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Known results about isogenies

Theorem 1.1 (Mazur, Kenku et. al.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over Q. Then
n <19 orn € {21,25,27,37,43,67,163}. If E does not have complex
multiplication (CM), then n < 18 uz n # 14 or n € {21,25,37}.
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Known results about isogenies

Theorem 1.1 (Mazur, Kenku et. al.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over Q. Then
n <19 orn € {21,25,27,37,43,67,163}. If E does not have complex
multiplication (CM), then n < 18 uz n # 14 or n € {21,25,37}.

@ Ordered pairs (E/K, C), where C is a cyclic subgroup defined over
number field K of order n, are parametrized by noncuspidal K-rational
points on the modular curve Xo(n).
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Known results about isogenies

Theorem 1.1 (Mazur, Kenku et. al.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over Q. Then
n <19 orn € {21,25,27,37,43,67,163}. If E does not have complex
multiplication (CM), then n < 18 uz n # 14 or n € {21,25,37}.

@ Ordered pairs (E/K, C), where C is a cyclic subgroup defined over
number field K of order n, are parametrized by noncuspidal K-rational
points on the modular curve Xo(n).

@ It is natural to ask ourselves the same question for number fields K
other than Q, but all the K-rational points on all Xp(n) have only
been determined for K = Q.
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Known results about isogenies

Theorem 1.2 (Momose)

Let K be a quadratic extension of Q which is not imaginary with class

number equal to 1. Then Xo(p)(K) contains noncuspidal points for only
finitely many primes p.
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Known results about isogenies

Theorem 1.2 (Momose)

Let K be a quadratic extension of Q which is not imaginary with class

number equal to 1. Then Xo(p)(K) contains noncuspidal points for only
finitely many primes p.

@ Using the properties of hyperelliptic and Atkin-Lehner involutions,
Najman and Bruin determined all the quadratic points on all
hyperelliptic Xo(n) for which Jo(n)(Q) is of rank 0.
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Known results about isogenies

Theorem 1.2 (Momose)

Let K be a quadratic extension of Q which is not imaginary with class
number equal to 1. Then Xo(p)(K) contains noncuspidal points for only
finitely many primes p.

@ Using the properties of hyperelliptic and Atkin-Lehner involutions,
Najman and Bruin determined all the quadratic points on all
hyperelliptic Xo(n) for which Jo(n)(Q) is of rank 0.

o Ozman and Siksek determined all the quadratic points on all
non-hyperelliptic Xo(n) of genus up to 5 for which Jp(n)(Q) is of rank
0 by using the Mordell-Weil sieve.
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Known results about isogenies

@ Box described all the quadratic points on all Xo(n) of genus up to 5
for which Jy(n)(Q) has positive rank using a variant of Chabauty’s
method developed by Siksek.
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Known results about isogenies

@ Box described all the quadratic points on all Xo(n) of genus up to 5
for which Jy(n)(Q) has positive rank using a variant of Chabauty’s
method developed by Siksek.

@ Najman and V. described all the quadratic points on bielliptic curves
Xo(n) by adapting and improving the methods of Box and Siksek.
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Known results about isogenies

@ Box described all the quadratic points on all Xo(n) of genus up to 5
for which Jy(n)(Q) has positive rank using a variant of Chabauty’s
method developed by Siksek.

@ Najman and V. described all the quadratic points on bielliptic curves
Xo(n) by adapting and improving the methods of Box and Siksek.

@ A lot of information is known about the possible mod p images of
Galois for E/Q. Also, a form of j-invariant is associated to each
possible image: we know which forms of j-invariants give specific mod
p images of Galois.
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Known results about isogenies

@ Box described all the quadratic points on all Xo(n) of genus up to 5
for which Jy(n)(Q) has positive rank using a variant of Chabauty’s
method developed by Siksek.

@ Najman and V. described all the quadratic points on bielliptic curves
Xo(n) by adapting and improving the methods of Box and Siksek.

@ A lot of information is known about the possible mod p images of
Galois for E/Q. Also, a form of j-invariant is associated to each
possible image: we know which forms of j-invariants give specific mod
p images of Galois.

