
j=1

aij(−1)k−j det(Akj) .

If i = k, then this is just the formula that expands det(A) by the ith row, so AÃ
has diagonal entries equal to det(A). If i 6= k, then the result is unchanged if we
modify the kth row of A (since Akj does not involve the kth row of A). So we get
the same result as for the matrix A′ = (a′ij) which we obtain from A by replacing
the kth row by the ith row. We find that

0 = det(A′) =
n∑

j=1

(−1)k−ja′kj det(A′
kj) =

n∑
j=1

(−1)k−jaij det(Akj) .

This shows that the off-diagonal entries of AÃ vanish. The assertion on ÃA is
proved in the same way (or by applying what we have just proved to A>). �

16. The Determinant and the Symmetric Group

If A = (aij) ∈ Mat(n, F ) and we recursively expand det(A) along the first row
(say), then we end up with an expression that is a sum of products of n matrix
entries with a plus or minus sign. For example:∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31

+ a13a21a32 − a13a22a31

Since in the process of recursively expanding, the row and column of the entry we
multiply with are removed, each product in the final expression has the form

a1,σ(1)a2,σ(2) · · · an,σ(n)

where σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijective map, a so-called permutation
of {1, 2, . . . , n}. All these permutations together form a group, the symmetric
group.
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16.1. Definition. A group is a set G, together with a map m : G × G → G,
usually written m(x, y) = x · y or xy, such that the following axioms are satisfied.

(1) For all x, y, z ∈ G, we have (xy)z = x(yz) (associativity).

(2) There is e ∈ G such that for all x ∈ G, we have ex = xe = x (identity).

(3) For all x ∈ G, there is x−1 ∈ G such that xx−1 = x−1x = e (inverse).

As usual, the identity element and the inverse of x are uniquely determined.

16.2. Examples.

(1) If F is a field, then we have the additive group of F (F, +) and the mul-
tiplicative group of F (F \ {0}, ·). If V is a vector space, we have the
additive group (V, +). All these groups are commutative or abelian: they
satisfy xy = yx (or x + y = y + x in additive notation).

(2) If X is a set, then the set of all bijective maps f : X → X forms a group,
where the ‘multiplication’ is given by composition of maps. The identity
element is given by idX , the inverse by the inverse map. This group is
called the symmetric group of X and denoted S(X). If X = {1, 2, . . . , n},
we also write Sn. If X has more than two elements, this group is not
abelian (Exercise!). Note that #Sn = n!.

(3) Let F be a field, n ≥ 0. The set of all invertible matrices in Mat(n, F )
forms a group under matrix multiplication. This group is called the general
linear group and denoted by GLn(F ).

16.3. The ‘Leibniz Formula’. From the considerations above, we know that
there is a formula, for A = (aij) ∈ Mat(n, F ):

det(A) =
∑
σ∈Sn

ε(σ) a1,σ(1)a2,σ(2) · · · an,σ(n)

with a certain map ε : Sn → {±1}. We call ε(σ) the sign of the permutation σ.

It remains to determine the map ε. Let us introduce the permutation matrix
P (σ) = (δσ(i),j); this is the matrix whose entries at positions (i, σ(i)) are 1, and
the other entries are 0. By specializing the formula above, we find that

ε(σ) = det
(
P (σ)

)
.

We also have that

ε(στ) = det
(
P (στ)

)
= det

(
P (τ)P (σ)

)
= det

(
P (τ)

)
det

(
P (σ)

)
= ε(σ)ε(τ)

so ε is a group homomorphism, and ε(σ) = −1 when σ is a transposition, i.e., a
permutation that exchanges two elements and leaves the others fixed. Since every
permutation can be written as a product of such transpositions (even transposi-
tions of neighboring elements), this determines ε uniquely: write σ as a product of,
say, k transpositions, then ε(σ) = (−1)k. We can also give an ‘explicit’ formula.

16.4. Proposition. Let n ≥ 0, σ ∈ Sn. Then

ε(σ) =
∏

1≤i<j≤n

σ(j)− σ(i)

j − i
.

Note that for each pair i < j, we will either have j − i or i− j as a factor in the
numerator (since σ permutes the 2-element subsets of {1, 2, . . . , n}). Therefore
the right hand side is ±1. Since the factor (σ(j)− σ(i))/(j − i) is negative if and



62

only if σ(j) < σ(i), the right hand side is (−1)m, where m counts the number of
pairs i < j such that σ(i) > σ(j).

