Cassels-Tate pairing on hyperelliptic curves

Himanshu Shukla

Mathematisches Institut, Universität Bayreuth

Oberseminar Arithmetic Geometry

17th June, 2021

H. Shukla

Cassels-Tate pairing on hyperelliptic curve

17th June, 2021 1 / 23

Outline

Background

- Higher descents and the Cassels-Tate pairing
- Effectively computing CTP 3
 - Definition of CTP
 - Bottlenecks!
- 6 Progress so far!
 - The corestriction technique
 - A nice ε
 - Good elements of $Sel^{(2)}(J)$ and some statistics

The curve
$$y^2 = x' + A$$

→

< //>
</ >
</ >

Some notations

- Fix a number field k.
- $f := \prod_{i=1}^{\prime} (X e_i) \in k[X]$, with $e_i \in \overline{k}$ are pairwise distinct, and l odd.
- Define

$$C := Y^2 = f(X), \tag{1}$$

and let $\Delta := \{T_i := (e_i, 0) : 1 \le i \le l\}$, and T_0 be the point at infinity. (Δ is a $G_k := \operatorname{Gal}(\overline{k}/k)$ set.)

- For a place v of k, k_v denotes its completion with respect to v and t_v the residue field.
- Let J be the jacobian variety associated to C.
- Let J_v denote the variety J defined over k_v .

preliminaries contd...

- J can be identified with $\operatorname{Pic}^{0}(C)$.
- $P \in J$, then $P := [(P_1) + (P_2) + \ldots + (P_m) m(T_0)]$, $m \le g = (I-1)/2$, with $(P_1) + (P_2) + \ldots + (P_m) \in \div(C)$ in general position.
- $C \hookrightarrow J$ via the map $P \mapsto [(P) (T_0)]$.
- The etalé algebra associated to Δ

$$L := k[X]/\langle f(X) \rangle \cong \bigoplus_{\Delta_i} k[X]/\langle f_i(X) \rangle \cong \bigoplus_{\Delta_i} L_i,$$

 Δ_i s are orbits of Δ .

• $\alpha \in \text{Sel}^{(2)}(J) \subset L^{\times}/(L^{\times})^2$ and $\alpha \notin J/2J$, then $\alpha := (d_1, \ldots, d_l)$ with $d_i = \alpha(e_i)$.

Some theoretical aspects

Theorem (Mordell-Weil)

$$J(k) \cong J(k)_{tors} \oplus Z^{r_J},$$

where $\#J(k)_{tors} < \infty$, $r_J := algebraic rank$.

- In order to compute $J(k)_{tors}$ we use the injection $J(k)_{tors} \hookrightarrow J(\mathfrak{k}_v)$, for a place of good reduction.
- No unconditional algorithm to compute r₁ is known.
- Assuming BSD, r_I may be computed using $r_{an}(J) := \operatorname{ord}(L(J, s = 1))$.

Upper and lower bounds

- Lower bound: Find points and check for independence.
- Upper bound: Use descent.
- See if they match!

The Kummer sequence:

$$0 \longrightarrow J[n] \hookrightarrow J \longrightarrow J \longrightarrow 0 \tag{2}$$

Applying galois cohomology:

Descent sequence

We have the n-descent sequence.

$$0 \longrightarrow \frac{J(k)}{nJ(k)} \hookrightarrow \operatorname{Sel}^{(n)}(J) \longrightarrow \operatorname{III}[n] \longrightarrow 0,$$
(3)

where n^{th} Selmer group

$$\operatorname{Sel}^{(n)}(J) = \operatorname{ker}(\alpha),$$

and the Tate-Shafarevich group

$$\mathrm{III}:= \ker \left(H^1(G_k,J) \longrightarrow \prod_{\nu} H^1(G_{k_{\nu}},J_{\nu}) \right).$$

- $Sel^{(n)}(J)$ is finite and effectively computable in principle.
- rank_{\mathbb{F}_p}(Sel^(p)(J)) bounds the rank_{\mathbb{F}_p}($\frac{J(k)}{pJ(k)}$).
- If III[n] is trivial then $\operatorname{Sel}^{(n)}(J) \cong \frac{J(k)}{nJ(k)}$.