@ Most of those results come from Zywina, but some cases were
completed by Balakrishnan and others.
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Known results about isogenies

@ Najman determined all the possible prime isogeny degrees of non-CM
elliptic curves with a rational j-invariant defined over number fields of
degree at most 7. They are the same primes as for the rational field.
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Known results about isogenies

@ Najman determined all the possible prime isogeny degrees of non-CM
elliptic curves with a rational j-invariant defined over number fields of
degree at most 7. They are the same primes as for the rational field.

@ The next natural step is to answer the same question for isogenies of
composite degree. The main result is the following:
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Known results about isogenies

@ Najman determined all the possible prime isogeny degrees of non-CM
elliptic curves with a rational j-invariant defined over number fields of
degree at most 7. They are the same primes as for the rational field.

@ The next natural step is to answer the same question for isogenies of
composite degree. The main result is the following:

Theorem 1.3 (V.)

Let K be a quadratic number field and E /K a non-CM elliptic curve with a
rational j-invariant. Assume E has a cyclic n-isogeny defined over K. Then
n < 18 with n # 14 or n € {20, 21, 24,25, 32,36, 37}.
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Proof outline

@ Notice that it is enough to consider non-CM elliptic curves defined
over Q because we can descend from E/K to E’/Q using a quadratic
twist and isomorphism defined over K and the quadratic twist

preserves the presence of an isogeny.

5. 5. 2022.
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Proof outline

@ The proof is conducted in several steps. We prove:
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or

(p,a) €{(2,7),(3,7),(7,13)}.
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or

(p,a) €{(2,7),(3,7),(7,13)}.

o If p? | n, then p € {2,3,5}.
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or
(p,q) € {(2,7),(3,7),(7,13)}.

o If p? | n, then p € {2,3,5}.

o If 55| nor 3% | n, then k < 2.
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or
(p,q) € {(2,7),(3,7),(7,13)}.

o If p? | n, then p € {2,3,5}.

o If 55| nor 3% | n, then k < 2.

o If 2K | n, then k < 5.
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

If p? | n, then p € {2,3,5}.

If 55| nor 3 | n, then k < 2.

If 2K | n, then k < 5.

If n=223b then nc {2,4,8,16,32,3,6,12,24,9,18,36}.
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Proof outline

@ The proof is conducted in several steps. We prove:

e If p < g are two prime divisors of n, then g <5 or

(p.q) € {(2,7),(3,7),(7,13)}.

If p? | n, then p € {2,3,5}.

If 55| nor 3 | n, then k < 2.

If 2K | n, then k < 5.

If n=223b then nc {2,4,8,16,32,3,6,12,24,9,18,36}.
If n =225P then n € {2,4,8,16,32,5,10,20, 25}.
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Proof outline

@ The proof is conducted in several steps. We prove:

If p < g are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

If p? | n, then p € {2,3,5}.

If 55| nor 3 | n, then k < 2.

If 2K | n, then k < 5.

If n=223b then nc {2,4,8,16,32,3,6,12,24,9,18,36}.
If n =225P then n € {2,4,8,16,32,5,10,20, 25}.

If n =325P, then n € {3,9,5,15,25}.
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Proof outline

@ The proof is conducted in several steps. We prove:

If p < g are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

If p? | n, then p € {2,3,5}.

If 55| nor 3 | n, then k < 2.

If 2K | n, then k < 5.

If n=223b then nc {2,4,8,16,32,3,6,12,24,9,18,36}.
If n =225P then n € {2,4,8,16,32,5,10,20, 25}.

If n =325P, then n € {3,9,5,15,25}.

n ¢ {14,30,63}.

Borna Vukorepa (University of Zagreb) Isogenies over quadratic fields of elliptic ¢ 5. 5. 2022.



Proof outline

@ The proof is conducted in several steps. We prove:

If p < g are two prime divisors of n, then g <5 or

(p,a) €{(2,7),(3,7),(7,13)}.

o If p? | n, then p € {2,3,5}.

o If 55| nor 3% | n, then k < 2.

o If 2K | n, then k < 5.

o If n=223b then nc {2,4,8,16,32,3,6,12,24,9,18,36}.
o If n =225 then n € {2,4,8,16,32,5,10,20,25}.

o If n =325 then n € {3,9,5,15,25}.

o n¢ {14,30,63}.

e n+# 9L
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Proof outline

@ For a finite cyclic subgroup C of E, let Q(C) be the smallest field
such that Gg(c) acts on C. Notice that this is also the field of
definition of an isogeny with kernel C.
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Proof outline

@ For a finite cyclic subgroup C of E, let Q(C) be the smallest field
such that Gg(c) acts on C. Notice that this is also the field of
definition of an isogeny with kernel C.

e For E/Q and a positive integer n, denote with
PE,n - Gg — GL2(Z/nZ) the mod n Galois representation of E.
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Proof outline

@ For a finite cyclic subgroup C of E, let Q(C) be the smallest field
such that Gg(c) acts on C. Notice that this is also the field of
definition of an isogeny with kernel C.

e For E/Q and a positive integer n, denote with
PE,n - Gg — GL2(Z/nZ) the mod n Galois representation of E.