Proof. Denote the right hand side by ε′(σ). We first show that ε′ is a group
homomorphism.

ε′(στ) =
∏
i<j

σ(τ(j))− σ(τ(i))

j − i
=

∏
i<j

σ(τ(j))− σ(τ(i))

τ(j)− τ(i)

τ(j)− τ(i)

j − i

=
∏
i<j

σ(j)− σ(i)

j − i

∏
i<j

τ(j)− τ(i)

j − i
= ε′(σ)ε′(τ)

(Note that {τ(i), τ(j)} runs exactly through the two-element subsets of {1, 2, . . . , n},
and the ordering within the subset does not influence the value of the fraction.)

Next we show that ε′(τ) = −1 when τ is a transposition. So assume that τ
interchanges k and l, where k < l. Then ε′(τ) = (−1)m, where m is the number of
pairs i < j such that τ(j) > τ(i). This is the case when (i) i = k and k < j < l,
or (ii) k < i < l and j = l, or (iii) i = k and j = l. Therefore m = 2(l− k− 1) + 1
is odd, and ε′(τ) = −1.

As discussed above, these two properties determine ε′ uniquely, hence ε = ε′. �

16.5. Remark. As a concluding remark, let us recall the following equivalences,
which apply to an endomorphism f of a finite-dimensional vector space V.

f is an automorphism ⇐⇒ ker(f) = {0} ⇐⇒ det(f) 6= 0 .

17. Eigenvalues and Eigenvectors

We continue with the study of endomorphisms f : V → V . Such an endomorphism
is particularly easy to understand if it is just multiplication by a scalar: f = λ idV

for some λ ∈ F . Of course, these are very special (and also somewhat boring)
endomorphisms. So we look for linear subspaces of V on which f behaves in this
way.

17.1. Definition. Let V be an F -vector space, and let f : V → V be an endo-
morphism. Let λ ∈ F . If there exists a vector 0 6= v ∈ V such that f(v) = λv,
then λ is called an eigenvalue of f , and v is called an eigenvector of f for the
eigenvalue λ. In any case, the linear subspace Eλ(f) = {v ∈ V : f(v) = λv}
is called the λ-eigenspace of f . (So that λ is an eigenvalue of f if and only if
Eλ(f) 6= {0}.)

17.2. Examples.

(1) Let V = R2 and consider f(x, y) = (y, x). Then 1 and −1 are eigenvalues
of f , and E1(f) = {(x, x) : x ∈ R}, E−1(f) = {(x,−x) : x ∈ R}. The
eigenvectors (1, 1) and (1,−1) form a basis of V , and the matrix of f
relative to that basis is (

1 0
0 −1

)
.
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(2) Let V = C∞(R) be the space of infinitely differentiable functions on R.
Consider the endomorphism D : f 7→ f ′′. Then every λ ∈ R is an eigen-
value, and all eigenspaces are of dimension two:

Eλ(D) =


L(x 7→ 1, x 7→ x) if λ = 0

L(x 7→ eµx, x 7→ e−µx) if λ = µ2 > 0

L(x 7→ sin µx, x 7→ cos µx) if λ = −µ2 < 0

Since matrices can be identified with linear maps, it makes sense to speak about
eigenvalues and eigenvectors of a square matrix A ∈ Mat(n, F ).

17.3. The Characteristic Polynomial. How can we find the eigenvalues (and
eigenvectors) of a given endomorphism f , when V is finite-dimensional?

Well, we have

λ is an eigenvalue of f ⇐⇒ there is 0 6= v ∈ V with f(v) = λv

⇐⇒ there is 0 6= v ∈ V with (f − λ idV )(v) = 0

⇐⇒ ker(f − λ idV ) 6= {0}
⇐⇒ det(f − λ idV ) = 0

It is slightly more convenient to consider det(λ idV −f) (which of course vanishes
if and only if det(f − λ idV ) = 0). If A = (aij) ∈ Mat(n, F ) is a matrix associated
to f relative to some basis of V, then

det(λ idV −f) = det(λIn − A) =

∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n

−a21 λ− a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣ .

Expanding the determinant, we find that

det(λIn − A) = λn − Tr(A)λn−1 + · · ·+ (−1)n det(A) .