H. Shukla

Higher descent

- If (m, n) = 1, $\operatorname{Sel}^{(mn)}(J) \cong \operatorname{Sel}^{(n)}(J) \times \operatorname{Sel}^{(m)}(J)$.
- If $t \ge 2$, then $\operatorname{Sel}^{p^t}(J)$ is known as higher p-descent.
- We have the following commutative diagram:

$$\begin{array}{cccc}
\frac{J(k)}{p^{t}J(k)} & \longrightarrow & \operatorname{Sel}^{(p^{t})}(J) \\
& \downarrow & & \downarrow^{p} \\
\frac{J(k)}{p^{t-1}J(k)} & \longrightarrow & \operatorname{Sel}^{(p^{t-1})}(J)
\end{array}$$
(4)

We have

$$\frac{J(k)}{pJ(k)} \subseteq p \operatorname{Sel}^{(p^2)}(J) \subseteq \operatorname{Sel}^{(p)}(J).$$
(5)

Cassels-Tate pairing (CTP)

- CTP (denoted by ⟨.,.⟩_{CT}) was defined by J.W.S. Cassels for elliptic curves.
- John Tate generalized it to abelian varieties.
- CTP has following properties:
 - $\langle .,. \rangle_{CT} : \mathrm{III} \times \mathrm{III} \longrightarrow \mathbb{Q}/\mathbb{Z}.$
 - CTP is an anti-symmetric pairing.
 - $\forall \alpha \in \operatorname{III}[n], \ \langle \beta, \alpha \rangle_{CT} = 0 \iff \beta \in n \operatorname{III}.$

Pulling back $\langle ., . \rangle_{CT}$ on $Sel^{(n)}(J)$, we have:

Theorem (Cassels)

$$\langle \alpha, \beta \rangle_{CT} = 0 \text{ for all } \beta \in \mathrm{Sel}^{(n)}(J), \iff \alpha \in n \mathrm{Sel}^{(n^2)}(J).$$

・ロト ・ 一下 ・ コト ・ ヨト

Known results

- Poonen and Stoll give three definitions of CTP on polarized abelian varieties and show that CTP at best is anti-symmetric.
- Swinnerton-Dyer computed CTP between $Sel^{(2)}(E)$ and $Sel^{(2^n)}(E)$.
- Fischer and Newton computed CTP on $Sel^{(3)}(E)$.
- van Beek and Fischer compute CTP on Selmer groups of odd prime degree isogeny on elliptic curves.
- The above computations were based on Weil-pairing based definition.

Known results (contd.)

- Fischer and Donelly used homogenous space based definition to compute CTP on Sel⁽²⁾(*J*).
- CTP can be defined in general for III(A) × III(A[∨]), for an abelian variety A and its dual A[∨].

Known results (contd.)

- Fischer and Donelly used homogenous space based definition to compute CTP on $Sel^{(2)}(J)$.
- CTP can be defined in general for III(A) × III(A[∨]), for an abelian variety A and its dual A[∨].
- We aim to compute CTP on jacobians of genus 2 curves.
- Jiali Yan has computed the CTP for genus 2 curves where *f* splits completely over *k*[*X*] for the following:
 - 2-selmer group using homogenous space definition.
 - Richelot's isogeny using Weil-pairing definition.
- If one of the twisted Kummer surface has a k-rational point.
- Use Albanese-Albanese definition of CTP to compute it.

