The degree of functions in the Johnson and q-Johnson schemes

Michael Kiermaier

Mathematisches Institut
Universität Bayreuth

DMV Meeting 2023
MS 2 – Combinatorial aspects of finite fields
September 25, 2023
Technische Universität Ilmenau, Germany

joint work with Jonathan Mannaert and Alfred Wassermann
Cameron-Liebler line classes

- Cameron, Liebler 1982:
 “Special” set \mathcal{L} of lines in $\text{PG}(3, q)$.
- Defined by the following equivalent properties:
 - Algebraic property:
 $\chi_{\mathcal{L}} \in \mathbb{R}$-row space of the line-point incidence matrix.
 - Geometric property:
 Constant intersection with any line spread of $\text{PG}(3, q)$.

Various directions of generalization

- Ambient space $\text{PG}(n, q)$.
- Lines \rightarrow k-spaces.
- Allow $q = 1$ (set case).
- Points \rightarrow spaces of degree d.

Goal
Coherent theory of all generalizations.
Subset and subspace lattices

- Fix $q = 1$ (set case) or prime power $q \geq 2$ (q-analog case).
- Fix n non-negative integer.
- Let V be a \mathbb{F}_q-vector space of dimension n.
- Let $L(V)$ be the lattice of all \mathbb{F}_q-subspaces of V.
- For $U \in L(V)$ let $\text{rk}(U) = \begin{cases} \#U \\ \dim(U) \end{cases}$.
- Let $[V]_k = \{ U \in L(V) \mid \text{rk}(U) = k \}$.
 Set case: $\# [V]_k = \binom{n}{k} = \binom{n}{k}_1$ Binomial coefficient.
 q-analog case: $\# [V]_k = \binom{n}{k}_q$ Gaussian coefficient.
Association Schemes

- Let X finite set, $\mathcal{R} = \{ R_0, \ldots, R_d \}$ partition of $X \times X$.
- (X, \mathcal{R}) association scheme if
 - R_0 identity relation
 - All relations R_i are symmetric
 - There exist constants (called intersection numbers) p_{ij}^ℓ such that for all $x, y \in X$ with $(x, y) \in R_\ell$
 \[\# \{ z \in X \mid (x, z) \in R_i \text{ and } (z, y) \in R_j \} = p_{ij}^\ell \]

- By definition: Set of adjacency matrices $B^{(i)}$ of R_i pairwise commutable
 \[\implies \text{are simultaneously diagonalizable} \]
 \[\implies \mathbb{R}^X = V_0 \perp \ldots \perp V_d \text{ orthogonal sum of maximal common eigenspaces} \]
Johnson and Grassmann scheme

- Let $k \leq \frac{n}{2}$ and $X = \binom{V}{k}$.
- For $i \in \{0, \ldots, k\}$ define the relation $U_1 \ R_i \ U_2 \iff \operatorname{rk}(U_1 \cap U_2) = k - i$.
- Then $(X, (R_0, \ldots, R_k))$ is a k-class association scheme.

Set case: Johnson scheme

q-analog case: Grassmann scheme or q-Johnson scheme.

- Maximal common eigenspaces V_i can be ordered s.t.
 \[
 \overline{V}_i := V_0 \perp \ldots \perp V_i = \mathbb{R}\text{-row space of } W^{(ki)},
 \]
 where $W^{(ki)}$ is $\binom{V}{k}$-vs-$\binom{V}{i}$ incidence matrix.
The Degree

- Let $f : \binom{V}{k} \rightarrow \mathbb{R}$.
- Definition (via algebraic property):
 Degree $\text{deg}(f) := \text{smallest } d \text{ such that } f \in \bar{V}_d$.
- Let x_U be characteristic function of
 $\{K \in \binom{V}{k} \mid U \leq K\}$ (rk(U)-pencil)
- Dually: Let \bar{x}_U be characteristic function of
 $\{K \in \binom{V}{k} \mid U \geq K\}$ (dual rk(U)-pencil).
- Alternative characterization of degree:
 $\text{deg}(f)$ is smallest d
 such that f is a linear combination of d-pencils.
 The (unique) coefficients are called weights $\text{wt}_f(D)$ of f:
 \[
 f = \sum_{D \in \binom{V}{d}} \text{wt}_f(D) x_D
 \]
- $\Rightarrow \text{deg}(f) = 0 \iff f \text{ constant.}$
Lemma

- \(\deg(\lambda f) = \deg(f) \) for all \(\lambda \in \mathbb{R} \setminus \{0\} \).
- \(\deg(f + g) \leq \max(\deg(f), \deg(g)) \)
- \(\deg(fg) \leq \deg(f) + \deg(g) \)

Theorem

Let \(\text{rk} \, I \leq k \) and \(n - \text{rk} \, J \leq k \).