This polynomial of degree n in λ is called the characteristic polynomial of A (or
of f). We will denote it by PA(λ) (or Pf (λ)). By the discussion above, the
eigenvalues of A (or of f) are exactly the roots (in F ) of this polynomial.

17.4. Examples.

(1) Let us come back to the earlier example f : (x, y) 7→ (y, x) on R2. With
respect to the canonical basis, the matrix is(
0 1
1 0

)
, so the characteristic polynomial is

∣∣∣∣ λ −1
−1 λ

∣∣∣∣ = λ2 − 1

and has the two roots 1 and −1.

(2) Let us consider the matrix

A =

 5 2 −6
−1 0 1
3 1 −4

 .
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What are its eigenvalues and eigenspaces? We compute the characteristic
polynomial:∣∣∣∣∣∣

λ− 5 −2 6
1 λ −1
−3 −1 λ + 4

∣∣∣∣∣∣ = (λ− 5)
(
λ(λ + 4)− 1

)
+ 2

(
(λ + 4)− 3

)
+ 6

(
−1 + 3λ

)
= λ3 − λ2 − λ + 1 = (λ− 1)2(λ + 1) .

The roots are 1 and −1; these are therefore the eigenvalues. To find (bases
of) the eigenspaces, note that Eλ(A) = ker(A− λI3). For λ = 1, we have

A− I3 =

 4 2 −6
−1 −1 1
3 1 −5

 −→

1 0 −2
0 1 1
0 0 0


(by elementary row operations), so E1(A) is generated by (2,−1, 1)>. For
λ = −1, we obtain

A + I3 =

 6 2 −6
−1 1 1
3 1 −3

 −→

1 0 −1
0 1 0
0 0 0


and E−1(A) is generated by (1, 0, 1)>.

17.5. Diagonalizable Matrices and Endomorphisms. If the canonical basis
of F n consists of eigenvectors of A, then A is diagonal:

A =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


where λ1, . . . , λn are the eigenvalues corresponding to the basis vectors. More
generally, if F n has a basis consisting of eigenvectors of A, then changing from
the canonical basis to that basis will make A diagonal: P−1AP is diagonal, where
P is invertible. In this case, A is called diagonalizable. Similarly, if f is an
endomorphism of a finite-dimensional F -vector space V, then f is diagonalizable if
V has a basis consisting of eigenvectors of f . The matrix associated to f relative
to this basis is then diagonal.

The big question is now: when is a matrix or endomorphism diagonalizable?

This is certainly not always true. For example, in our second example above, we
only found two linearly independent eigenvectors in F 3, and so there cannot be a
basis of eigenvectors. Another kind of example is f : (x, y) 7→ (−y, x) on R2. The
characteristic polynomial comes out as λ2 + 1 and does not have roots in R, so
there are no eigenvalues and therefore no eigenvectors. (If we take C instead as
the field of scalars, then we do have two roots ±i, and f becomes diagonalizable.)

17.6. Definition. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism and λ ∈ F . Then dim Eλ(f) is called the geometric multiplicity of
the eigenvalue λ of f . (So the geometric multiplicity is positive if and only if λ is
indeed an eigenvalue.)
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17.7. Lemma. Let V be an F -vector space and f : V → V an endomorphism.
Let λ1, . . . , λm ∈ F be distinct, and for i = 1, . . . ,m, let vi ∈ Eλi

(f). If

v1 + v2 + · · ·+ vm = 0 ,

then vi = 0 for all i.

Proof. By induction on m. The case m = 0 (or m = 1) is trivial. So assume the
claim is true for m, and consider the case with m + 1 eigenvalues. We apply the
endomorphism f − λm+1 idV to the equation

v1 + v2 + · · ·+ vm + vm+1 = 0

and obtain (note (f − λm+1 idV )(vm+1) = 0)

(λ1 − λm+1)v1 + (λ2 − λm+1)v2 + · · ·+ (λm − λm+1)vm = 0 .

