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Abstract

As a generalization of polyominoes we consider edge-to-edge connected nonoverlapping
unions of regulark-gons. Forn < 4 we determine formulas for the numbey(n) of
generalized polyominoes consistingrofegulark-gons. Additionally give a table of the
numbersax(n) for small £ andn obtained by computer enumeration. We finish with a
survey of known problems for polyominoes.
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1 Introduction

A polyomino, in its original definition, is a connected interior-disjoint union of axis-
aligned unit squares joined edge-to-edge. In other words, it is an edge-connected
union of cells in the planar square lattice. For the origin of polyominoes we quote
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Figure 1. Polyominoes with at most 5 squares.
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Klarner [10]: “Polyominoes have a long history, going back to the start of the 20th
century, but they were popularized in the present era initially by Solomon Golomb
i.e. [3,4,5], then by Martin Gardner in h&cientific Americaolumns.”

There at are least three ways to define two polyominoes as equivalent, namely fac-
toring out just translations (fixed polyominoes), rotations and translations (chiral
polyominoes), or reflections, rotations and translations (free polyominoes). Here
we consider only free polyominoes. To give an illustration of polyominoes Figure

1 depicts the free polyominoes consisting of at most 5 unit squares.

n A0001055(n)| n A0001055(n)] n A0001055(n)| n A0001055(n)
1 1| 8 369 | 15 3426576| 22 43191857689
2 119 1285] 16 13079255 23 168047007728
3 2|10 4655| 17 50107909 24 654999700403
4 511 17073| 18 192622052 25 2557227044764
5 12| 12 63600| 19 742624232 26 9999088822075
6 35|13 238591 20 2870671950 27 39153010938487
7 108 | 14 901971 21 11123060678 28 153511100594603
Table 1

Polyominoes or square animals.

One of the first problems for polyominoes was the determination of their number.
Altough there has been some progress, a solution to this problem remains outstand-
ing. In the literature one sometimes speaks also of the cell-growth problem and
uses the term animal instead of polyomino. In Table 1 we give the known numbers
of polyominoes, this is sequence A0001055 in the “Online Encyclopedia of Integer
Sequences” [14].

n A000577(n)) n A000577(n)) n A000577(n)) n  A000577(n)
1 1| 8 66| 15 73983| 22 121419260
2 1|9 160| 16 211297 23 353045291
3 1|10 448\ 17 604107| 24 1028452717
4 3|11 1186| 18 1736328 25 3000800627
5 4112 3334| 19 5000593| 26 8769216722
6 12| 13 9235| 20 14448984 27 25661961260
7 24| 14 26166| 21 41835738 28 75195166667

Table 2

Triangular polyominoes (or polyiamonds).



Polyominoes were soon generalized to the two other tessellations of the plane. For
the trigonal lattice they are called triangular polyominoes and for the hexagonal
lattice they are called hexagonal polyominoes. Their know numbers are given in
Table 2 and Table 3, respectively. Polyominoes were also considered on the eight
Archimedean tessellations [2] and as uniong-@fimensional hypercubes instead

of squares. In this article we consider polyominoes as unions of regular nonover-
lapping edge-to-edge connectgeyons. For short we call theri+polyominoes.
Edge-to-edge connected unions of regétgons which may overlap were counted

by Harary [7].

n A000228(n)| n A000228(n)) n A000228(n)) n  A000228(n)
1 1|6 82| 11 143552 16 372868101
2 1|7 333 12 683101 17 1822236628
3 3| 8 1448| 13 3274826/ 18 8934910362
4 7] 9 6572| 14 15796897 19 43939164263
5 22|10 30490\ 15 76581875 20 216651036012

Table 3
Hexagonal polyominoes.