Albanese-Albanese definition

We have two partially defined, evaluation based, galois equivariant pairings:

•
$$\langle \operatorname{div}(f), D \rangle_1 : (\operatorname{Princ}(C) \times \operatorname{Div}^0(C))^{\perp} \longrightarrow \bar{k}^{\times}, \\ \langle \operatorname{div}(f), D \rangle_1 = \prod_{P \in \operatorname{Supp}(D)} f(P)^{\nu_P(D)}.$$

- $\langle D, \operatorname{div}(f) \rangle_2 : (\operatorname{Div}^0(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}))^{\perp} \longrightarrow \bar{k}^{\times},$ $\langle D, \operatorname{div}(f) \rangle_2 = \prod f(P)^{v_P(D)}.$ $P \in \text{Supp}(D)$
- $\langle .,. \rangle_1$ and $\langle .,. \rangle_2$ match on $(\operatorname{Princ}(\mathcal{C}) \times \operatorname{Princ}(\mathcal{C}))^{\perp}$ (Weil Reciprocity), and are defined when $\operatorname{Supp}(\operatorname{div}(f)) \cap \operatorname{Supp}(D) = \emptyset$.
- Let \cup_1 , \cup_2 be the induced cup-products on galois cohomology.

Albanese-Albanese definition contd.

Let $\alpha, \alpha' \in \operatorname{Sel}^{(n)}(J)$.

- Global part:
 - Lift α, α' to $\mathfrak{a}, \mathfrak{a}' \in C^1(G_k, \operatorname{Div}^0(\mathcal{C})).$
 - $\partial \mathfrak{a}, \partial \mathfrak{a}'$ take values in Princ(*C*).
 - Let $\eta := \partial \mathfrak{a} \cup_1 \mathfrak{a}' \mathfrak{a} \cup_2 \partial \mathfrak{a}' \in Z^3(k, \bar{k}^{\times}) \Longrightarrow \eta = \partial \varepsilon$, for $\varepsilon \in C^2(k, \bar{k}^{\times})$.
 - The above statements follow using the galois cohomology on Kummer sequence and on

$$0 \longrightarrow \operatorname{Princ}(\mathcal{C}) \hookrightarrow \operatorname{Div}^0(\mathcal{C}) \longrightarrow \operatorname{Pic}^0(\mathcal{C}) \longrightarrow 0,$$

and using $H^3(k, \bar{k}^{\times})$ is trivial.

• Local part:

- There exists $P_v \in J_v$, with $\partial P_v = \alpha_v$.
- Lift P_{ν} to a degree zero divisor \mathfrak{p}_{ν} , and $\mathfrak{a}_{\nu} \partial \mathfrak{p}_{\nu}$ takes values in $\operatorname{Princ}(C)$.
- Consider $\gamma_{\nu} := (\mathfrak{a}_{\nu} \partial \mathfrak{p}_{\nu}) \cup_{1} \mathfrak{a}_{\nu}' \mathfrak{p}_{\nu} \cup_{2} \partial \mathfrak{a}_{\nu}' \varepsilon_{\nu}.$

Albanese-Albanese definition contd.

 γ_{v} represents some class $c_{v} \in H^{2}(k_{v}, \bar{k_{v}}^{\times}) \cong \operatorname{Br}(k_{v}).$

Definition

For $(\alpha, \alpha') \in \operatorname{Sel}^{(n)}(J) \times \operatorname{Sel}^{(n)}(J)$ we have:

$$\langle \alpha, \alpha' \rangle_{CT} = \sum_{\nu} \operatorname{inv}_{\nu}(c_{\nu})$$

・ロト ・ 一下 ・ コト ・ ヨト

- 3

Two bottelnecks:

() **Global bottleneck:** Computation of ε s.t $\partial \varepsilon = \eta$

- Determining the field extension M in which ε takes values, and the field M' through which it factors.
- M, M' are depend on the solutions to the system of "skewed" linear equations:

$$\sigma \varepsilon(\tau, \rho) + \varepsilon(\sigma, \tau \rho) - \varepsilon(\sigma \tau, \rho) + \varepsilon(\sigma, \tau) = \eta(\sigma, \tau, \rho).$$

- **2** Local bottleneck/s: Computation of c_v represented by 2-cocycle γ_v
 - γ_{ν} mostly will have a complicated description.
 - Determine a 1-cochain ξ_v s.t. $\gamma_v \partial \xi_v$ has a description simple enough to compute c_v .