By induction, we find that (λi − λm+1)vi = 0 for all 1 ≤ i ≤ m. Since λi 6= λm+1,
this implies vi = 0 for 1 ≤ i ≤ m. But then we must also have vm+1 = 0. �

17.8. Corollary. In the situation above, the union of bases of distinct eigenspaces
of f is linearly independent.

Proof. Consider a linear combination on the union of such bases that gives the zero
vector. By the preceding lemma, each part of this linear combination that comes
from one of the eigenspaces is already zero. Since the vectors involved there form
a basis of this eigenspace, they are linearly independent, hence all the coefficients
vanish. �

17.9. Example. We can use this to show once again that the power functions
fn : x 7→ xn for n ∈ N0 are linearly independent as elements of the space P of
polynomial functions on R (say). Namely, consider the endomorphism D : P → P ,
f 7→ (x 7→ xf ′(x)). Then D(fn) = nfn, so the fn are eigenvectors of D for
eigenvalues that are pairwise distinct, hence they must be linearly independent.

17.10. Corollary. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then f is diagonalizable if and only if∑

λ∈F

dim Eλ(f) = dim V .

Proof. By Cor. 17.8, we always have “≤”. If f is diagonalizable, then there is
a basis consisting of eigenvectors, and so we must have equality. Conversely, if
we have equality, then the union of bases of the eigenspaces will be a basis of V ,
which consists of eigenvectors of f . �

17.11. Proposition. Let V be an n-dimensional F -vector space and f : V → V
an endomorphism. If Pf (λ) has n distinct roots in F , then f is diagonalizable.

Proof. In this case, there are n distinct eigenvalues λ1, . . . , λn. Therefore, Eλi
(f)

is nontrivial for 1 ≤ i ≤ n, which means that dim Eλi
(f) ≥ 1. So

dim V = n ≤
n∑

i=1

dim Eλi
(f) ≤ dim V ,

and we must have equality. The result then follows by the previous corollary. �
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The converse of this statement is false in general, as the identity endomorphism
idV shows (for dim V ≥ 2).

However, some statement in the converse direction is true. In order to state it, we
need some preparations.

17.12. Definition. Let F be a field. The polynomial ring in x over F , F [x], is an
F -vector space with basis 1 = x0, x = x1, x2, . . . , xn, . . . , on which a multiplication
F [x]×F [x] → F [x] is defined by the following two properties: (i) it is F -bilinear,
and (ii) xm · xn = xm+n.

Written out, this means that

(anx
n + · · ·+ a1x + a0)(bmxm + · · ·+ b1x + b0)

= anbmxn+m + (anbm−1 + an−1bm)xn+m−1 + . . .

+
( ∑

i+j=k

aibj

)
xk + · · ·+ (a1b0 + a0b1)x + a0b0 .

It can then be checked that F [x] is a commutative ring with unit, i.e., it satisfies
the axioms of a field with the exception of the existence of multiplicative inverses.

If p(x) = anx
n + · · ·+ a1x + a0 ∈ F [x] and an 6= 0, then p is said to have degree n;

we write deg(p) = n. In this case an is called the leading coefficient of p(x); if
an = 1, p(x) is said to be monic.

For example, if V is an n-dimensional vector space and f : V → V is an endomor-
phism, then the characteristic polynomial Pf (x) of f is monic of degree n.

17.13. Theorem. Let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ F [x] be a monic

polynomial, and let α ∈ F . If p(α) = 0, then there is a polynomial q(x) =
xn−1 + bn−2x

n−2 + · · ·+ b0 such that p(x) = (x− α)q(x).

Proof. If α = 0, this is certainly true, since then 0 = p(0) = a0, and visibly p(x) =
xq(x). In general, we replace x by x + α. Then the polynomial p̃(x) = p(x + α)
is again monic of degree n, and p̃(0) = p(α) = 0, so p̃(x) = xq̃(x) with a monic
polynomial q̃ of degree n− 1. Then

p(x) = p̃(x− α) = (x− α)q̃(x− α) = (x− α)q(x) ,

where q(x) = q̃(x− α) is monic of degree n− 1. �

17.14. Corollary and Definition. Let p(x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈

F [x] and α ∈ F . Then there is a largest m ∈ N0 such that p(x) = (x − α)mq(x)
with a polynomial q(x); we then have q(α) 6= 0.

This number m is called the multiplicity of the root α of p; we have m > 0 if and
only if p(α) = 0.

Proof. Write p(x) = (x−α)mq(x) with m as large as possible. (Note that deg(p) =
m+deg(q), so m ≤ n.) The we must have q(α) 6= 0, since otherwise we could write
q(x) = (x− α)r(x), so p(x) = (x− α)m+1r(x), contradicting our choice of m. �

Now we can make another definition.
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17.15. Definition. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism. Then the multiplicity of λ ∈ F as a root of the characteristic
polynomial Pf (x) is called the algebraic multiplicity of the eigenvalue λ of f .