2 Formulas for the number of nonisomorphick-polyominoes

We denote the number of nonisomorphipolyominoes consisting of regulark-
gons bya(n). Because the definition offapolyomino makes sense only for> 3

we setu,(n) = 0 for k < 3. For ak-polyomino consisting of a single cell we clearly
havea, (1) = 1. Because there is only one possibility to connect two cells and this
union is nonoverlapping we haveg(2) = 1. To handlek-polyominoes consisting

of 3 cells we consider the cells;, C,, andCs; which are connected via the edges
P, P; and P3P, see Figure 2. We call the length of the shortest path beetween
and P; the distancel(P,, P). If the cellsC; andC; are connected to the cél} as

in Figure 2, we denote the minimumin(d(P,, Ps), d(Ps, Ps)) by d(Cy,C3). Here
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Figure 2. Distance between twisgons neighboring a commdngon.



we haved(C;,C;) = 2. The next lemma characterizes the distanceS, aindCs
where the cells do not intersect.

Lemmal Twok-gonsC; andCs joined via an edge to &-gonC, are nonover-
lapping iff d(Cy, C3) > {%J
Proof. We consider Figure 3 and assume> 12. For the angles: of a regulark-

gon we haver = 227, Because thé(C;, Cs)+1-gon hagd(C;,C;)—1)m as sum of

angles/ (Ps, Py, Py) = Z(Py, Py, Py) = Y81 \With 20+ /£ (Ps, Py, Ps) = 2n0

we gets := Z(Py, Py, P3) = 245112, Because the lengths of the linsP,

P, P;, and P; P, are the same, the poinfg and P; are equal iffg = z.Forg < %

the linesP P, and P, P, intersect, sg? > % is a necessary condition. Inserting
B = M“’TWW yieldsd(Ci,C;5) > 8. Becausel(C;,C3) andk are integers we
haved(C,,C3) > {%W = L%J For k = 0mod6 andd(Cy,Cs) = *3° also
the cellsC; andC; have an edge in common. It is not difficult to see that in this
configuration thek-gons do not overlap. If we consider suchka+- 6-gon with
d(C1,C5) = % we can deduce that fat(Cy,Cs) > %J the three cells do not

intersect. The proof is finished by checking the cdses12. 0J

Figure 3. Nonoverlapping6-gons.

From this we can deduce the following corolla.

Corolla2 The number of neighbors of a cell irkapolyomino is at most

For k = oo or more precisely circles we have that a circle can have at most 6
nonoverlapping circles of equal radius sharing at least a single point. The maximum
number of neighbors is also called Newton number of the geometric object.

With the aid of Lemma 1 we are able to determine the nump@) of k-polyominoes
consisting of3 cells.



Theorem 3

ax(3) = V;;QJ - V;JH for k > 3.

Proof. It suffices to determine the possible valuesd¢(¢,,Cs). Due to Lemma 1
we haved(C,Cs) > L%J and due to the definition of the distance or symmetry

considerations we hav&C;,C3) < L%J O

In order to determine the number 6fpolyominoes with more thaf cells we
describe the classes éfpolyominoes by graphs. We represent e&etpon by a
node and join two nodes exactly if the correspondingons are connected via an
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Figure 4. The possible graphs/efpolyominoes witht nodes.

Lemma 4 The number of-polyominoes with a graph isomorph to one of first
three ones in Figure 4 is given by
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Proof. We denote on of the at most two cells corresponding to a node of dégree
the graph by, and the three other cells By, C,, andCs. With d; := d(Cy, Cy, Cs)—

|52, dy = d(C2,Co, Cs) — | 52|, andds := d(C5,Co,C1) — | 55| we havern :=

dy+dy+dys=k—3—3 L%J =k-3 L%J Because thé-polyominoes with

a graph isomorphic to one of the first three ones in Figure 4 are uniquely described
by dy, ds, ds, due to Lemma 1 and due to symmetry their number equals the number
of partitions ofm into at most three parts. This number is the coefficient’®fin

the Taylor series O{HC in z = 0 and can be expressed F(%’“Ffl"’;i*ﬂ .
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Figure 5. Paths of length

In Lemma 1 we have given a condition for a patt3aklls avoiding an overlapping.

For paths of lengtlh we have to consider two cases. We depict the position of the
distance of three neighboring cells by an arc, see Figure 5. In the second case the
two nodes of degree two are not able to overlap so we need a lemma in the spirit of
Lemma 1 only for the first case.



