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Abstract

The number of essentially different square polyominoes of ordand
minimum perimetep(n) is enumerated.
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1 Introduction

Suppose we are givem unit squares. What is the best way to ar-
range them side by side to gain the minimum perimgte)? In [5]

F. Harary and H. Harborth proved that:) = 2[2\/5]. They con-
structed an example where the cells grow up cell by cell like spirals
for these extremal polyominoes (see Figure 1). In general, this is not
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Figure 1. Spiral construction.

the only possibility to reach the minimum perimeter. Thus the ques-
tion arises to determine the numben) of different square poly-
ominoes of ordern and with minimum perimetep(n) where we
regard two polyominoes as equal if they can be mapped onto each
other by translations, rotations, and reflections.

We will show that these extremal polyominoes can be obtained by
deleting squares at the corners of rectangular polyominoes with the
minimum perimetep(n) and with at least squares. The process

of deletion of squares endsif squares remain forming a desired
extremal polyomino. This process leads to an enumeration of the
polyominoes with minimum perimetexn).

Theorem 1. The number(n) of polyominoes withn squares and
minimum perimetep(n) is given by
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with s = |\/n], r, qx being the coefficient of* in the following
generating functions(z) andg(x), respectively. The two generating
functions
© k2 k 1
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J=1

and

a($):ﬁ1—1x1

Jj=1

are used in the definition of

(a(m)4 + 3a(x2)2)

e

r(r) =

and

q(x) = 5 (a(z)* + 3a(2?)? + 2s(x)?a(2?) + 2a(a?)) .

The behavior ofe(n) is illustrated in Figure 2. It has a local
maximum atn = s> + 1 andn = s? + s + 1 for s > 1. Thene(n)
decreases ta(n) = 1 atn = s* ands = s + s. In the following we
give lists of the values aof(n) for n < 143 and of the two maximum
cases(s* + 1) ande(s* + s + 1) for s < 50,

e(n)=1,1,2,1,1,1,4,2,1,6,1,1,11,4,2,1, 11,6, 1, 1, 28, 11,
4,2,1,35,11,6, 1,1, 65, 28, 11, 4, 2, 1, 73, 35, 11, 6, 1, 1, 147,
65, 28, 11, 4, 2, 1, 182, 73, 35, 11, 6, 1, 1, 321, 147, 65, 28, 11, 4,
2, 1,374,182, 73,35, 11, 6, 1, 1, 678, 321, 147, 65, 28, 11, 4, 2, 1,
816, 374, 182, 73, 35, 11, 6, 1, 1, 1382, 678, 321, 147, 65, 28, 11, 4,
2,1, 1615, 816, 374, 182, 73, 35, 11, 6, 1, 1, 2738, 1382, 678, 321,
147, 65, 28, 11, 4, 2, 1, 3244, 1615, 816, 374, 182, 73, 35, 11, 6, 1,



Figure 2.e(n) for n < 100.

1, 5289, 2738, 1382, 678, 321, 147, 65, 28,11, 4, 2, 1,

e(s? +1) = 1, 1, 6, 11, 35, 73, 182, 374, 816, 1615, 3244,
6160, 11678, 21353, 38742, 68541, 120082, 206448, 351386,
589237, 978626, 1605582, 2610694, 4201319, 6705559, 10607058,
16652362, 25937765, 40122446, 61629301, 94066442, 142668403,
215124896, 322514429, 480921808, 713356789, 1052884464,
1546475040, 2261006940, 3290837242, 4769203920, 6882855246,
9893497078, 14165630358, 20206501603, 28718344953,
40672085930, 57404156326, 80751193346,

e(s*> + s+ 1) = 2,4, 11, 28, 65, 147, 321, 678, 1382, 2738,
5289, 9985, 18452, 33455, 59616, 104556, 180690, 308058,
518648, 863037, 1420480, 2314170, 3734063, 5970888, 9466452,
14887746, 23235296, 36000876, 55395893, 84680624, 128636339,
194239572, 291620864, 435422540, 646713658, 955680734,
1405394420, 2057063947, 2997341230, 4348440733, 6282115350,
9038897722, 12954509822, 18496005656, 26311093101,
37295254695, 52682844248, 74170401088, 104083151128.



