On divisible linear codes

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth
Germany

BCC 2021: 28th British Combinatorial Conference
Mini-symposium “Codes and cryptography”
July 8, 2021
Durham University (held online)
Fixed notation

- p prime
- q a power of p
 \[\Rightarrow \text{char } \mathbb{F}_q = p \]

Divisible codes

- Introduced by Harold Ward in 1981 [12].
- \mathbb{F}_q-linear code C Δ-divisible : $\iff \Delta \mid w(c)$ for all $c \in C$.
- Example: extended Golay codes.

 binary: weight enumerator $\left(0^1 8^{759} 12^{2576} 16^{759} 24^1\right)$
 \[\Rightarrow 4\text{-divisible} \]

 ternary: weight enumerator $\left(0^1 6^{264} 9^{440} 12^{24}\right)$
 \[\Rightarrow 3\text{-divisible} \]
Why divisible codes?

- Many good codes are divisible.
- Connection to duality:
 - binary 4-divisible \implies self-orthogonal
 - binary self-orthogonal \implies 2-divisible
 - ternary self-orthogonal \implies 3-divisible
 - quaternary Hermitean self-orthogonal \implies 2-divisible
- Generalizes constant-weight codes, two-weight codes.
- Interconnections to other research areas like Galois geometries, subspace codes.
- Interesting results and conjectures.
Divisibility of Griesmer-optimal codes

Let C be a $[n, k, d]_q$-code.

- **Griesmer bound:** $n \geq \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil$

- In case of equality: C Griesmer code

- **Theorem (H. Ward 1998 [14]) for q prime:**
 C Griesmer code with $q^r \mid d \implies C$ is q^r-divisible.

- Example: C extended ternary $[12, 6, 6]_3$ Golay code.

$$\sum_{i=0}^{5} \left\lceil \frac{6}{3^i} \right\rceil = 6 + 2 + 1 + 1 + 1 + 1 = 12 \implies C$ Griesmer code$$

$3 \mid 6 = d$ and indeed, C is 3-divisible.

- **Conjecture (H. Ward 2001 [16]), generalization for all q:**
 C Griesmer code with $p^r \mid d \implies C$ is p^r+1/q-divisible

- **Theorem (H. Ward 2001 [16]):** Conjecture true for $q = 4$.

- No real progress since 2001.
Initial observations

Zero positions

▷ zero positions don’t affect divisibility ⟺ can be removed.
▷ enough to study full-length codes (no zero positions).
▷ # non-zero positions = effective length

Restriction on Δ

▷ Corollary of result of H. Ward 1981 [12, Th. 1]:

Any full-length Δ-divisible \mathbb{F}_q-linear code is the repetition of a Δ'-divisible \mathbb{F}_q-linear code with $\Delta' = \gcd(\Delta, q)$.

▷ $\Delta' \mid q \implies \Delta'$ is a power of $p = \text{char}(\mathbb{F}_q)$

\implies enough to consider $\Delta = p^a$ ($a \in \mathbb{N}$)
Outline

Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
First upper bound on the dimension:

Lemma (Ward 1999 [15, Lem. 6])

Let C be a Δ-divisible linear $[n, k]_q$-code with $\Delta \geq 2$ and $(\Delta, q) \neq (2, 2)$.

Then $k \leq \frac{n}{2}$.

Characterization of the extremal cases:

Theorem (“Gleason-Pierce-Ward”, Ward 1981 [12, Th. 2])

Let n be even and C a Δ-divisible $[n, \frac{n}{2}]_q$-code.

Then C falls into one of the following cases.

(I) $q = 2$ and $\Delta = 2$.

(II) $q = 2$, $\Delta = 4$ and C is self-dual.

(III) $q = 3$, $\Delta = 3$ and C is self-dual.

(IV) $q = 4$, $\Delta = 2$ and C is Hermitean self-dual.

(V) q arbitrary, $\Delta = 2$ and C is the 2-fold repetition of $\mathbb{F}_q^{n/2}$.
Remark

- The Gleason-Pierce-Ward theorem generalizes the Gleason-Pierce theorem from the 1960s.
- Roughly speaking: For the generalization, self-duality is replaced by divisibility (in the requirement on C).
- Bound $k \leq \frac{n}{2}$ is weak for (q, Δ) not listed in the theorem.