Definition 2.1

We say that the p-adic Galois representation pg p : Gg — GL2(Zp) of E
is defined modulo p* if the image pg p=(Gg) contains the kernel of the
reduction map GLx(Z,) — GL2(Zp/p*Zp).
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Proof outline

@ Here are some well-known lemmas which will be useful to us:

Lemma 2.2 (Najman)

Let E/Q be an elliptic curve and p a prime such that pg , is surjective, and
C a subgroup of E[p] of order p. Then [Q(C): Q] =p+ 1.

Lemma 2.3 (Najman)

Let E/Q be an elliptic curve and P € E[p]. Let C = (P). Then
[Q(P) : Q(C)] divides p — 1.
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Proof outline

Lemma 2.4 (Najman)

Let E/Q be an elliptic curve and p a prime such that the image of pg , is
contained in the normalizer of the non-split Cartan subgroup and let
(P) = C C E|[p] a cyclic subgroup of order p. Then:

o Ifp=1 (mod 3), then [Q(C) : Q] > p+ 1.

e Ifp=2 (mod 3), then [Q(C): Q] > (p+1)/3.

Lemma 2.5 (Cremona, Najman)

Let E be an elliptic curve defined over a number field K such that its
p-adic representation is defined modulo p"~1 for some n > 1. Then for any

cyclic subgroup C of E(K) of order p", we have [K(C) : K(pC)] = p.
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Different prime divisors of isogeny degree

Proposition 3.1 (V.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over a
quadratic field K. If p < q are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

@ Let's, for example, eliminate the pairs (2,11) and (5, 13). Very similar
conclusions are used in other cases. Assume 2 | n and 11 | n.
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Different prime divisors of isogeny degree

Proposition 3.1 (V.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over a
quadratic field K. If p < q are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

@ Let's, for example, eliminate the pairs (2,11) and (5, 13). Very similar
conclusions are used in other cases. Assume 2 | n and 11 | n.
@ It is known from Zywina's result on the possible mod 11 images of

Galois that the image of pg 11 is surjective, conjugate to a subgroup of
B(11) or to a subgroup of N,s(11).
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Different prime divisors of isogeny degree

Proposition 3.1 (V.)

Let E/Q be an elliptic curve with a cyclic n-isogeny defined over a
quadratic field K. If p < q are two prime divisors of n, then g <5 or

(p,q) € {(2,7),(3,7),(7,13)}.

@ Let's, for example, eliminate the pairs (2,11) and (5, 13). Very similar
conclusions are used in other cases. Assume 2 | n and 11 | n.

@ It is known from Zywina's result on the possible mod 11 images of
Galois that the image of pg 11 is surjective, conjugate to a subgroup of
B(11) or to a subgroup of N,s(11).

@ Clearly, E has an 11-isogeny defined over quadratic field. Let C be the
kernel of that 11-isogeny.
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Different prime divisors of isogeny degree

@ In the surjective case, we can use Lemma 2.2 to get [Q(C) : Q] = 12.
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Different prime divisors of isogeny degree

@ In the surjective case, we can use Lemma 2.2 to get [Q(C) : Q] = 12.

o If the image of pg 11 is conjugate to a subgroup of Nps(11), then it is
known by the work of Najman and Gonzalez-Jimenez that
[Q(P) : Q] = 120 for any P of order 11.
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Different prime divisors of isogeny degree

@ In the surjective case, we can use Lemma 2.2 to get [Q(C) : Q] = 12.

o If the image of pg 11 is conjugate to a subgroup of Nps(11), then it is
known by the work of Najman and Gonzalez-Jimenez that
[Q(P) : Q] = 120 for any P of order 11.