2 Proof of Theorem 1

The perimeter cannot be a minimum if the polyomino is discon-
nected or if it has holes. For connected polyominoes without holes
the property of having the minimum perimeter is equivalent to the
property of having the maximum number of common edges since an
edge which does not belong to two squares is part of the perimeter.
The maximum number of common edgBén) is determined in [5]

to be

B(n) = 2n — [2y/n]. (%)

Denote the degree of a square by the number of its edge-to-edge
neighbors. There is a closed walk trough all edge-to-edge neighbor-
ing squares of the perimeter. Now we use the terms of graph theory
[4] and consider the squares as vertices. So we can d&fiteebe

the cyclex z, ... xyx; Where thex; are the squares of the above
defined closed walk. For short we will Séf| = & in the following
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Figure 3.

lemmas. We would like to mention that = «; with i # j is pos-
sible in this definition. An example is depicted in Figure 3 together
with the corresponding graph @f. Let furthermoreh,; denote the
number of squares; in H having degree in the given polyomino.
So

|H|:h1—|—h2—|—h3—|—h4



If a polyomino with minimum perimetep(n) contains a square of
degree 1 (i.eh; > 0) thenB(n) — B(n — 1) = 1. Considering

the formula(x) for B(n), this is equivalent to = s> + 1 orn =

s? + s+ 1 so that we can assunmhg = 0 in general. In the following

two lemmas we prove a connection between the number of common
edges of a polyomino and/|.

Lemma 1.If hy = 0 thenhy, = hy + 4.

Proof. Consider the polygon connecting the centers of the squares
of H. For2 < i < 4 there is an inner angle ¢~ in a square of
degree. The sum of the angles of a# |-gon is(|H| — 2)x. Thus

3T

(h2+h3+h4—2)7r: h2g+h3ﬂ'+h47

implies the desired equation. O

Lemma 2. If h; = 0 then the number of common edges of
squares of the polyomino is

|H|

m=2n—-— —2.
2

Proof. Every inner square of the polyomino has 4 neighbors. Count-
ing the common edges twice yields

From Lemma 1 we obtain

2m:4n—4|H|+3(h2+h3+h4)—4:4n—|H|—4

In the next lemma we use the knowledge &f to bound the number
of squares: of a polyomino.



Lemma 3. For the maximum areal(|H|) of a polyomino with
boundaryH andh, = 0 we have

(Y ip |H] =0 (mod ),
A(|H|) = (HT+4)2 —i i H| =2 (modd),

4

Proof. Because of Lemma 2 the integéf | has to be an even num-
ber. Consider the smallest rectangle surrounding a polyomino and
denote the side lengths hyandb. Using the fact that the cardi-
nality of the boundary of a polyomino is at least the cardinality

of the boundary of its smallest surrounding rectangle we conclude
|H| > 2a + 2b — 4. The maximum area of the rectangle with given
perimeter is obtained if the integersandb are as equal as possible.
Thusa = [%] andb = {%J The product yields the asserted
formula. O

Now we use the fact that we deal with polyominoes with minimum
perimeternp(n) and computeH | as a function of..

Lemma 4.For a polyomino withh; = 0 and with minimum perime-
terp(n) we havelH| = 2[2\%} —4.

Proof. Since for connected polyominoes without holes the property
of having minimum perimetep(n) is equivalent to the property of
having the maximum numbés(n) of common edges, we can use
B(n) =2n — {2\/5] and Lemma 2. O

After providing those technical lemmas we give a strategy to con-
struct all polyominoes with minimum perimeter.

Lemma 5. Each polyomino withh; = 0 and minimum perimeter
p(n) can be obtained by deleting squares of a rectangular polyomino
with perimetemn(n) consisting of at least squares.