→ Improvement?
Best known general upper bound on the dimension:

Theorem ("divisible code bound", H. Ward 1992 [13])

If the non-zero weights of C are among $(b - m + 1)\Delta, (b - m + 2)\Delta, \ldots, b\Delta$, then

$$
\dim(C) \leq \frac{m(v_p(\Delta) + v_p(q)) + v_p(\binom{b}{m})}{v_p(q)}.
$$

Remark on the proof

- original 1992 proof by character-theoretic and number-theoretic arguments.
- H. Ward 2001 “The divisible code bound revisited” [16]: alternative proof based on divisibility properties of Stirling numbers (of both kind).
Example
Dimension k of 8-divisible binary codes of length $n = 48$?

- non-zero weights are in $\{8, 16, 24, 32, 40, 48\}$, so $b = m = 6$.

 divisible code bound: $k \leq \frac{6 \cdot (3+1) + 0}{1} = 24$.

 \leadsto no improvement of $k \leq \frac{n}{2}$

- little trick: Assume that C does not contain the all-1 word.

 non-zero weights are in $\{8, 16, 24, 32, 40\}$, so $b = m = 5$.

 divisible code bound: $k \leq \frac{5 \cdot (3+1) + 0}{1} = 20$.

 If C contains the all-1 word,
 C has a subcode of the above type of codimension 1.

 Altogether, $k \leq 20 + 1 = 21$.

- Classification of K. Betsumiya and A. Munemasa 2012 [1]: sharp bound is $k \leq 15$.
Research problem

- H. Ward 2001 [16]: “The divisible code bound can be disappointingly weak [...]”
- still: best known general bound on the dimension.
- Improve the divisible code bound!
Outline

Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
The effective length

- **Goal:** Characterize the effective lengths of q^r-divisible codes. (will be called realizable)

- **Observation:** Set of realizable lengths additively closed. (Direct sum of codes!)

- First step: Find small starters.
Lemma
The following lengths are realizable:
\[s_q(r, i) := q^i \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0, \ldots, r\}) \]

Proof.

- Simplex code of dimension \(r - i + 1 \):
 Length \(\frac{q^{r-i+1} - 1}{q - 1} \) and constant weight \(q^{r-i} \).
- Take \(q^i \)-fold repetition.

By additivity:

Lemma
The following lengths are realizable:
\[n = a_0 s_q(r, 0) + a_1 s_q(r, 1) + \ldots + a_r s_q(r, r) \quad (a_0, a_1, \ldots, a_r \in \mathbb{N}_0) \]

We will see: That’s all!
The numbers
\[s_q(r, i) = q^i \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0, \ldots, r\}) \]

have the property
\[q^i \mid s_q(r, i) \quad \text{but} \quad q^{i+1} \nmid s_q(r, i). \]

\[\implies S_q(r) = (s_q(r, 0), s_q(r, 1), \ldots s_q(r, r)) \]

suitable base numbers of a positional number system.

Each \(n \in \mathbb{Z} \) has unique \(S_q(r) \)-adic expansion
\[n = a_0 s_q(r, 0) + a_1 s_q(r, 1) + \ldots + a_r s_q(r, r) \quad (\ast) \]

with \(a_0, \ldots, a_{r-1} \in \{0, \ldots, q - 1\} \)
and leading coefficient \(a_r \in \mathbb{Z} \).

(Reason: Equation (\(\ast \)) \(\mod q, q^2, q^3 \ldots \) yields unique \(a_0, a_1, a_2, \ldots \))
Theorem 1 (MK, S. Kurz 2020 [6, Th. 1])
Let \(n \in \mathbb{Z} \) and \(r \in \mathbb{N}_0 \). Then:

There exists a \(q^r \)-divisible \(\mathbb{F}_q \)-linear code of effective length \(n \) \(\iff \)

The leading coefficient of the \(S_q(r) \)-adic expansion of \(n \) is \(\geq 0 \).

Example
- \(q = 3, r = 3 \leadsto S_q(3) = (40, 39, 36, 27) \).
- \(S_q(3) \)-adic expansion of \(n = 137 \) is
 \[
 137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27.
 \]
- Theorem 1 \(\implies \) No ternary 27-divisible code of effective length 137.
Research problem

- Theorem 1 only covers $\Delta = q^a$ with $a \in \mathbb{N}$.
- Example: 8-divisible over \mathbb{F}_4 not covered.
- Find generalization for $\Delta = p^a$ with $p = \text{char}(\mathbb{F}_q)$, $a \in \mathbb{N}$.
Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
Linear codes and points

- \mathbb{F}_q-linear code C of effective length n and dim. k
 \longleftrightarrow multiset \mathcal{P} of n points in $\text{PG}(k-1, q)$.
 (read columns of generator matrix as homogeneous coordinates)

- nonzero codeword c of C
 \longleftrightarrow hyperplane $H = c^\perp$ in $\text{PG}(V)$

- $w(c) = n - \#(\mathcal{P} \cap H)$.