e By putting C = (P), we can use Lemma 2.3 to get

[Q(P) : Q(C)] | 10, s0: [Q(C) : Q] = plehybiey = 12
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Different prime divisors of isogeny degree

@ In the surjective case, we can use Lemma 2.2 to get [Q(C) : Q] = 12.
o If the image of pg 11 is conjugate to a subgroup of Nps(11), then it is
known by the work of Najman and Gonzalez-Jimenez that
[Q(P) : Q] = 120 for any P of order 11.
e By putting C = (P), we can use Lemma 2.3 to get
P):
[Q(P) : Q(C)] | 10, s0: [Q(C) : Q] = @pyhdy > 12
o Otherwise, there is an 11-isogeny is defined over Q, in which case it is
known that j(E) € {—11- 1313, ~112}. Since the 11-isogeny is
defined over a quadratic extension, this case must occur.
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Different prime divisors of isogeny degree

@ It is well-known that either E has a 2-isogeny over Q or every
2-isogeny of E is defined over the field of degree 3.
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Different prime divisors of isogeny degree

@ It is well-known that either E has a 2-isogeny over Q or every
2-isogeny of E is defined over the field of degree 3.

o If E had a 2-isogeny over Q, it would have a 22-isogeny over Q, which
is impossible.
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Different prime divisors of isogeny degree

@ It is well-known that either E has a 2-isogeny over Q or every
2-isogeny of E is defined over the field of degree 3.

o If E had a 2-isogeny over Q, it would have a 22-isogeny over Q, which
is impossible.

o If every 2-isogeny is defined over the field of degree 3, then E can't
have a cyclic n-isogeny defined over quadratic field. Hence, we have
eliminated the pair (2,11).
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Different prime divisors of isogeny degree

@ Now let's eliminate the pair (5,13). Assume 5 | n and 13 | n. Clearly,
E has a 65-isogeny defined over a quadratic extension of Q. That
means E is represented by a quadratic point on Xp(65). Box has
described all quadratic points on Xp(65).
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Different prime divisors of isogeny degree

@ Now let's eliminate the pair (5,13). Assume 5 | n and 13 | n. Clearly,
E has a 65-isogeny defined over a quadratic extension of Q. That
means E is represented by a quadratic point on Xp(65). Box has
described all quadratic points on Xp(65).

@ There are infinitely many of them and all come from Xp(65)"(Q) via
quotient map p : Xp(65) — Xp(65)". Notice that Xp(65)(Q) contains
no non-cuspidal points, so we can assume that E is represented by
some quadratic, but not rational point @ on Xp(65).
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Different prime divisors of isogeny degree

@ Now let's eliminate the pair (5,13). Assume 5 | n and 13 | n. Clearly,
E has a 65-isogeny defined over a quadratic extension of Q. That
means E is represented by a quadratic point on Xp(65). Box has
described all quadratic points on Xp(65).

@ There are infinitely many of them and all come from Xp(65)"(Q) via
quotient map p : Xp(65) — Xp(65)". Notice that Xp(65)(Q) contains
no non-cuspidal points, so we can assume that E is represented by
some quadratic, but not rational point @ on Xp(65).

o If Q € Xp(65) represents the pair (E, C), then the point wes(Q) is the
same as Q7 (Galois conjugate) and represents the pair (E?, C'),
where E and E? are 65-isogenous.
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Different prime divisors of isogeny degree

@ Now let's eliminate the pair (5,13). Assume 5 | n and 13 | n. Clearly,
E has a 65-isogeny defined over a quadratic extension of Q. That
means E is represented by a quadratic point on Xp(65). Box has
described all quadratic points on Xp(65).

@ There are infinitely many of them and all come from Xp(65)"(Q) via
quotient map p : Xp(65) — Xp(65)". Notice that Xp(65)(Q) contains
no non-cuspidal points, so we can assume that E is represented by
some quadratic, but not rational point @ on Xp(65).

o If Q € Xp(65) represents the pair (E, C), then the point wes(Q) is the
same as Q7 (Galois conjugate) and represents the pair (E?, C'),
where E and E? are 65-isogenous.

@ Since E is defined over QQ, we have E = E? and E is 65-isogenous to
itself, hence it has CM, contradiction.
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Non-squarefree isogeny degree

Proposition 4.1 (V.)

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Assume that p? | n for some prime p. Then
p € {2,3,5}.
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Non-squarefree isogeny degree

Proposition 4.1 (V.)

