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The Problem

If E is an elliptic curve over a number field K,
then E(K) is a finitely generated abelian group;
in particular, the torsion subgroup E(K)tors is finite.

Question.
Which (finite abelian) groups occur as E(K)tors for fields K of degree d?

A weaker version of this question is the following.

Question.
Which primes p can divide #E(K)tors for fields K of degree d?

We write S(d) for the set of these primes.



What is Known?

Mazur has shown that E(Q) is isomorphic to one of the following groups:

{0}, Z/2Z, Z/3Z, . . . , Z/9Z, Z/10Z, Z/12Z,
Z/2Z× Z/2Z, Z/2Z× Z/4Z, Z/2Z× Z/6Z, Z/2Z× Z/8Z;

in particular, S(1) = {2, 3, 5, 7} .

Kamienny determined S(2) = {2, 3, 5, 7, 11, 13} ,

and Kenku and Momose had found all possible group structures for d = 2

assuming this value of S(2).

Parent showed S(3) = {2, 3, 5, 7, 11, 13}

(and the group structures have recently been determined).

Merel showed that S(d) is finite for all d,
and Oesterlé gave the bound

p ∈ S(d) =⇒ p ≤ (3d/2 + 1)2 .



The Goal

We determine

S(4) = {2, 3, 5, 7, 11, 13, 17}

S(5) = {2, 3, 5, 7, 11, 13, 17, 19}

S(6) = {2, 3, 5, 7, 11, 13, 17, 19, 37}

and also give some results on S(7).

The inclusions “⊃” are known,
so it suffices to show “⊂” in each case.



Relation With Rational Points

If p ∈ S(d), then there is a number field K of degree d,
an elliptic curve E over K and a point P ∈ E(K) of order p.

To the pair (E, P) there corresponds a point x ∈ X1(p)(K) that is not a cusp.

Then TrK/Q(x) is a Q-rational effective divisor of degree d on X1(p).

Such divisors correspond to points on the dth symmetric power X1(p)(d).

So we obtain a rational point on X1(p)(d)

that is not in the image of the map cuspsd → X1(p)
(d).

Conclusion.
If all rational points on X1(p)(d) are supported in cusps, then p /∈ S(d).



General Strategy

We fix a prime ` 6= p; then X1(p) and its Jacobian have good reduction at `.

If we can show the following two claims, then p /∈ S(d).

Let x ∈ X1(p)(d)(F`).
The residue class of x is the set of points in X1(p)(d)(Q) reducing to x.

Ê If x is a sum of cusps, then its residue class has exactly one element.

Ë Otherwise, the residue class of x is empty.

In case Ê, there is a rational point in the residue class: a sum of cusps.

We verify Ê by exhibiting a morphism t : X1(p)
(d) → A

with an abelian variety A such that t is injective on the residue class of x
and A(Q) → A(F`) is injective.

We have to show Ê and Ë for all primes p ≤ (3d/2+ 1)2 that are not in S(d).



Primes We Have To Deal With

We have to show Ê and Ë for all primes p ≤ (3d/2+ 1)2 that are not in S(d).

d = 4 : 19, 23, 29, 31, 37, 41, 43, . . . , 97

d = 5 : 23, 29, 31, 37, 41, 43, . . . . . . , 271

d = 6 : 23, 29, 31, 41, 43, . . . . . . . . . , 773

We work with ` = 2. Then Ë is automatic when p > (2d/2 + 1)2,
or when p - 2d ′ ± 1 and there are no E over F

2d
′ with p | #E(F

2d
′) for d ′ ≤ d.

This leaves for Ë:

d = 4 : (none)

d = 5 : 31, 41

d = 6 : 29, 31, 41, 73



The primes 19, 23, 29, 31, 41, 47, 59, 71

For all these primes p, J1(p)(Q) is finite, and J1(p)(Q) → J1(p)(F2) is injective.

This verifies Ê for these primes, since X1(p)(d) injects into J1(p).

In addition, J1(p)(Q) is generated by differences of rational cusps,
which allows us to verify Ë

by checking that the points x are not reductions of rational points.

This leaves only (d, p) = (6, 73) for Ë.  later

For Ê, the following primes remain:

d = 4 : 37, 43, 53, 61, 67, 73, 79, 83, 89, 97

d = 5 : 37, 43, 53, 61, 67, 73, 79, 83, 89, 97, . . . , 271

d = 6 : 43, 53, 61, 67, 73, 79, 83, 89, 97, . . . . . . , 773



Strategy for Ê

We deal with the remaining pairs (d, p) for Ê in the following way.

À Find an endomorphism t of J1(p) (t is a Hecke operator)
such that t

(
J1(p)(Q)

)
is finite and of odd order.

This implies that t
(
J1(p)(Q)

) → J1(p)(F2) is injective.

Á Verify that X1(p)(d)
ι→ J1(p)

t→ J1(p) is a formal immersion
at each point x ∈ X1(p)(d)(F2) supported in cusps.
This implies that t ◦ ι is injective on the residue class of x.

Given any t0 in the Hecke algebra,
we can construct t = t1(t0)t2 satisfying À.
(t1(t0) is a projection into the winding quotient,
which has rank 0 by BSD, Kolyvagin-Logachëv, Kato;
t2 kills the rational torsion if necessary.)



Formal Immersions

There is a criterion due to Kamienny and Parent
that reduces Á to a finite computation in the Hecke algebra T.

Essentially, one has to show that there is no F2-linear dependence in T/2T
of a certain form between ≤ d elements of a certain explicit set T(t)
that depends on t as in À.
Our Magma code uses functionality for binary linear codes to do that.

We try a number of choices of t0 and t2,
compute t and T(t), and check if Á is satisfied.

This is successful for all the pairs (d, p) we had to consider.
So Ê is done.



Ë for d = 6 and p = 73

It remains to verify Ë for (d, p) = (6, 73).

There are four non-cuspidal points x ∈ X1(73)(6)(F2).
There is an intermediate curve

X1(73)
4−→ XH

9−→ X0(73)

such that all four points map to the same point xH ∈ X
(6)
H (F2).

There is a rational point PH in the residue class of xH
(coming from an elliptic curve with complex multiplication by Q(

√
−3)).

We find t ∈ End(JH) such that t(JH(Q)) is finite of odd order

and verify that t ◦ ι : X(6)H → JH is a formal immersion at xH.

It follows that PH is the only rational point reducing to xH,
but PH does not lift to a rational point on X1(73)(6).



Remarks on d = 7

With the methods explained so far, we can show that

{2, 3, 5, 7, 11, 13, 17, 19, 23} ⊂ S(7) ⊂ {2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 59, 61, 67, 71, 73, 113} .

The expectation is that the left inclusion is an equality.

The problem is with Ë:
there are non-cuspidal points in X1(p)(6)(F2) that we need to exclude.

Maarten Derickx has a refined method that appears to work for

p = 59, 61, 67, 71, 73, 113 ,

and there is some hope that p = 37 can be dealt with, too.



Thank You!


