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Abstract

As a generalization of polyominoes we consider edge-to-edge connected nonoverlapping
unions of regulark-gons. Forn ≤ 4 we determine formulas for the numberak(n) of
generalized polyominoes consisting ofn regulark-gons. Additionally give a table of the
numbersak(n) for small k andn obtained by computer enumeration. We finish with a
survey of known problems for polyominoes.
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1 Introduction

A polyomino, in its original definition, is a connected interior-disjoint union of axis-
aligned unit squares joined edge-to-edge. In other words, it is an edge-connected
union of cells in the planar square lattice. For the origin of polyominoes we quote

Figure 1. Polyominoes with at most 5 squares.
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Klarner [10]: “Polyominoes have a long history, going back to the start of the 20th
century, but they were popularized in the present era initially by Solomon Golomb
i.e. [3,4,5] , then by Martin Gardner in hisScientific Americancolumns.”
There at are least three ways to define two polyominoes as equivalent, namely fac-
toring out just translations (fixed polyominoes), rotations and translations (chiral
polyominoes), or reflections, rotations and translations (free polyominoes). Here
we consider only free polyominoes. To give an illustration of polyominoes Figure
1 depicts the free polyominoes consisting of at most 5 unit squares.

n A0001055(n) n A0001055(n) n A0001055(n) n A0001055(n)

1 1 8 369 15 3426576 22 43191857688

2 1 9 1285 16 13079255 23 168047007728

3 2 10 4655 17 50107909 24 654999700403

4 5 11 17073 18 192622052 25 2557227044764

5 12 12 63600 19 742624232 26 9999088822075

6 35 13 238591 20 2870671950 27 39153010938487

7 108 14 901971 21 11123060678 28 153511100594603
Table 1
Polyominoes or square animals.

One of the first problems for polyominoes was the determination of their number.
Altough there has been some progress, a solution to this problem remains outstand-
ing. In the literature one sometimes speaks also of the cell-growth problem and
uses the term animal instead of polyomino. In Table 1 we give the known numbers
of polyominoes, this is sequence A0001055 in the “Online Encyclopedia of Integer
Sequences” [14].

n A000577(n) n A000577(n) n A000577(n) n A000577(n)

1 1 8 66 15 73983 22 121419260

2 1 9 160 16 211297 23 353045291

3 1 10 448 17 604107 24 1028452717

4 3 11 1186 18 1736328 25 3000800627

5 4 12 3334 19 5000593 26 8769216722

6 12 13 9235 20 14448984 27 25661961260

7 24 14 26166 21 41835738 28 75195166667
Table 2
Triangular polyominoes (or polyiamonds).
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Polyominoes were soon generalized to the two other tessellations of the plane. For
the trigonal lattice they are called triangular polyominoes and for the hexagonal
lattice they are called hexagonal polyominoes. Their know numbers are given in
Table 2 and Table 3, respectively. Polyominoes were also considered on the eight
Archimedean tessellations [2] and as unions ofd-dimensional hypercubes instead
of squares. In this article we consider polyominoes as unions of regular nonover-
lapping edge-to-edge connectedk-gons. For short we call themk-polyominoes.
Edge-to-edge connected unions of regulark-gons which may overlap were counted
by Harary [7].

n A000228(n) n A000228(n) n A000228(n) n A000228(n)

1 1 6 82 11 143552 16 372868101

2 1 7 333 12 683101 17 1822236628

3 3 8 1448 13 3274826 18 8934910362

4 7 9 6572 14 15796897 19 43939164263

5 22 10 30490 15 76581875 20 216651036012
Table 3
Hexagonal polyominoes.

2 Formulas for the number of nonisomorphick-polyominoes

We denote the number of nonisomorphick-polyominoes consisting ofn regulark-
gons byak(n). Because the definition of ak-polyomino makes sense only fork ≥ 3
we setak(n) = 0 for k < 3. For ak-polyomino consisting of a single cell we clearly
haveak(1) = 1. Because there is only one possibility to connect two cells and this
union is nonoverlapping we haveak(2) = 1. To handlek-polyominoes consisting
of 3 cells we consider the cellsC1, C2, andC3 which are connected via the edges
P2P5 andP3P6, see Figure 2. We call the length of the shortest path beetweenP2

andP3 the distanced(P2, P3). If the cellsC1 andC3 are connected to the cellC2 as
in Figure 2, we denote the minimummin(d(P2, P3), d(P5, P6)) by d(C1, C3). Here
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Figure 2. Distance between twok-gons neighboring a commonk-gon.
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we haved(C1, C3) = 2. The next lemma characterizes the distances ofC1 andC3

where the cells do not intersect.

Lemma 1 Twok-gonsC1 andC3 joined via an edge to ak-gonC2 are nonover-
lapping iffd(C1, C3) ≥

⌊
k−1
6

⌋
.