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Assume that p? | n for some prime p. Then
p € {2,3,5}.

@ To prove this, we will use the following result:

Theorem 4.2 (Lombardo, Tronto)

Let E/Q be a non-CM elliptic curve and p > 7 a prime. If E has a
p-isogeny over Q, then the image of pg p contains a Sylow pro-p
subgroup of GLo(Z).
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Non-squarefree isogeny degree

@ Proof: Clearly, E has a cyclic p?-isogeny and a cyclic p-isogeny
defined over K.
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Non-squarefree isogeny degree

@ Proof: Clearly, E has a cyclic p?-isogeny and a cyclic p-isogeny
defined over K.

@ Assume p > 7. Then we can use the lemmas 2.2, 2.3 and 2.4 similarly
as with p = 11 earlier to show that the p-isogeny is actually defined

over Q.

5. 5. 2022.
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Non-squarefree isogeny degree

@ Proof: Clearly, E has a cyclic p?-isogeny and a cyclic p-isogeny
defined over K.

@ Assume p > 7. Then we can use the lemmas 2.2, 2.3 and 2.4 similarly
as with p = 11 earlier to show that the p-isogeny is actually defined
over Q.

@ Now we can use Theorem 4.2 to conclude that the image of pg peo
contains a Sylow pro-p subgroup of GL(Z)).
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Non-squarefree isogeny degree

@ Proof: Clearly, E has a cyclic p?-isogeny and a cyclic p-isogeny
defined over K.

@ Assume p > 7. Then we can use the lemmas 2.2, 2.3 and 2.4 similarly
as with p = 11 earlier to show that the p-isogeny is actually defined
over Q.

@ Now we can use Theorem 4.2 to conclude that the image of pg peo
contains a Sylow pro-p subgroup of GL(Z)).

e Every Sylow pro-p subgroup of GL2(Z,) is conjugate to this specific
Sylow pro-p subgroup:

5:{(2’ Z)eGLg(ZP)\aEd

Il
—_
~—~
3
o
o
o
?./
(9]
1
o
~—
3
o
o
o
N—"
—
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Non-squarefree isogeny degree

@ Hence, we can choose compatible bases for all E[pX] such that the
image of pg p contains S.
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Non-squarefree isogeny degree

@ Hence, we can choose compatible bases for all E[pX] such that the
image of pg p contains S.

@ This means that p-adic representation pg p is defined modulo p (see
definition 2.1).
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Non-squarefree isogeny degree

@ Hence, we can choose compatible bases for all E[pX] such that the
image of pg p contains S.

@ This means that p-adic representation pg p is defined modulo p (see
definition 2.1).

o Now we can use Lemma 2.5 to conclude that for any cyclic subgroup
C of E(Q) of order p?, we have [Q(C) : Q(pC)] = p, so any cyclic
p?-isogeny has to be defined over a field of degree at least p > 7.
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Non-squarefree isogeny degree

@ Now assume p = 7. If E has a rational 7-isogeny, we can repeat the
identical conclusions since we can again use the theorem 4.2.
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Non-squarefree isogeny degree

@ Now assume p = 7. If E has a rational 7-isogeny, we can repeat the
identical conclusions since we can again use the theorem 4.2.

@ Otherwise, we must have a 7-isogeny defined over a quadratic field.
We can again use the results of Zywina as before with p = 11
combined with the lemmas 2.2, 2.3, 2.4 to deduce that the image of
PE,7 is conjugate to a subgroup of Ny(7).
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Non-squarefree isogeny degree

@ Now assume p = 7. If E has a rational 7-isogeny, we can repeat the
identical conclusions since we can again use the theorem 4.2.

@ Otherwise, we must have a 7-isogeny defined over a quadratic field.
We can again use the results of Zywina as before with p = 11
combined with the lemmas 2.2, 2.3, 2.4 to deduce that the image of
PE,7 is conjugate to a subgroup of Ny(7).

@ By Zywina, there are three such possible images, two of which only
appear when j(E) = 2268945 /128.
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Non-squarefree isogeny degree

o If we have j(E) = 2268945/128, we can use the classical modular
polynomial &y (X, Y).
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Non-squarefree isogeny degree

o If we have j(E) = 2268945/128, we can use the classical modular
polynomial &y (X, Y).