Note that the following statements are then equivalent.

(1) λ is an eigenvalue of f ;

(2) the geometric multiplicity of λ is ≥ 1;

(3) the algebraic multiplicity of λ is ≥ 1.

We also know that the sum of the geometric multiplicities of all eigenvalues as well
as the sum of the algebraic multiplicities of all eigenvalues are bounded by dim V .

There is one further important relation between the multiplicities.

17.16. Theorem. Let V be a finite-dimensional F -vector space, f : V → V an
endomorphism, and λ ∈ F . Then the geometric multiplicity of λ as an eigenvalue
of f is not larger than its algebraic multiplicity.

Proof. We can choose a basis v1, . . . , vk, vk+1, . . . , vn of V such that v1, . . . , vk form
a basis of the eigenspace Eλ(f); then k is the geometric multiplicity. The matrix
associated to f relative to this basis then has the form

A =



λ 0 . . . 0 ∗ . . . ∗
0 λ . . . 0 ∗ . . . ∗
...

...
. . .

...
...

...
0 0 . . . λ ∗ . . . ∗
0 0 . . . 0 ∗ . . . ∗
...

...
...

...
. . .

...
0 0 . . . 0 ∗ . . . ∗


=

(
λIk B
0 C

)
.

We then have

Pf (x) = det(xIn − A) = det

(
(x− λ)Ik −B

0 xIn−k − C

)
= det

(
(x− λ)Ik

)
det(xIn−k − C) = (x− λ)kq(x)

where q(x) is some monic polynomial of degree n−k. We see that λ has multiplicity
at least k as a root of Pf (x). �

17.17. Lemma. Let f : V → V be an endomorphism of an n-dimensional F -
vector space V, and let Pf be its characteristic polynomial. Then the sum of the
algebraic multiplicities of the eigenvalues of f is at most n; it is equal to n if and
only if Pf (x) is a product of linear factors x− λ (with λ ∈ F ).

Proof. By Thm. 17.13, if λ is a root of Pf , we can write Pf (x) = (x− λ)q(x) with
a monic polynomial q of degree n− 1. Continuing in this way, we can write

Pf (x) = (x− λ1)
m1 · · · (x− λk)

mkq(x)

with a monic polynomial q that does not have roots in F and distinct elements
λ1, . . . , λk ∈ F . If µ ∈ F , then

Pf (µ) = (µ− λ1)
m1 · · · (µ− λk)

mkq(µ) ,

so if Pf (µ) = 0, then µ ∈ {λ1, . . . , λk} (since q(µ) 6= 0). Therefore the eigenvalues
are exactly λ1, . . . , λk, with multiplicities m1, . . . ,mk, and

m1 + m2 + · · ·+ mk ≤ m1 + m2 + · · ·+ mk + deg(q) = n .
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We have equality if and only if deg(q) = 0, i.e., if and only if q(x) = 1; then

Pf (µ) = (µ− λ1)
m1 · · · (µ− λk)

mk

is a product of linear factors. �

17.18. Corollary. Let V be a finite-dimensional F -vector space and f : V → V
an endomorphism. Then f is diagonalizable if and only if

(1) Pf (x) is a product of linear factors, and

(2) for each λ ∈ F , its geometric and algebraic multiplicities as an eigenvalue
of f agree.

Proof. By Cor. 17.10, f is diagonalizable if and only if the sum of the geometric
multiplicities of all eigenvalues equals n = dim V. By Thm. 17.16, this implies that
the sum of the algebraic multiplicities is at least n; however it cannot be larger
than n, so it equals n as well. This already shows that geometric and algebraic
multiplicities agree. By Lemma 17.17, we also see that Pf (x) is a product of linear
factors.

Conversely, if we can write Pf (x) as a product of linear factors, this means that
the sum of the algebraic multiplicities is n. If the geometric multiplicities equal
the algebraic ones, their sum must also be n, hence f is diagonalizable. �

17.19. Remark. If F is an algebraically closed field, for example F = C, then
condition (1) in the corollary is automatically satisfied (by definition!). However,
condition (2) can still fail. It is then an interesting question to see how close we
can get to a diagonal matrix in this case. This is what the Jordan Normal Form
Theorem is about, which will be a topic for the second semester.
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