- \(\deg(x_I) = \text{rk} \, I \)
- \(\deg(\bar{x}_J) = n - \text{rk} \, J \)

Proof.

First part: Use that the \(\text{Aut}(\mathcal{L}(V)) \)-orbit of \(x_U \) spans \(V_{\text{rk} \, U} \).

Second part:

- Set up linear equation system for the weights, assuming that \(\text{wt}(I) \) only depends on \(\text{rk}(I \cap J) \).
- Equation system matrix is an invertible triangular matrix.
What are the weights of \bar{x}_U?

Theorem

Let $i \in \{0, \ldots, k\}$, $J \in \binom{V}{n-i}$, $I \in \binom{V}{i}$ and $z = \text{rk}(I \cap J)$. Then

$$\text{wt}_{\bar{x}_J}(I) = \begin{cases}
\delta_{z,k} & \text{if } i = k, \\
(-1)^{i-z} \frac{1}{q^{(k-i)(i-z)} + \binom{i-z}{2}} \binom{k-i}{1} \binom{k-z}{z} & \text{otherwise}.
\end{cases}$$

Proof.

Compute the solutions of the above equation system. Use negation formula and q-Vandermonde formula for Gaussian coefficients.
Boolean functions

- Identify sets $\mathcal{F} \subseteq \binom{V}{k}$ with their characteristic function $\chi_{\mathcal{F}}$, commonly called Boolean function in this context.
- In this way: Define $\deg(\mathcal{F}) = \deg(\chi_{\mathcal{F}})$.
- Is there a geometric characterization of $\deg(\mathcal{F})$? Suitable generalization of “spread”?

Definition: Design

A set $\mathcal{D} \subseteq \binom{V}{k}$ is called a $t-(n, k, \lambda)_q$ design, if every $T \in \binom{V}{t}$ is contained in exactly λ elements of \mathcal{D}.

Fact (Delsarte)

\mathcal{D} is a $t-(n, k, \lambda)_q$-design if and only if $\chi_{\mathcal{D}} \in V_0 \perp V_{t+1} \perp V_{t+2} \perp \ldots \perp V_k$.
Combined with Delsarte’s concept of pairwise orthogonality, this leads to:

Fact (Geometric property of the degree)

Let $\mathcal{F} \subseteq \binom{V}{k}$. If $d = \deg \mathcal{F}$, then for each d-$(n, k, \lambda)_q$ design \mathcal{D},

$$\#(\mathcal{F} \cap \mathcal{D}) = \frac{\#\mathcal{F} \cdot \#\mathcal{D}}{\binom{n}{k}}$$

Remark

- Important open question: Is the reverse implication true?
- Would follow if the characteristic functions of d-designs span $V_0 + V_{d+1} + V_{d+2} + \ldots + V_k$.
 (Richness statement about existence of designs)
- Hard question: This would imply Hartman’s conjecture from 1987.
Boolean degree 1 functions

- Set case: (Filmus, Ihringer 2019)
 Only the trivial examples x_P and \overline{x}_H ($P \in [V]_1$, $H \in [V]_{n-1}$).

- q-analog case:
 Boolean degree 1 function = Cameron-Liebler set of $(k-1)$-spaces in $\text{PG}(n-1, q)$.
 Non-trivial examples do exist.
 Complete classification probably out of reach.
Change of ambient space

Implication of change of ambient space

- $V \rightarrow H \quad (H \in \binom{V}{n-1} \text{ hyperplane})$
- $V \rightarrow V/P \quad (P \in \binom{V}{1} \text{ point})$

on the degree?
Theorem
Let $P \in [V]_1$ and
\[\mathcal{A} = \{ g : [V]_k \rightarrow \mathbb{R} \mid g(K) = 0 \text{ for all } K \in [V]_k \text{ with } P \not\subseteq K \} . \]
Then
\[\Phi : \mathbb{R}^{[V/P]}_{k-1} \rightarrow \mathcal{A}, \quad \Phi(f) : K \mapsto \begin{cases} f(K/P) & \text{if } P \subseteq K, \\ 0 & \text{if } P \not\subseteq K \end{cases} \]
is an isomorphism of \mathbb{R}-vector spaces and \[\deg_V \Phi(f) = \deg_{V/P}(f) + 1 \text{ (except certain border cases).} \]

Proof.