Proof. We consider Figure 3 and assumek ≥ 12. For the anglesα of a regulark-
gon we haveα = k−2

k
π. Because thed(C1, C3)+1-gon has(d(C1, C3)−1)π as sum of

angles∠(P6, P2, P3) = ∠(P7, P3, P2) = d(C1,C3)−1
k

π. With 2α+∠(P5, P2, P6) = 2π

we getβ := ∠(P1, P2, P3) = 2d(C1,C3)+2
k

π. Because the lengths of the linesP1P2,
P2P3, andP3P4 are the same, the pointsP1 andP3 are equal iffβ = π

3
. Forβ < π

3

the linesP1P2 andP3, P4 intersect, soβ ≥ π
3

is a necessary condition. Inserting
β = 2d(C1,C3)+2

k
π yieldsd(C1, C3) ≥ k−6

6
. Becaused(C1, C3) andk are integers we

haved(C1, C3) ≥
⌈

k−6
6

⌉
=

⌊
k−1
6

⌋
. For k ≡ 0 mod6 and d(C1, C3) = k−6

6
also

the cellsC1 andC3 have an edge in common. It is not difficult to see that in this
configuration thek-gons do not overlap. If we consider such ak + 6-gon with
d(C1, C3) = k

6
we can deduce that ford(C1, C3) ≥

⌊
k−1
6

⌋
the three cells do not

intersect. The proof is finished by checking the casesk < 12. ¤
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Figure 3. Nonoverlapping16-gons.

From this we can deduce the following corolla.

Corolla 2 The number of neighbors of a cell in ak-polyomino is at most

min


k,

k⌊
k+5
6

⌋

 ≤ 6 .

For k = ∞ or more precisely circles we have that a circle can have at most 6
nonoverlapping circles of equal radius sharing at least a single point. The maximum
number of neighbors is also called Newton number of the geometric object.

With the aid of Lemma 1 we are able to determine the numberak(3) of k-polyominoes
consisting of3 cells.
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Theorem 3

ak(3) =

⌊
k − 2

2

⌋
−

⌊
k − 1

6

⌋
+ 1 for k ≥ 3 .

Proof. It suffices to determine the possible values ford(C1, C3). Due to Lemma 1
we haved(C1, C3) ≥

⌊
k−1
6

⌋
and due to the definition of the distance or symmetry

considerations we haved(C1, C3) ≤
⌊

k−2
2

⌋
. ¤

In order to determine the number ofk-polyominoes with more than3 cells we
describe the classes ofk-polyominoes by graphs. We represent eachk-gon by a
node and join two nodes exactly if the correspondingk-gons are connected via an
edge.
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Figure 4. The possible graphs ofk-polyominoes with4 nodes.

Lemma 4 The number ofk-polyominoes with a graph isomorph to one of first
three ones in Figure 4 is given by



(
k − 3

⌊
k+5
6

⌋)2
+ 6

(
k − 3

⌊
k+5
6

⌋)
+ 12

12



Proof. We denote on of the at most two cells corresponding to a node of degree3 in
the graph byC0 and the three other cells byC1, C2, andC3. With d1 := d(C1, C0, C2)−⌊

k−1
6

⌋
, d2 := d(C2, C0, C3)−

⌊
k−1
6

⌋
, andd3 := d(C3, C0, C1)−

⌊
k−1
6

⌋
we havem :=

d1 + d2 + d3 = k − 3 − 3
⌊

k−1
6

⌋
= k − 3

⌊
k+5
6

⌋
. Because thek-polyominoes with

a graph isomorphic to one of the first three ones in Figure 4 are uniquely described
by d1, d2, d3, due to Lemma 1 and due to symmetry their number equals the number
of partitions ofm into at most three parts. This number is the coefficient ofxm in
the Taylor series of 1

(1−x)(1−x2)(1−x3)
in x = 0 and can be expressed as

⌊
m2+6m+12

12

⌋
.
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Figure 5. Paths of length4.

In Lemma 1 we have given a condition for a path of3 cells avoiding an overlapping.
For paths of length4 we have to consider two cases. We depict the position of the
distance of three neighboring cells by an arc, see Figure 5. In the second case the
two nodes of degree two are not able to overlap so we need a lemma in the spirit of
Lemma 1 only for the first case.
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Lemma 5 Four k-gonsC1, C2, C3, andC4 arranged as in the first case of Figure 5
are nonoverlapping iff Lemma 1 is fulfilled for the two subpaths of length3 and

d(C1, C2, C3) + d(C2, C3, C4) ≥
⌊
k − 3

2

⌋
.

The path is indeed a4-cycle iff

d(C1, C2, C3) + d(C2, C3, C4) =
k − 4

2
.

