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Subset lattice
I Let V be a v -element set.
I
(V

k

)
:= Set of all k -subsets of V .

I #
(V

k

)
=
(v

k

)
.

I Subsets of V form a distributive lattice (wrt. ⊆).

Definition
D ⊆

(V
k

)
is a t-(v , k , λ) (block) design if

each T ∈
(V

t

)
is contained in exactly λ blocks (elements of D).

Idea of q-analogs in combinatorics
Replace subset lattice by subspace lattice!



Subset lattice (repeated)
I Let V be a v -element set.
I
(V

k

)
:= Set of all k -subsets of V .

I #
(V

k

)
=
(v

k

)
.

I Subsets of V form a distributive lattice (wrt. ⊆).

Subspace lattice
I Let V be a v -dimensional Fq vector space.
I Grassmannian

[V
k

]
q := Set of all k -dim. subspaces of V .

I Gaussian binomial coefficient

#

[
V
k

]
q
=

[
v
k

]
q
=

(qv − 1)(qv−1 − 1) · . . . · (qv−k+1 − 1)
(q − 1)(q2 − 1) · . . . · (qk − 1)

I Subspaces of V form a modular lattice (wrt. ⊆).



Projective geometry
I Subspace lattice of V = projective geometry PG(v − 1,q)

I Elements of
[V

1

]
q are points.

I Elements of
[V

2

]
q are lines.

I Elements of
[V

3

]
q are planes.

I Elements of
[V

4

]
q are solids.

I Elements of
[ V

v−1

]
q

are hyperplanes.

Advantage of geometric point of view
I Access to deep results

developed in decades of research on finite geometries.
I Geometry provides intuition.

Attention!
I Dimensions are off by 1:

Vector space of algebraic dimension v
←→ projective geometry of geometric dimension v − 1.



Definition (block design, stated again)
Let V be a v -element set.
D ⊆

(V
k

)
is a t-(v , k , λ) (block) design
if each T ∈

(V
t

)
is contained in exactly λ elements of D.

q-analog of a design?

Definition (subspace design)
Let V be a v -dimensional Fq vector space.
D ⊆

[V
k

]
q is a t-(v , k , λ)q (subspace) design

if each T ∈
[V

t

]
q is contained in exactly λ elements of D.

I If λ = 1: D q-Steiner system
I If λ = 1, t = 2, k = 3: D q-Steiner triple system STSq(v)
I Geometrically:

STSq(v) is a set of planes in PG(v − 1,q)
covering each line exactly once.



Lemma
Let D be a t-(v , k , λ)q design and i , j ∈ {0, . . . , t} with i + j ≤ t .
Then for all I ∈

[V
i

]
q and J ∈

[ V
v−j

]
q

with I ⊆ J

λi,j := #{B ∈ D | I ⊆ B ⊆ J} = λ

[v−i−j
k−i

]
q[v−t

k−t

]
q

.

In particular, #D = λ0,0.

Corollary: Integrality conditions
If a t-(v , k , λ)q design exists, then all λi,j ∈ Z.

Sufficient to check: λi := λi,0 ∈ Z (Parameters admissible)

Corollary
STSq(v) admissible ⇐⇒ v ≡ 1,3 (mod 6).



STSq(v) for small admissible v
I v = 3

STSq(3) = {V} exists trivially.
I v = 7

q-analog of the Fano plane STSq(7).
Existence undecided for every field order q.

Most important open problem in q-analogs of designs.

I v = 9
existence open for every q.

I v = 13
STS2(13) exists (Braun, Etzion, Östergård, Vardy,
Wassermann 2013)
Only known non-trivial STSq.



q-Pascal triangle for STSq(7) D

λ0,0 = q8 + q6 + q5 + q4 + q3 + q2 + 1

λ1,0 = q4 + q2 + 1 λ0,1 = q5 + q3 + q2 + 1

λ2,0 = 1 λ1,1 = q2 + 1 λ0,2 = q2 + 1

I Each point P is contained in λ1,0 = q4 + q2 + 1 blocks.
I  derived design wrt P (“local point of view from P”)

DerP(D) = {B/P | B ∈ D with P ⊆ B} ⊆ V/P

I In general: DerP(D) is (t − 1)-(v − 1, k − 1, λ)q design.
I =⇒ DerP(STSq(7)) is 1-(6,2,1)q design.

= set of lines in PG(5,q) covering each point exactly once.
I In other words: Der(STSq(7)) is a line spread of PG(5,q).



α-points
I spread S called geometric if for all distinct L1,L2 ∈ S:
{L ∈ S | L ⊆ L1 + L2} is spread of the solid L1 + L2.

I P is called α-point of STSq(7)
if the derived design in P is a geometric spread.

I S. Thomas 1996: There exists a non-α-point.
I O. Heden, P. Sissokho 2016: For q = 2:

Each hyperplane contains non-α-point.
I Goal: Investigate Heden-Sissokho result for general q!



I Assume that H is hyperplane containing only α-points.
I Fix a poor solid S in H (not containing any block).
I Let F = {F ∈

[H
5

]
q | S ⊆ F}.

We have #F = q + 1.
I For F ∈ F , let

LF := {B ∩ S | B ∈ D and B + S = F}.

I Lemma
I LF is a line spread of S.
I The sets LF with F ∈ F are pairwise disjoint.



Conclusion
L :=

⊎
F∈F LF is a set of (q + 1)(q2 + 1) lines in PG(3,q)

admitting a partition into q + 1 line spreads.

Lemma
For each point P in S, the q + 1 lines in L passing through P
span only a plane EP .
(In other words, the lines form a pencil in EP through P.)

Lemma
(
[S

1

]
q,L) is a projective generalized quadrangle of order (q,q).



Classification
Classification of projective generalized quadrangles:
(F. Buekenhout, C. Lefèvre 1974)
=⇒ (

[S
1

]
q,L) is symplectic generalized quadrangle W (q).

Implication
I By property of L:

The lines of W (q) admit a partition into q + 1 line spreads.
I Equivalently: The points of the parabolic quadric Q(4,q)

admit a partition into ovoids.
I Not possible for even q.

I Payne, Thas: Finite generalized quadrangles, 3.4.1(i)
I Not possible for prime q.

I Ball, Govaerts, Storme 2006:
Each ovoid in Q(4,q) is an elliptic quadric.

I Any two of them have non-trivial intersection.



Theorem
Let q be prime or even and D a STSq(7).
Then each hyperplane contains a non-α-point of D.

Research problem
I Investigate the remaining q

(i.e. q a proper odd prime power).
I Can “each 5-subspace contains non-α-point” be shown?

arXiv preprint
https://arxiv.org/abs/2105.00365

https://arxiv.org/abs/2105.00365


Thank you!

Slides can be found at
https://www.mathe2.uni-bayreuth.de/michaelk/
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