@ It is known by the result of Igusa that for a field F of characteristic
not dividing N, a non-CM elliptic curve E/F has a cyclic N-isogeny if
and only if ®n(X, (E)) has a zero in F.
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Non-squarefree isogeny degree

o If we have j(E) = 2268945/128, we can use the classical modular
polynomial &y (X, Y).

@ It is known by the result of Igusa that for a field F of characteristic
not dividing N, a non-CM elliptic curve E/F has a cyclic N-isogeny if
and only if ®n(X, (E)) has a zero in F.

@ We can factor ®49(X,2268945/128) into three irreducible factors of
degrees 14, 14, 21 respectively. Therefore, a cyclic 49-isogeny is
defined over a number field of degree (at least) 14.
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Non-squarefree isogeny degree

@ The third possible image of pg 7 is the whole Ns(7). We use Magma to
check all subgroups of GL2(Z/497Z) and select only those which
reduce modulo 7 to Ns(7), all up to conjugation. Those are the
possible images of pg 49.
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Non-squarefree isogeny degree

@ The third possible image of pg 7 is the whole Ns(7). We use Magma to
check all subgroups of GL2(Z/497Z) and select only those which
reduce modulo 7 to Ns(7), all up to conjugation. Those are the
possible images of pg 49.

@ There are 8 such subgroups of GLy(Z/49Z) up to conjugation. The
following result will be helpful:
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Non-squarefree isogeny degree

@ The third possible image of pg 7 is the whole Ns(7). We use Magma to
check all subgroups of GL2(Z/497Z) and select only those which
reduce modulo 7 to Ns(7), all up to conjugation. Those are the
possible images of pg 49.

@ There are 8 such subgroups of GLy(Z/49Z) up to conjugation. The
following result will be helpful:

Theorem 4.3 (Lombardo, Tronto)

Let E/Q be a non-CM elliptic curve and p > 5 a prime. The image of
PE,peo contains all scalars congruent to 1 modulo p.
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Non-squarefree isogeny degree

@ Out of the 8 mentioned subgroups of GL»(Z/49Z), 4 of them contain
only one scalar (out of 7) congruent to 1 modulo 7, a contradiction
with Theorem 4.3.
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Non-squarefree isogeny degree

@ Out of the 8 mentioned subgroups of GLy(Z/49Z), 4 of them contain
only one scalar (out of 7) congruent to 1 modulo 7, a contradiction
with Theorem 4.3.

e Two of them act on the cyclic subgroups of E[49] of order 49 such
that the corresponding orbit lengths are 14 and 42 in both cases, so a
cyclic 49-isogeny is defined over the field of degree (at least) 14 in
those cases.
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Non-squarefree isogeny degree

@ Out of the 8 mentioned subgroups of GLy(Z/49Z), 4 of them contain
only one scalar (out of 7) congruent to 1 modulo 7, a contradiction
with Theorem 4.3.

e Two of them act on the cyclic subgroups of E[49] of order 49 such
that the corresponding orbit lengths are 14 and 42 in both cases, so a
cyclic 49-isogeny is defined over the field of degree (at least) 14 in
those cases.

@ The two remaining subgroups are conjugate to a subgroup of Ns(49).
If there exists a non-CM elliptic curve over Q satisfying that, it will be
represented by a point on X;(49)(Q).
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Non-squarefree isogeny degree

o Recall that there is a Q-isomorphism Xs(N) = X7 (N?).
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Non-squarefree isogeny degree

o Recall that there is a Q-isomorphism Xs(N) = X7 (N?).
@ By studying the modular interpretation of that isomorphism, it is easy
to see that CM points and cusps on Xs(p") correspond to CM points

and cusps on X, (p?") for a prime p.

5. 5. 2022.
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Non-squarefree isogeny degree

o Recall that there is a Q-isomorphism Xs(N) = X7 (N?).

@ By studying the modular interpretation of that isomorphism, it is easy
to see that CM points and cusps on Xs(p") correspond to CM points
and cusps on X, (p?") for a prime p.

e Momose and Shimura have studied the rational points on X (p"). By
their result, we know that X (77)(Q) consists only of cusps and
CM-points for r > 3. Since we were considering Xs(72) = X, (74), we
are done.
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14-isogeny

@ Now we prove the following proposition:

Proposition 5.1

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Then n £ 14.
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14-isogeny

@ Now we prove the following proposition:

Proposition 5.1

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Then n £ 14.