Proof. We start with the second statement and consider the quadrangle of the cen-
ters of the 4 cells. Because the angle sum of a quadrangle is2π we get

d(C1, C2, C3) + d(C2, C3, C4) + d(C3, C4, C1) + d(C4, C1, C2) = k − 4 .

Due to the fact that the side lengths of the quadrangle are equal we have

d(C1, C2, C3) + d(C2, C3, C4) = d(C3, C4, C1) + d(C4, C1, C2)

which is equivalent to the statement.
Thus we have thatd(C1, C2, C3)+d(C2, C3, C4) ≥

⌊
k−3
2

⌋
is a necessary condition. For

k ≡ 0 mod 2 it is clear that this condition is also sufficient and fork ≡ 1 mod 2 we
consider the corresponding configurations of(k − 1)-polyominoes and of(k + 1)-
polyominoes. ¤

With this lemma we are able to count thek-polyominoes having one of the two
remaining graphs as their graphs.

Lemma 6 The number ofk-polyominoes with a graph isomorph to one of last
two ones in Figure 4 is given by

5k2 + 4k

48
for k ≡ 0 mod12,

5k2 + 6k − 11

48
for k ≡ 1 mod12,

5k2 + 12k + 4

48
for k ≡ 2 mod12,

5k2 + 14k + 9

48
for k ≡ 3 mod12,

5k2 + 20k + 32

48
for k ≡ 4 mod12,

5k2 + 22k + 5

48
for k ≡ 5 mod12,

5k2 + 4k − 12

48
for k ≡ 6 mod12,

5k2 + 6k + 1

48
for k ≡ 7 mod12,

5k2 + 12k + 16

48
for k ≡ 8 mod12,

5k2 + 14k − 3

48
for k ≡ 9 mod12,

5k2 + 20k + 20

48
for k ≡ 10 mod12,

5k2 + 22k + 17

48
for k ≡ 11 mod12 .
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Proof. Because each of the two last graphs in Figure 4 contains a path of length
4 as a subgraph we consider the two cases of Figure 5. We abbreviate the two
interesting distances, which describe thek-polyominoes uniquely, byd1 andd2.
Due to symmetry reasons we may assumed1 ≤ d2 and due to Lemma 1 we have
d1, d2 ≥

⌊
k
6

⌋
(the graphs do not contain a triangle). From the definition of the

distance we haved1, d2 ≤
⌊

k−2
2

⌋
. To avoid double counting we assume

⌊
k
6

⌋
≤

d1, d2 ≤
⌊

k−3
2

⌋
in the second case, so that we get a number of

(⌊
k−3
2

⌋
−

⌊
k
6

⌋
+ 2

2

)

k-polyominoes. With Lemma 5 the number ofk-polyominoes in the first case is
given by

b k−2
2 c∑

d1=b k
6c

b k−2
2 c∑

d2=max(d1,b k−3
2 c−d1)

1 .

A little calculation yields the proposed formula. ¤

Theorem 7

ak(4) =





3k2+8k+24
24

for k ≡ 0 mod12,

3k2+4k−7
24

for k ≡ 1 mod12,

3k2+8k−4
24

for k ≡ 2 mod12,

3k2+10k+15
24

for k ≡ 3 mod12,

3k2+14k+16
24

for k ≡ 4 mod12,

3k2+16k+13
24

for k ≡ 5 mod12,

3k2+8k+12
24

for k ≡ 6 mod12,

3k2+4k−7
24

for k ≡ 7 mod12,

3k2+8k+8
24

for k ≡ 8 mod12,

3k2+10k+3
24

for k ≡ 9 mod12,

3k2+14k+16
24

for k ≡ 10 mod12,

3k2+16k+13
24

for k ≡ 11 mod12.

Proof. The graphs depicted in Figure 4 are all possible graphs ofk-polyominoes,
because the graphs have to be connected and the complete graph on4 nodesk4 is
not a unit distance graph. Adding the formulas from Lemma 4 and Lemma 6 yields
the theorem. ¤
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3 Computer enumeration ofk-polyominoes

By computer construction ofk-polyominoes we obtained the following tables of
values forak(n).

k/n 1 2 3 4 5 6 7 8 9 10 11

3 1 1 1 3 4 12 24 66 160 448 1186

4 1 1 2 5 12 35 108 369 1285 4655 17073

5 1 1 2 7 25 118 551 2812 14445 76092 403976

6 1 1 3 7 22 82 333 1448 6572 30490 143552

7 1 1 2 7 25 118 558 2876 14982 80075 431889

8 1 1 3 11 50 269 1605 10102 65323 430302

9 1 1 3 14 82 585 4418 34838 280014

10 1 1 4 19 127 985 8350 73675

11 1 1 4 23 186 1750 17507 181127

12 1 1 5 23 168 1438 13512 131801

13 1 1 4 23 187 1765 17775 185297

14 1 1 5 29 263 2718 30467 352375

15 1 1 5 35 362 4336 55264

16 1 1 6 42 472 6040 83252

17 1 1 6 48 614 8814 134422

18 1 1 7 47 566 7678 112514

19 1 1 6 48 615 8839 135175

20 1 1 7 57 776 11876 195122
Table 4
Number ofk-polyominoes withn cells for smallk andn.