Lemma5 Fourk-gonsCy, Cs, C3, andC, arranged as in the first case of Figure 5
are nonoverlapping iff Lemma 1 is fulfilled for the two subpaths of leAgthd

kE—3
d(Cy,Cq,C3) + d(Cy,C3,Cy) > {2J :

The path is indeed &-cycle iff

k—4

d(claczvcf}) + d(C27C37C4) = a5 -

2

Proof. We start with the second statement and consider the quadrangle of the cen-
ters of the 4 cells. Because the angle sum of a quadrangfevs get

d(C1,Cs,C3) + d(Ca, Cs,Cy) + d(Cs,Ca, Cy) + d(Ca, C1, Co) = k — 4.

Due to the fact that the side lengths of the quadrangle are equal we have

d(Cy,Cq,C3) + d(Cy,C3,Cy) = d(Cs,C4,Cy) + d(Cy,Cq,Co)

which is equivalent to the statement.

Thus we have that(C;, Cs, C3)+d(Cs,C5,Cy) > {%J is a necessary condition. For
k = 0 mod 2 itis clear that this condition is also sufficient and fo= 1 mod 2 we
consider the corresponding configurationg/of- 1)-polyominoes and ofk + 1)-

polyominoes.

O

With this lemma we are able to count thkepolyominoes having one of the two

remaining graphs as their graphs.

Lemma 6 The number ok-polyominoes with a graph isomorph to one of last

two ones in Figure 4 is given by
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48
2
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48
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48
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48
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Proof. Because each of the two last graphs in Figure 4 contains a path of length
4 as a subgraph we consider the two cases of Figure 5. We abbreviate the two
interesting distances, which describe th@olyominoes uniquely, byl; andd,.

Due to symmetry reasons we may assuine< d, and due to Lemma 1 we have
dy,dy > {%J (the graphs do not contain a triangle). From the definition of the

distance we havd,,d, < L%J To avoid double counting we assurbgj <
dy,dy < [%J in the second case, so that we get a number of

(1] i)

2

k-polyominoes. With Lemma 5 the number bfpolyominoes in the first case is
given by

2

> > 1.

=[5 dsmmaxan [ 552 -0

A little calculation yields the proposed formula. N

Theorem 7

SEABkA24 - for | =0 mod12,

SEHL=T  for k=1 mod12,

%%;# for k=2modl2,

3k24+10k+15 _
= for k=3 modi12,

3k%2+14k+16 _

Sl for k=4 mod12,
3k%+16k+13 —

0u(4) = N 2; . for k=5 mod12,
+8k+ =

s for k=6 modi12,

ST for k=7 mod12,

S84 for k=8 mod 12,

SEHOLS  for k=9 mod 12,

HUEE16  for k=10 mod12,

SHIBEL1S  for k=11 mod12.

Proof. The graphs depicted in Figure 4 are all possible graphismdlyominoes,
because the graphs have to be connected and the complete graplodesk, is

not a unit distance graph. Adding the formulas from Lemma 4 and Lemma 6 yields
the theorem. O



3 Computer enumeration of k-polyominoes

By computer construction of-polyominoes we obtained the following tables of
values foray(n).

kin|1]|2|3]| 4 5 6 7 8 9 10 11
3|1j1|1| 3 4 12 24 66 160 448 1186
411(1|2| 5| 12 35 108 369 1285 4655| 17073
5|/111|2| 7| 25 118 551 2812 | 14445| 76092| 403976
6113 7| 22 82 333 1448 6572 | 30490| 143552
711112 7| 25 118 558 2876 | 14982| 80075| 431889
8/1{1|3|11| 50 269 | 1605| 10102, 65323| 430302
911/1|3|14| 82 585 4418 | 34838| 280014
1011|419 127 985 8350| 73675

11|11 |4|23|186| 1750| 17507| 181127

12111 |5|23|168| 1438| 13512| 131801

13|11 |4|23|187| 1765| 17775| 185297

141111 |5(29|263| 2718| 30467| 352375

15|/1]1|5|35|362| 4336| 55264

16|11 6|42 472 6040| 83252

171111 | 6|48 | 614 | 8814| 134422

18|11 |7 |47|566| 7678| 112514

19111 |6|48| 615 8839| 135175

2011|121 |7|57|776]| 11876| 195122

Table 4

Number ofk-polyominoes withn cells for smallk andn.