@ Notice that E can have a rational 14-isogeny, but then E must have
CM.
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14-isogeny

@ Now we prove the following proposition:

Proposition 5.1

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Then n £ 14.

@ Notice that E can have a rational 14-isogeny, but then E must have
CM.

o If E didn't have a rational 2-isogeny, then any 2-isogeny would be
defined over a number field of degree 3, making it impossible for E to
have a 14-isogeny defined over quadratic number field.
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14-isogeny

@ Now we prove the following proposition:

Proposition 5.1

Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over a
quadratic number field K. Then n £ 14.

@ Notice that E can have a rational 14-isogeny, but then E must have
CM.

o If E didn't have a rational 2-isogeny, then any 2-isogeny would be
defined over a number field of degree 3, making it impossible for E to
have a 14-isogeny defined over quadratic number field.

@ Hence, E has a rational 2-isogeny.
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14-isogeny

@ This means that E must have a 7-isogeny defined over a quadratic
number field, but not over Q.
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14-isogeny

@ This means that E must have a 7-isogeny defined over a quadratic
number field, but not over Q.

@ By recalling Zywina's result as before, we see that the image of pg 7
has to be conjugate to a subgroup of Ns(7).
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14-isogeny

@ This means that E must have a 7-isogeny defined over a quadratic
number field, but not over Q.

@ By recalling Zywina's result as before, we see that the image of pg 7
has to be conjugate to a subgroup of Ns(7).

@ Zywina also gives us the form for j-invariant of curves with that mod 7
representation. We match that form with the form of the j-invariants
allowing a rational 2-isogeny:
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14-isogeny

@ This means that E must have a 7-isogeny defined over a quadratic
number field, but not over Q.

@ By recalling Zywina's result as before, we see that the image of pg 7
has to be conjugate to a subgroup of Ns(7).

@ Zywina also gives us the form for j-invariant of curves with that mod 7
representation. We match that form with the form of the j-invariants
allowing a rational 2-isogeny:

t(t+1)%(t> — 5t + 1)°(£* — 5t + 8)3(¢* — 56> + 8t — 7t +7)® (s +16)°
(t3 — 42 + 3t + 1)7 N s
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14-isogeny

@ We get a genus 3 projective curve on which we want to find all the
rational points.
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14-isogeny

@ We get a genus 3 projective curve on which we want to find all the
rational points.

@ Using Magma, we map it to a curve which has a degree 2 quotient that
is an elliptic curve with only 6 rational points.
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14-isogeny

@ We get a genus 3 projective curve on which we want to find all the
rational points.

@ Using Magma, we map it to a curve which has a degree 2 quotient that
is an elliptic curve with only 6 rational points.

o By taking the preimages, we find all the rational points on the starting
curve, none of which give us a desired non-CM curve E.
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14-isogeny

@ We get a genus 3 projective curve on which we want to find all the
rational points.

@ Using Magma, we map it to a curve which has a degree 2 quotient that
is an elliptic curve with only 6 rational points.

o By taking the preimages, we find all the rational points on the starting
curve, none of which give us a desired non-CM curve E.

@ Those points are: (2: -256:1), (—1:—-16:1), (0: —16: 1),
(0:1:0),(1:0:0).
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14-isogeny

We get a genus 3 projective curve on which we want to find all the
rational points.

@ Using Magma, we map it to a curve which has a degree 2 quotient that
is an elliptic curve with only 6 rational points.

o By taking the preimages, we find all the rational points on the starting
curve, none of which give us a desired non-CM curve E.

@ Those points are: (2: -256:1), (—1:—-16:1), (0: —16: 1),
(0:1:0),(1:0:0).

@ The last two don't give us a j-invariant and other give us j-invariants
0 or 54000. That completes the proof.
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91-isogeny

@ Our goal is to show that there are no elliptic curves E/Q with a cyclic
91-isogeny defined over a quadratic extension of Q. We could try
using the similar approach as with 14-isogeny.
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91-isogeny

@ Our goal is to show that there are no elliptic curves E/Q with a cyclic
91-isogeny defined over a quadratic extension of Q. We could try
using the similar approach as with 14-isogeny.