Proof. Consider a polyomin@® with boundaryH and minimum



perimeterp(n). Denote its smallest surrounding rectangleyif

the cardinality of the boundary a is less thanH| then P does

not have the minimum perimeter due to Lemma 2 and due to the
fact thatm = B(n) is increasing. ThugH | equals the cardinality of

the boundary of? and P can be obtained by deleting squares from
a rectangular polyomino with perimetgfn) and with an area at
leastn. Only squares of degree 2 can be deleted successively if the
perimeter does not change. O

For the following classes of with s = |\/n| we now characterize
all rectangles being appropriate for a deletion process to olstain
with minimum perimetep(n).

(i) n = s°
From Lemmas 3 and 4 we know that the unique polyomino with
minimum perimetep(n) is indeed thes x s square.

(iY)n=s>+t0<t<s.
Since

52<n<(5+1)2—52—|—5+1
2) 4

Lemma 4 yield§H| = 4s — 2. Denote the side lengths of the sur-
rounding rectangle by andb. With 2a +2b — 4 = |H| = 4s — 2
we leta = s + 1 4+ ¢ andb = s — ¢ with an integerc > 0. Since at
leastn squares are needed for the delation process wedtaxen,
yielding

1 1
0<c< [—§+§\/1+4s—44.
(i) n = s? + s.

Thes x (s + 1) rectangle is the unique polyomino with minimum
perimeternp(n) due to Lemmas 3 and 4.



(iVyn=s>+s+1t0<t<s.
Since

1\? 1
(5+2) :82+S+1<n<(5+1)2282+25+1

Lemma 4 yield§H| = 4s. Againa andb denote the side lengths of
the surrounding rectangle and wedet s+1+candb =s+1—c¢
with an integer: > 0. The conditiorub > n now yields

0<c<|VIts—t.

We remark that the deletion process does not change the smallest
surrounding rectangle sineé—n < b, thatis the number of deleted
squares is less than the number of squares of the smallest side of this
rectangle.

In Lemmas 1, 2, 4, and 5 we have required= 0. We now argue
that all polyominoes witlt; > 0 and with minimum perimetes(n)
are covered by the deletion process described above ((i)-(iv)).

Lemma 6. The construction of Lemma 5 also yields all polyomi-
noes with minimum perimeter(n) whenh; > 0.

Proof. Any square of degree 1 determines two cases, s> + 1 or

n = s>+ s+ 1. (See the remark preceeding Lemma 1.) The deletion
of this square leaves a polyominB with minimum perimeter
p(n —1).

In the first case” has the shape of thex s square as in (i). Thus
we get the original polyomino by deleting— 1 squares from the

s X (s + 1) rectangle and this is covered in (ii).

In the second cask has the shape of thex (s + 1) rectangle as in
(ii). Thus we get the original polyomino by deleting— 1 squares
from the s x (s + 2) rectangle or by deleting squares from the
(s + 1) x (s + 1) square, and this is covered in (iv). O



So far we have described those rectangles from which squares of de-
gree 2 are removed. Now we examine the process of deleting squares
from a rectangular polyomino. Squares of degree 2 can only be lo-
cated in the corners of the polyomino. What shape has the set of
deleted squares at a corner? There is a maximum square of squares

[ | |

Figure 4. Shape of the deleted squares at the corners.

at the corner, the so called “Durfee square”, together with squares in
rows and columns of decreasing length from outside to the interior
part of the polyomino. To count the different possibilities of the sets
of deleted squares with respect to the number of the deleted squares
we use the concept of a generating functfgm) = >°°, f;«*. Here

the coefficientf; gives the number of different ways to ussguares.
Since the rows and columns are ordered by their lengths they form
Ferrer's diagrams with generating functlﬂjol —- each [2]. So

the generating function for the sets of deleted squares in a single
corner is given by

1;[1—:1:3'

Later we will also need the generating functiefx) for the sets

of deleted squares being symmetric with respect to the diagonal of
the corner square. Since such a symmetric set of deleted squares
consists of a square &f squares and the two mirror images of a
Ferrer's diagrams with height or width at mdstve get

> 2
l’k
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We now consider the whole rectangle. Because of different sets of
symmetry axes we distinguish between squares and rectangles. We
define generating functiongx) andr(x) so that the coefficient of

2% in ¢(x) andr(x) is the number of ways to removesquares from

all four corners of a square or a rectangle, respectively. We men-
tion that the coefficient of* gives the desired number only/fis
smaller than the small side of the rectangle.