We would like to describe in short how to efficiently generiatgolyominoes. The
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"

Figure 6. Two nonisomorphic geometric trees.




first fact we observe is that the graphskepolyominoes are in most cases trees.

If we enhance the trees by distances for each path of lehgth have a descrip-

tion for a uniquek-polyomino. To avoid redundancy in assigning the values for the
distances we consider drawings of the trees in the plane and call them geometric
trees. The two graphs in Figure 6 are nonisomorphic in a graph theoretic sense,
but we would like to regard them as different. Therefore we consider the neighbors
of a node as being ordered. So we can generaté-fr@lyominoes as follows. At

first we generate all trees withnodes and a maximum degree given by Corolla 2.
Then for each tree we assign the possible values for the distances with restrictions
from Lemma 1 and Lemma 5. Because the center of a tree, depicted by a filled circle

k/n
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
Table 5
Number ofk-polyominoes withn cells for smallk andn.

4 5 6
64| 972| 16410
74| 1179 20970
82| 1437 27720
81| 1347 | 24998
82| 1439 27787
93| 1711 34763

103 | 2045| 44687
115| 2376| 54133
125| 2786| 67601
123 | 2641| 62252
125| 2790| 67777
139 | 3204| 81066
150 | 3707 | 99420
165 | 4193 | 116465
177 | 4790 | 140075
175 | 4575| 130711
177 | 4796 | 140434
193 | 5380 | 163027
207 | 6089 | 193587
14 | 224 | 6760 | 221521
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in Figure 6, is unique and due to the fact that the maximum degree is atraost



cording to Corolla 2 each isomorphic assignment of distances to the geometric trees
can occur at mosit2 times. To avoid the construction of isomorphki@olyominoes

we consider the assigned geometric tree under the rotations and mirrorings which
fix the center. If the constructed assigned geometric tree is minimal with respect to
lexicographical ordering in this set of at mdtstructures then we take it else we
dismiss it. Because the conditions of Lemma 1 and Lemma 5 are only necessary
and not sufficient we have to check if the cells of the corresponkipglyomino

are nonoverlapping. If two cells have an edge in common we add the corresponding
edge to the geometric tree which is then a geometric graph. If the cells are nonover-
lapping and the graph remains a tree then we have construktpdlgomino which

we have not constructed before. In the case were the graph is not a tree we define
a unique spanning tree for the graph and check if the original tree is this unique
spanning tree. The big advantage of this construction strategy is, that there is no
need to store the constructégpolyominoes in the memory.

4 Problems for k-polyominoes

For 4-polyominoes the maximum area of the convex hull was considered in [1].
If the area of a cell is normalized tbthen the maximum area of &polyomino
consisting ofn. squares is given by + % {%J {gJ One of the present authors
proved an analogous result for the maximum content of the convex hull of a union
of d-dimensional units hypercubes [11] and for the area of the convex haH of

polyominoes [12]. Forn hypercubes the maximum content of the convex hull is

given by o
> omllr)

IC{1,....d} il

The maximum area of the convex hull®polyominoes is given by [ n*+ Xn+1].

For other values ok the question for the maximum area of the convex hult-of
polyominoes is still open. Beside from [9] no results are known for the question of
the minimum area of the convex hull, which is non trivial fog 3, 4.

Another class of problems is the question for the minimum and the maximum num-
ber of edges ok-polyominoes. The following sharp inequalities for the numper

of edges of-polyominoes consisting of cells were found in [6] and are also given

in [8].



In general the maximum number of edges is giveriby- 1)n + 1. We would like
to mention that the numbers dfpolyominoes with a minimum number of edges
were enumerated in [13].
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