@ Since E has 91-isogeny, it must have 13-isogeny and 7-isogeny over a
quadratic extension.
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91-isogeny

@ Our goal is to show that there are no elliptic curves E/Q with a cyclic
91-isogeny defined over a quadratic extension of Q. We could try
using the similar approach as with 14-isogeny.

@ Since E has 91-isogeny, it must have 13-isogeny and 7-isogeny over a
quadratic extension.

@ Using lemmas 2.2, 2.3 and 2.4 like before, we can show that there is a
rational 13-isogeny and that the image of pg 7 is Ng(7).
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91-isogeny

@ Our goal is to show that there are no elliptic curves E/Q with a cyclic
91-isogeny defined over a quadratic extension of Q. We could try
using the similar approach as with 14-isogeny.

@ Since E has 91-isogeny, it must have 13-isogeny and 7-isogeny over a
quadratic extension.

@ Using lemmas 2.2, 2.3 and 2.4 like before, we can show that there is a
rational 13-isogeny and that the image of pg 7 is Ng(7).

@ We can match the j-invariants allowing those two properties, but we
will get a curve of a very large genus.
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91-isogeny

e We will determine all quadratic points on Xp(91) up to those points
that appear as pullbacks of rational points on Xp(91)™
(non-exceptional points).
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91-isogeny

e We will determine all quadratic points on Xp(91) up to those points
that appear as pullbacks of rational points on Xp(91)™
(non-exceptional points).

@ We will see that all the exceptional points are either cusps or CM
points.
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91-isogeny

e We will determine all quadratic points on Xp(91) up to those points
that appear as pullbacks of rational points on Xp(91)™
(non-exceptional points).

@ We will see that all the exceptional points are either cusps or CM
points.

@ On the other hand, we can use the identical modular interpretation
argument as with n = 65 to show that if a non-exceptional point on
Xo(91) represents an E/Q, then E is 91-isogenous to itself, so it has
CM.
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91-isogeny

o We will use the relative symmetric Chabauty developed by Siksek and
used by Box.
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91-isogeny

o We will use the relative symmetric Chabauty developed by Siksek and
used by Box.

e For some smooth, projective non-hyperelliptic curve X/Q, the method

provides a criterion for a point on X(?(Q) to be the only point in its
residue class modulo prime p > 2.
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91-isogeny

o We will use the relative symmetric Chabauty developed by Siksek and
used by Box.

e For some smooth, projective non-hyperelliptic curve X/Q, the method
provides a criterion for a point on X(?(Q) to be the only point in its
residue class modulo prime p > 2.

@ Also, the method provides a criterion for a point on X(?)(Q) to be the
only point in its residue class modulo prime p > 2, up to points
appearing as pullbacks of points on C(Q), where C is a degree 2
quotient of X.
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91-isogeny

o We will use the relative symmetric Chabauty developed by Siksek and
used by Box.

e For some smooth, projective non-hyperelliptic curve X/Q, the method
provides a criterion for a point on X(?(Q) to be the only point in its
residue class modulo prime p > 2.

@ Also, the method provides a criterion for a point on X(?)(Q) to be the
only point in its residue class modulo prime p > 2, up to points
appearing as pullbacks of points on C(Q), where C is a degree 2
quotient of X.

@ In our case, we have X = Xp(91) and C = Xp(91)". We also need
rk(J(X)) = rk(J(C)), which is true in our case as both ranks are 2.
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91-isogeny

@ We are able to replicate the same method used by Box.
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91-isogeny

@ We are able to replicate the same method used by Box.

@ We get that there are no other quadratic points on Xp(91) apart from
the known ones and the pullbacks of rational points on Xo(91)™.
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91-isogeny

@ We are able to replicate the same method used by Box.
@ We get that there are no other quadratic points on Xp(91) apart from
the known ones and the pullbacks of rational points on Xo(91)™.

@ All the exceptional (non-pullback) points on Xp(91) are the four cusps
and a pair of conjugate CM points defined over Q(v/13) and fixed by
Wo1.
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91-isogeny

@ We are able to replicate the same method used by Box.

@ We get that there are no other quadratic points on Xp(91) apart from
the known ones and the pullbacks of rational points on Xo(91)™.

@ All the exceptional (non-pullback) points on Xp(91) are the four cusps
and a pair of conjugate CM points defined over Q(v/13) and fixed by
Wo1.

@ As described earlier, the non-exceptional points can only give us CM
curves E/Q, so the proof is complete.
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