15/23

・ロト ・ 一下 ・ コト ・ ヨト

We prove the following theorem:

Theorem

Let C be an elliptic curve (l = 3), and $\alpha, \alpha' \in \operatorname{Sel}^{(2)}(J)$, represented by (d_1, d_2, d_3) , (d'_1, d'_2, d'_3) , with $d_1d_2d_3 \in k^2$, and $d'_1d'_2d'_3 \in k^2$ and $d_i, d'_i \in k(e_i)$, then $(-1)^{2\langle \alpha, \alpha' \rangle_{CT}} = \prod_{\nu} [\alpha, \alpha']_{\nu},$

where

$$[\alpha, \alpha']_{\nu} = \begin{cases} \prod_{i=1}^{3} (\delta_{\nu,i}, d'_{i})_{k_{\nu}}, & f \text{ splits over } k, \\ (\delta_{\nu,1}, d'_{1})_{k_{\nu}} (\delta_{\nu,2}, d'_{2})_{k_{\nu}(e_{2})} & e_{1} \in k \text{ and } [k(e_{2}) : k] = 2, \\ (\delta_{\nu,1}, d'_{1})_{k_{\nu}(e_{1})} & [k(e_{1}) : k] \ge 3, \end{cases}$$

where $\delta_{v,i} \in k_v(e_i)$, and (.,.) denotes the Hilbert's symbol.

4 A & 4

Some simplifications!

- Let $M^{\Delta} := \{(m_P)_{P \in \Delta} : m_P \in M\}$, for a G_k module M.
- M^{Δ} is a galois module under the natural action:

$$\theta_P^{\sigma} = \sigma(\theta_{\sigma^{-1}P}).$$

True 2-descent: Following generalized explicit descent technique of Bruin, Poonen, and Stoll we have:

•
$$\Delta \hookrightarrow J[2].$$

• $0 \longrightarrow \langle (1)_{P \in \Delta} \rangle \longrightarrow (\mathbb{Z}/2\mathbb{Z})^{\Delta} \longrightarrow J[2] \longrightarrow 0.$

Dualizing we get:

$$0 \longrightarrow J[2] \longrightarrow \mu_2^{\Delta} \longrightarrow \langle (1)_{P \in \Delta} \rangle^{\vee} \longrightarrow 0.$$

Galois cohomology gives:

$$\begin{array}{c} \mu_{2}^{\Delta}(k) \\ \downarrow \\ R(k) \longrightarrow H^{1}(k, J[2]) \longmapsto H^{1}(k, \mu_{2}^{\Delta}) \\ \uparrow^{\simeq} \\ \bigoplus_{\Delta_{i}} H^{1}(L_{i}, \mu_{2}^{\{P_{i}\}}) \longmapsto \bigoplus_{\Delta_{i}} H^{1}(L_{i}, \mu_{2}^{\Delta_{i}}) \xrightarrow{cor} \bigoplus_{\Delta_{i}} H^{1}(k, \mu_{2}^{\Delta_{i}}) \\ \uparrow^{\simeq} \\ \bigoplus_{\Delta_{i}} H^{1}(L_{i}, \langle [P_{i} - T_{0}] \rangle). \end{array}$$

(a)

Lemma

If $\alpha \in H^1(k, J[2])$, then we have:

$$\alpha := \sum_{\Delta_i} \operatorname{cor}(\alpha_i),$$

where
$$\alpha_i \in H^1(L_i, \langle [P_i - T_0] \rangle)$$
.

Corollary

$$\langle \alpha, \alpha' \rangle_{CT} = \sum_{\Delta_i} \langle \alpha, \operatorname{cor}(\alpha'_i) \rangle_{CT}.$$

Theorem

We have:
$$\langle \alpha, cor(\alpha'_i) \rangle_{CT} = \langle res(\alpha), \alpha'_i \rangle_{CT}$$
.