Since we want to count polyominoes with minimum perimeter up to
translation, rotation, and reflection, we have to factor out these sym-
metries. Here the general tool is the lemma of Cauchy-Frobenius,
see e.g. [6]. We remark that we do not have to consider translations
because we describe the polyominoes without coordinates.

Lemma (Cauchy-Frobenius, weighted form).Given a group ac-
tion of a finite group on a setS and a mapv : S — R from S
into a commutative ring? containingQ as a subring. Ifw is con-
stant on the orbits off on S, then we have, for any transver&alof
the orbits:

1
> w(t) = il > D w(s)

teT g€G s€S,

whereS, denotes the elements Sfbeing fixed by, i.e.

Sy ={s € S|s=ygs}.

For G we take the symmetry group of a square or a rectangle,
respectively, forS we take the sets of deleted squares on all 4
corners, and for the weight(s) we takez*, wherek is the number

of squares irs. Here we will only describe in detail the application
of this lemma for a determination @fz). We label the 4 corners of
the square by, 2, 3, and4, see Figure 5. In Table 1 we list the 8

11
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permutationsg of the symmetry group of a square, the dihedral
group on 4 points, together with the corresponding generating func-
tions for the sets$, being fixed byg.

12)B)4)  alx)*
(1,2,3,4) a(zt)
(1,3)(2,4)  a(2?)?
(1,4,3,2) a(zt)
(1,2)(3,4)  a(2?)?
(1,4)(2,3)  af2?)?
(1,3)(2)(4)  s(x)’a(2?)
(1)(2,4)(3)  s(z)*a(z?)

Table 1. Permutations of the symmetry group of a square together
with the corresponding generating functionsSpf

The generating function of the set of deleted squares on a corner
is a(x). If we consider the configurations being fixed by the iden-
tity element(1)(2)(3)(4) we see that the sets of deleted squares at
the 4 corners are independent and|$Q) @)« = a(z)*. In the

case whery = (1,2, 3,4) the sets of deleted squares have to be the
same for all 4 corners and we ha\®; » 5 4)| = a(z*). For the dou-

ble transposition1, 2)(3,4) the sets of deleted squares at corners

12



1 and2, and the sets of deleted squares at cordeasd4 have to

be equal. Because the sets of deleted squares at corner paimts

3 are independent we géf(; 2)3.4)| = a(z?)?. Next we consider

g = (1)(2,4)(3). The sets of deleted squares at corr2eaiad4 have

to be equal. If we apply on the polyomino of the left hand side of
Figure 5 we receive the polyomino on the right hand side and we see
that in general the sets of deleted squares at coinansl3 have to

be symmetric. Thu$S()2.4y3)| = s(z)?a(2?). The other cases are
left to the reader. Summing up and a division by 8 yields

q(x) = & (a(x)* + 3a(2?)? + 2s(x)%a(2?) + 2a(z?)) .
For the symmetry group of a rectangle we analogously obtain

1

r(z) = 1 (a(:c)4 + 3a(x2)2) :

With Lemma 6, the preceeding characterization of rectangles being
appropriate for a deletion process and the formulas:foy, s(x),
q(z), andr(z) we have the proof of Theorem 1 at hand.

We would like to close with the first entries of a complete list of
polyominoes with minimum perimetexn), see Figure 6.
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Figure 6. Polyominoes with minimum perimejérn) for n < 11.
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