▶ Everything straightforward, except
“$\deg_V \Phi(f) \geq \deg_{V/P}(f) + 1$”.

▶ Lemma. $P \not\subseteq D \implies \operatorname{wt}_g(D) = 0$ for all $g \in \mathcal{A}, D \in [V]_{\deg(g)}$.

▶ Can be shown using a result of Guo, Li, Wang (2014) stating that the incidence matrices of certain attenuated geometries are of full rank.
Theorem
Let $H \in \mathcal{V}_{n-1}$ and

$$\mathcal{B} = \{ g : \mathcal{V}_k \to \mathbb{R} \mid g(K) = 0 \text{ for all } g \in \mathcal{V}_k \text{ with } K \not\in H \}.$$

Then

$$\Psi: \mathbb{R}^{[H]} \to \mathcal{B}, \quad \Psi(f): K \mapsto \begin{cases} f(K) & \text{if } P \subseteq H, \\ 0 & \text{if } P \not\subseteq H \end{cases}$$

is an isomorphism of \mathbb{R}-vector spaces and

$$\deg_{\mathcal{V}}(\Psi(f)) = \deg_{\mathcal{H}}(f) + 1 \text{ (except certain border cases).}$$

Proof.
Follows from the previous theorem by dualization. \qed
Basic sets of degree d

- Let $I, J \in \mathcal{L}(V)$ with $I \leq J$ and $\text{rk} \ I + \text{cork} \ J \leq k$ where $\text{corank} \ \text{cork} \ J = n - \text{rk} \ J$.
- Let $\mathcal{F}(I, J) = \{ K \in \binom{V}{k} \mid I \leq K \leq J \}$.
- By the above theorems

$$\text{deg} \ \mathcal{F}(I, J) = \text{rk} \ I + \text{cork} \ J.$$

- Basic sets include pencils ($\text{rk} \ I = 0$) and dual pencils ($\text{cork} \ J = 0$).
The paired construction

- Construction for the set case \(q = 1 \).
- Idea: Disjoint union of two “opposite” basic sets.
- Let \(I, J \subseteq V \) disjoint, not both empty. Let

\[
P(I, J) = \mathcal{F}(I, J^c) \cup \mathcal{F}(J, I^c)
\]

- Clear: \(\deg P(I, J) \leq \min(\#I + \#J, k) \).
- There are cases with a strict “<”!
Theorem
Let $q = 1$, $I, J \subseteq V$ disjoint, $i = \#I$, $j = \#J$, $k \leq \frac{n}{2}$, $i \leq k \leq n - i$, $j \leq k \leq n - j$.

In the cases

1. $i + j \leq k$ and $i + j$ odd;
2. $i + j \geq k$ and k odd and $n = 2k$

we have $\deg P(I, J) \leq \min(i + j, k) - 1$.

Proof (Idea).
Case 1: Write $\chi_{P(I,J)}$ as an integer linear combination of basic characteristic functions of degree $i + j - 1$.

Case 2: Induction based on

- $P(X, Y) = P(X \cup \{x\}, Y) \cup P(X, Y \cup \{x\})$
 (where $X, Y, \{x\}$ are pairwise disjoint)
- $P(K, J) = P(K, \emptyset)$ for $K \in \binom{V}{k}$ and all J.
- Case 1
Small sets of degree d

- Natural question: Smallest size $m_q(d, k, n)$ of a non-empty set of degree d?
- From $\deg x_D = d$ we get the trivial bound

$$ m_q(d, k, n) \leq \left\lceil \frac{n - d}{k - d} \right\rceil. $$

- Trivial bound is sharp for $d = 1$.
- For $q = 1$, $n = 2k$, $d \geq 2$ even, $i = 0$ and $j = d + 1$, the paired construction beats the trivial bound!

Corollary

Let $d \in \{0, \ldots, k - 1\}$ be even. Then

$$ m_1(d, k, 2k) \leq 2 \cdot \binom{2k - d - 1}{k}. $$
Thank you!

Slides will be uploaded at
https://mathe2.uni-bayreuth.de/michaelk/