The above theorem follows by using: $a \cup cor(b) = cor(res(a) \cup b)$, for cochains a and b.

H. Shukla

17th June, 2021 19 / 23

A nice ε

Assume $e_1 \in k$, $\eta'_1(\sigma, \tau, \rho)$ is only depended on $\chi(\sigma), \chi(\tau), \chi'(\tau), \chi'(\rho)$ where χ, χ'_1 are elements of $H^1(k, \mu_2^{\Delta})$ and $H^1(k, \mu_2^{\{P_1\}})$ (resp.) representing α, α'_1 . Let M be a galois extension of $k(\sqrt{d_1}, \ldots, \sqrt{d_l})$, s.t. $M \cap k(\sqrt{d'_1}) = k$, and M is also galois over k.

Lemma

If there is an ε_1 satisfying $\partial \varepsilon_1 = \eta_1$ with such that $\varepsilon_1(\sigma, \tau)$ takes values in M and only depends on $\sigma|_M, \chi'_1(\sigma)$, and $\chi'_1(\tau)$, then:

•
$$\sigma \varepsilon_1(id, 1, 1) = \varepsilon_1(\sigma|_M, \chi'_1(\sigma), 1).$$

• $\frac{\varepsilon_1(id, 1, 1) = \varepsilon_1(id, 1, -1)}{\varepsilon_1(id, -1, -1)} = \frac{\varepsilon_1(\sigma|_M, 1, -1)}{\varepsilon_1(\sigma|_M, -1, -1)}.$
• $\frac{\sigma(\varepsilon_1(id, 1, 1) * \varepsilon_1(id, -1, -1))}{\varepsilon_1(id, -1, -1)\varepsilon_1(\sigma|_M, 1, -1)^2} = \eta_1(\chi(\sigma), \chi(\tau) = (1, ..., 1), -1, -1).$

Hence we require only $\varepsilon_1(id, 1, 1), \varepsilon_1(id, -1, -1)$ to compute ε_1 entirely.

Definition

An $\alpha = (d_1, \ldots, d_l) \in \operatorname{Sel}^{(2)}(J)$ is said to be good if each of the conics $C_{1j}(u, v) := d_1 u^2 - d_j v^2 + e_1 - e_j$, has a solution over $k(e_1, e_j)$. A curve C is good if the subgroup generated by good elements of index 2.

If α is good, then we have an ε_1 of the above form with $M = K(\sqrt{d_1}, \sqrt{d_2}, \dots, \sqrt{d_l}).$

• Hope: Most of the curves are good.

• $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 0$: 1207 on LMFDB, all good.

- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 2$, $r_{an}(J) = 1$: 538 on LMFDB, all good.
- $\operatorname{rk}_{\mathbb{F}_2}\operatorname{Sel}^{(2)}(J) \ge 4$, $r_{an}(J) \ge 2$: 4 on LMFDB, all good.
- $x^5 + A$, 0 < A < 1000, and A is prime: 168 curves, all good.

An example with complex multiplication

Let

$$C:=Y^2=X'+A,$$

- The jacobian of C has an isogeny λ := 1 − ζ_I of degree I defined over K = Q(ζ_I).
- $L := \mathcal{K}(\sqrt{A})$, then $\mathrm{Sel}^{(\lambda)} \subset \mathrm{Ker}\left(N_{L/K} : L^{\times}/(L^{\times})' \longrightarrow \mathcal{K}^{\times}/(\mathcal{K}^{\times})'\right)$.
- If $A := 2^{l-2}b^{l}$, then one can compute ε .
- Otherwise we obtain $\eta' := \eta \partial \varepsilon \in Z^3(L, \mu_I)$.
- Since $H^3(L, \mu_L) = 0$, the aim is to find 2-cochain $\varepsilon' \in C^2(L, \mu_I)$ s.t. $\partial \varepsilon = \eta'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Thank You!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト