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Background

Some notations

Fix a number field k .

f :=
l∏

i=1
(X − ei ) ∈ k[X ], with ei ∈ k̄ are pairwise distinct, and l odd.

Define
C := Y 2 = f (X ), (1)

and let ∆ := {Ti := (ei , 0) : 1 ≤ i ≤ l}, and T0 be the point at
infinity. (∆ is a Gk := Gal(k̄/k) set.)
For a place v of k , kv denotes its completion with respect to v and kv
the residue field.
Let J be the jacobian variety associated to C .
Let Jv denote the variety J defined over kv .
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Background

preliminaries contd...

J can be identified with Pic0(C ).
P ∈ J, then P := [(P1) + (P2) + . . .+ (Pm)−m(T0)],
m ≤ g = (l − 1)/2, with (P1) + (P2) + . . .+ (Pm) ∈ ÷(C ) in general
position.
C ↪→ J via the map P 7→ [(P)− (T0)].
The etalé algebra associated to ∆

L := k[X ]/〈f (X )〉 ∼=
⊕
∆i

k[X ]/〈fi (X )〉 ∼=
⊕
∆i

Li ,

∆i s are orbits of ∆.
α ∈ Sel(2)(J) ⊂ L×/(L×)2 and α /∈ J/2J, then α := (d1, . . . , dl) with
di = α(ei ).
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Background

Some theoretical aspects

Theorem (Mordell-Weil)

J(k) ∼= J(k)tors ⊕ Z rJ ,

where #J(k)tors <∞, rJ := algebraic rank.

In order to compute J(k)tors we use the injection J(k)tors ↪→ J(kv ),
for a place of good reduction.
No unconditional algorithm to compute rJ is known.
Assuming BSD, rJ may be computed using ran(J) := ord(L(J, s = 1)).
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Background

Upper and lower bounds

Lower bound: Find points and check for independence.
Upper bound: Use descent.
See if they match!

The Kummer sequence:

0 −→ J[n] ↪→ J −→ J −→ 0 (2)

Applying galois cohomology:

0 J(k)
nJ(k) H1(Gk , J[n]) H1(Gk , J)[n] 0

0
∏
v

J(kv )
nJ(kv )

∏
v
H1(Gkv , J[n])

∏
v
H1(Gkv , Jv )[n] 0,

α
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Background

Descent sequence

We have the n−descent sequence.

0 −→ J(k)

nJ(k)
↪→ Sel(n)(J) −→X[n] −→ 0, (3)

where nth Selmer group

Sel(n)(J) = ker(α),

and the Tate-Shafarevich group

X := ker

(
H1(Gk , J) −→

∏
v

H1(Gkv , Jv )

)
.

Sel(n)(J) is finite and effectively computable in principle.
rankFp(Sel(p)(J)) bounds the rankFp( J(k)

pJ(k) ).

If X[n] is trivial then Sel(n)(J) ∼= J(k)
nJ(k) .
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Higher descents and the Cassels-Tate pairing

Higher descent

If (m, n) = 1, Sel(mn)(J) ∼= Sel(n)(J)× Sel(m)(J).
If t ≥ 2, then Selp

t
(J) is known as higher p−descent.

We have the following commutative diagram:

J(k)
ptJ(k) Sel(p

t)(J)

J(k)
pt−1J(k)

Sel(p
t−1)(J)

p (4)

We have
J(k)

pJ(k)
⊆ pSel(p

2)(J) ⊆ Sel(p)(J). (5)
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Higher descents and the Cassels-Tate pairing

Cassels-Tate pairing (CTP)

CTP (denoted by 〈., .〉CT ) was defined by J.W.S. Cassels for elliptic
curves.
John Tate generalized it to abelian varieties.
CTP has following properties:

〈., .〉CT : X×X −→ Q/Z.
CTP is an anti-symmetric pairing.
∀α ∈X[n], 〈β, α〉CT = 0 ⇐⇒ β ∈ nX.

Pulling back 〈., .〉CT on Sel(n)(J), we have:

Theorem (Cassels)

〈α, β〉CT = 0 for all β ∈ Sel(n)(J), ⇐⇒ α ∈ nSel(n
2)(J).
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Effectively computing CTP

Known results

Poonen and Stoll give three definitions of CTP on polarized abelian
varieties and show that CTP at best is anti-symmetric.
Swinnerton-Dyer computed CTP between Sel(2)(E ) and Sel(2

n)(E ).
Fischer and Newton computed CTP on Sel(3)(E ).
van Beek and Fischer compute CTP on Selmer groups of odd prime
degree isogeny on elliptic curves.
The above computations were based on Weil-pairing based definition.
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Effectively computing CTP

Known results (contd.)

Fischer and Donelly used homogenous space based definition to
compute CTP on Sel(2)(J).
CTP can be defined in general for X(A)×X(A∨), for an abelian
variety A and its dual A∨.

We aim to compute CTP on jacobians of genus 2 curves.
Jiali Yan has computed the CTP for genus 2 curves where f splits
completely over k[X ] for the following:

2-selmer group using homogenous space definition.
Richelot’s isogeny using Weil-pairing definition.

If one of the twisted Kummer surface has a k−rational point.
Use Albanese-Albanese definition of CTP to compute it.
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Definition of CTP

Albanese-Albanese defintion

We have two partially defined, evaluation based, galois equivariant pairings:

〈div(f ),D〉1 :
(
Princ(C )×Div0(C )

)⊥ −→ k̄×,
〈div(f ),D〉1 =

∏
P∈Supp(D)

f (P)vP(D).

〈D, div(f )〉2 :
(
Div0(C )× Princ(C )

)⊥ −→ k̄×,
〈D, div(f )〉2 =

∏
P∈Supp(D)

f (P)vP(D).

〈., .〉1 and 〈., .〉2 match on (Princ(C )× Princ(C ))⊥ (Weil
Reciprocity), and are defined when Supp(div(f )) ∩ Supp(D) = ∅.
Let ∪1, ∪2 be the induced cup-products on galois cohomology.

H. Shukla Cassels-Tate pairing on hyperelliptic curves 17th June, 2021 12 / 23



Definition of CTP

Albanese-Albanese definition contd.

Let α, α′ ∈ Sel(n)(J).
Global part:

Lift α, α′ to a, a′ ∈ C 1(Gk ,Div0(C )).
∂a, ∂a′ take values in Princ(C ).
Let η := ∂a ∪1 a

′ − a ∪2 ∂a
′ ∈ Z 3(k , k̄×) =⇒ η = ∂ε, for

ε ∈ C 2(k, k̄×).
The above statements follow using the galois cohomology on Kummer
sequence and on

0 −→ Princ(C ) ↪→ Div0(C ) −→ Pic0(C ) −→ 0,

and using H3(k , k̄×) is trivial.
Local part:

There exists Pv ∈ Jv , with ∂Pv = αv .
Lift Pv to a degree zero divisor pv , and av − ∂pv takes values in
Princ(C ).
Consider γv := (av − ∂pv ) ∪1 a

′
v − pv ∪2 ∂a

′
v − εv .
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Definition of CTP

Albanese-Albanese definition contd.

γv represents some class cv ∈ H2(kv , k̄v
×

) ∼= Br(kv ).

Definition

For (α, α′) ∈ Sel(n)(J)× Sel(n)(J) we have:

〈α, α′〉CT =
∑
v

invv (cv )
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Bottlenecks!

Two bottelnecks:
1 Global bottleneck: Computation of ε s.t ∂ε = η

Determining the field extension M in which ε takes values, and the
field M ′ through which it factors.
M,M ′ are depend on the solutions to the system of “skewed” linear
equations:

σε(τ, ρ) + ε(σ, τρ)− ε(στ, ρ) + ε(σ, τ) = η(σ, τ, ρ).

2 Local bottleneck/s: Computation of cv represented by 2-cocycle γv
γv mostly will have a complicated description.
Determine a 1-cochain ξv s.t. γv − ∂ξv has a description simple enough
to compute cv .
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Progress so far!

We prove the following theorem:

Theorem

Let C be an elliptic curve (l = 3), and α, α′ ∈ Sel(2)(J), represented by
(d1, d2, d3), (d ′1, d

′
2, d
′
3), with d1d2d3 ∈ k2, and d ′1d

′
2d
′
3 ∈ k2 and

di , d
′
i ∈ k(ei ), then

(−1)2〈α,α′〉CT =
∏
v

[α, α′]v ,

where

[α, α′]v =


3∏

i=1
(δv ,i , d

′
i )kv , f splits over k ,

(δv ,1, d
′
1)kv (δv ,2, d

′
2)kv (e2) e1 ∈ k and [k(e2) : k] = 2,

(δv ,1, d
′
1)kv (e1) [k(e1) : k] ≥ 3,

where δv ,i ∈ kv (ei ), and (., .) denotes the Hilbert’s symbol.
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The corestriction technique

Some simplifications!

Let M∆ := {(mP)P∈∆ : mP ∈ M}, for a Gk module M.
M∆ is a galois module under the natural action:

θσP = σ(θσ−1P).

True 2-descent: Following generalized explicit descent technique of Bruin,
Poonen, and Stoll we have:

∆ ↪→ J[2].
0 −→ 〈(1)P∈∆〉 −→ (Z/2Z)∆ −→ J[2] −→ 0.

Dualizing we get:

0 −→ J[2] −→ µ∆
2 −→ 〈(1)P∈∆〉∨ −→ 0.
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The corestriction technique

Galois cohomology gives:

µ∆
2 (k)

R(k) H1(k , J[2]) H1(k, µ∆
2 )

⊕
∆i

H1(Li , µ
{Pi}
2 )

⊕
∆i

H1(Li , µ
∆i
2 )

⊕
∆i

H1(k, µ∆i
2 )

⊕
∆i

H1(Li , 〈[Pi − T0]〉).

'

'

cor
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The corestriction technique

Lemma

If α ∈ H1(k , J[2]), then we have:

α :=
∑
∆i

cor(αi ),

where αi ∈ H1(Li , 〈[Pi − T0]〉).

Corollary

〈α, α′〉CT =
∑
∆i

〈α, cor(α′i )〉CT .

Theorem
We have: 〈α, cor(α′i )〉CT = 〈res(α), α′i 〉CT .

The above theorem follows by using: a ∪ cor(b) = cor(res(a) ∪ b), for
cochains a and b.
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A nice ε

Assume e1 ∈ k , η′1(σ, τ, ρ) is only depended on χ(σ), χ(τ), χ′(τ), χ′(ρ)

where χ, χ′1 are elements of H1(k, µ∆
2 ) and H1(k , µ

{P1}
2 ) (resp.)

representing α, α′1.
Let M be a galois extension of k(

√
d1, . . . ,

√
dl), s.t. M ∩ k(

√
d ′1) = k ,

and M is also galois over k .

Lemma
If there is an ε1 satisfying ∂ε1 = η1 with such that ε1(σ, τ) takes values in
M and only depends on σ

∣∣
M
, χ′1(σ), and χ′1(τ), then:

σε1(id , 1, 1) = ε1(σ
∣∣
M
, χ′1(σ), 1).

ε1(id ,1,1)=ε1(id ,1,−1)
ε1(id ,−1,−1) =

ε1(σ
∣∣∣
M
,1,−1)

ε1(σ
∣∣∣
M
,−1,−1)

.

σ(ε1(id ,1,1)∗ε1(id ,−1,−1))

ε1(id ,−1,−1)ε1(σ
∣∣∣
M
,1,−1)2

= η1(χ(σ), χ(τ) = (1, . . . , 1),−1,−1).

Hence we require only ε1(id , 1, 1), ε1(id ,−1,−1) to compute ε1 entirely.
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Good elements of Sel(2)(J) and some statistics

Definition

An α = (d1, . . . , dl) ∈ Sel(2)(J) is said to be good if each of the conics
C1j(u, v) := d1u

2 − djv
2 + e1 − ej , has a solution over k(e1, ej). A curve C

is good if the subgroup generated by good elementsis of index 2.

If α is good, then we have an ε1 of the above form with
M = K (

√
d1,
√
d2, . . . ,

√
dl).

Hope: Most of the curves are good.
rkF2Sel(2)(J) ≥ 2, ran(J) = 0: 1207 on LMFDB, all good.
rkF2Sel(2)(J) ≥ 2, ran(J) = 1: 538 on LMFDB, all good.
rkF2Sel(2)(J) ≥ 4, ran(J) ≥ 2: 4 on LMFDB, all good.
x5 + A, 0 < A < 1000, and A is prime: 168 curves, all good.
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The curve y2 = x l + A

An example with complex multiplication

Let
C := Y 2 = X l + A,

The jacobian of C has an isogeny λ := 1− ζl of degree l defined over
K = Q(ζl).
L := K (

√
A), then Sel(λ) ⊂ Ker

(
NL/K : L×/(L×)l −→ K×/(K×)l

)
.

If A := 2l−2bl , then one can compute ε.
Otherwise we obtain η′ := η − ∂ε ∈ Z 3(L, µl).
Since H3(L, µL) = 0, the aim is to find 2-cochain ε′ ∈ C 2(L, µl) s.t.
∂ε = η′.
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The curve y2 = x l + A

Thank You!
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