We would like to describe in short how to efficiently generatek-polyominoes. The
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Figure 6. Two nonisomorphic geometric trees.
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first fact we observe is that the graphs ofk-polyominoes are in most cases trees.
If we enhance the trees by distances for each path of length3 we have a descrip-
tion for a uniquek-polyomino. To avoid redundancy in assigning the values for the
distances we consider drawings of the trees in the plane and call them geometric
trees. The two graphs in Figure 6 are nonisomorphic in a graph theoretic sense,
but we would like to regard them as different. Therefore we consider the neighbors
of a node as being ordered. So we can generate thek-polyominoes as follows. At
first we generate all trees withn nodes and a maximum degree given by Corolla 2.
Then for each tree we assign the possible values for the distances with restrictions
from Lemma 1 and Lemma 5. Because the center of a tree, depicted by a filled circle

k/n 1 2 3 4 5 6

21 1 1 7 64 972 16410

22 1 1 8 74 1179 20970

23 1 1 8 82 1437 27720

24 1 1 9 81 1347 24998

25 1 1 8 82 1439 27787

26 1 1 9 93 1711 34763

27 1 1 9 103 2045 44687

28 1 1 10 115 2376 54133

29 1 1 10 125 2786 67601

30 1 1 11 123 2641 62252

31 1 1 10 125 2790 67777

32 1 1 11 139 3204 81066

33 1 1 11 150 3707 99420

34 1 1 12 165 4193 116465

35 1 1 12 177 4790 140075

36 1 1 13 175 4575 130711

37 1 1 12 177 4796 140434

38 1 1 13 193 5380 163027

39 1 1 13 207 6089 193587

40 1 1 14 224 6760 221521
Table 5
Number ofk-polyominoes withn cells for smallk andn.

in Figure 6, is unique and due to the fact that the maximum degree is at most6 ac-
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cording to Corolla 2 each isomorphic assignment of distances to the geometric trees
can occur at most12 times. To avoid the construction of isomorphick-polyominoes
we consider the assigned geometric tree under the rotations and mirrorings which
fix the center. If the constructed assigned geometric tree is minimal with respect to
lexicographical ordering in this set of at most12 structures then we take it else we
dismiss it. Because the conditions of Lemma 1 and Lemma 5 are only necessary
and not sufficient we have to check if the cells of the correspondingk-polyomino
are nonoverlapping. If two cells have an edge in common we add the corresponding
edge to the geometric tree which is then a geometric graph. If the cells are nonover-
lapping and the graph remains a tree then we have constructed ak-polyomino which
we have not constructed before. In the case were the graph is not a tree we define
a unique spanning tree for the graph and check if the original tree is this unique
spanning tree. The big advantage of this construction strategy is, that there is no
need to store the constructedk-polyominoes in the memory.

4 Problems fork-polyominoes

For 4-polyominoes the maximum area of the convex hull was considered in [1].
If the area of a cell is normalized to1 then the maximum area of a4-polyomino
consisting ofn squares is given byn + 1

2

⌊
n−1

2

⌋ ⌊
n
2

⌋
. One of the present authors

proved an analogous result for the maximum content of the convex hull of a union
of d-dimensional units hypercubes [11] and for the area of the convex hull of6-
polyominoes [12]. Forn hypercubes the maximum content of the convex hull is
given by

∑

I⊆{1,...,d}

1

|I|!
∏

i∈I

⌊
n− 2 + i

d

⌋
.

The maximum area of the convex hull of6 polyominoes is given by1
6
bn2+ 14

3
n+1c.

For other values ofk the question for the maximum area of the convex hull ofk-
polyominoes is still open. Beside from [9] no results are known for the question of
the minimum area of the convex hull, which is non trivial fork 6= 3, 4.

Another class of problems is the question for the minimum and the maximum num-
ber of edges ofk-polyominoes. The following sharp inequalities for the numberq
of edges ofk-polyominoes consisting ofn cells were found in [6] and are also given
in [8].

k = 3 : n +
⌈
1

2

(
n +

√
6n

)⌉
≤ q ≤ 2n + 1

k = 4 : 2n +
⌈
2
√

n
⌉
≤ q ≤ 3n + 1

k = 6 : 3n−
⌈√

12n− 3
⌉
≤ q ≤ 5n + 1
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In general the maximum number of edges is given by(k − 1)n + 1. We would like
to mention that the numbers of4-polyominoes with a minimum number of edges
were enumerated in [13].
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