- C Δ-divisible
 \iff $\#(\mathcal{P} \cap H) \equiv \#\mathcal{P}$ (mod Δ) for all hyperplanes H.
 In this case: Call \mathcal{P} Δ-divisible.

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.
Definition

- Let V be \mathbb{F}_q vector space of dimension v.
- Let S be a set of k-subspaces of V.
- S is partial $(k - 1)$-spread if each point in $\text{PG}(V)$ is covered by at most 1 element of S.

Research Problem
Find maximum possible size $A_q(v, k)$ of partial spread.
History

Write $v = tk + r, r \in \{0, \ldots, k - 1\}, t \geq 2$.

- **1964 Segre [11]:**
 All points can be covered $\iff k \mid v$ (settles $r = 0$).
 In this case, S spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

- **1975 Beutelspacher [2]:**
 \[
 A_q(v, k) \geq \frac{q^v - q^{k+r}}{q^k - 1} + 1 \quad (\ast)
 \]
 Bound sharp for $r = 1$.

- **1979 Drake, Freeman [3]:** Better upper bound on $A_q(v, k)$.

- **2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence [18]:**
 Computer construction for $A_2(8, 3) = 34$.
 Settles all cases with $q = 2, r = 2, k = 3$ recursively.
 Here, bound (\ast) is not sharp!

- **2017 Kurz [8]:** Bound (\ast) sharp for $q = 2, r = 2, k \geq 4$.

- **2017 Năstase, Sissokho [9]:** (\ast) sharp whenever $k > \left\lceil \frac{1}{q} \right\rceil$.
Năstase and Sissokho as a corollary from Theorem 1

- Let S be partial $(k - 1)$-spread.
- Set \mathcal{P} of holes (points not covered by S) is q^{k-1}-divisible!
- Assume $\#S = \frac{q^r-q^{k+r}}{q^{k-1}} + 2$.

\[
\implies \#\mathcal{P} = \begin{bmatrix} k + r \\ 1 \end{bmatrix}_q - 2 \begin{bmatrix} k \\ 1 \end{bmatrix}_q
\]

$S_q(k - 1)$-adic ex. $= \sum_{i=0}^{k-2} (q - 1)s_q(k - 1, i)$

$+ \left(q \cdot \left(\begin{bmatrix} r \\ 1 \end{bmatrix}_q - k + 1 \right) - 1 \right) s_q(k - 1, k - 1)$

- Theorem 1: Leading coefficient $q \cdot \left(\begin{bmatrix} r \\ 1 \end{bmatrix}_q - k + 1 \right) - 1 \geq 0$.

\[\iff k \leq \left[\begin{bmatrix} r \\ 1 \end{bmatrix}_q \right].\]
Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
The Johnson bound for subspace codes

- Most competitive bound for subspace codes:
 Johnson type bound II (Xia, Fu 2009) [17]

\[A_q(v, d; k) \leq \left\lfloor \frac{q^v - 1}{q^k - 1} \cdot A_q(v - 1, d; k - 1) \right\rfloor \]

- Similar to partial spreads: Improvement via divisible codes.

Example

- Johnson type bound II:

\[A_2(9, 6; 4) \leq \left\lfloor \frac{2^9 - 1}{2^4 - 1} \cdot A_2(8, 6; 3) \right\rfloor = 1158 \]

- Improvement [6]:

\[A_2(9, 6; 4) \leq 1156 \]
Outline

Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
Motivation

▶ ∃ partial 3-spread in \mathbb{F}_{2}^{11} of size 133?
▶ Hole set \mathcal{P} is 8-divisible multiset of size 52.

$S_2(3)$-adic expansion:

$$52 = 0 \cdot 15 + 0 \cdot 14 + 1 \cdot 12 + 5 \cdot 8$$

⇝ no contradiction.

▶ However, \mathcal{P} is a set (not only a multiset).
▶ Geometrically:

sets of points \longleftrightarrow projective linear codes.

▶ Will see: $\not\exists$ projective 8-divisible code of length 52.

$\implies \not\exists$ 3-spread in \mathbb{F}_{2}^{11} of size 133.

$\implies 129 \leq A_2(11, 4) \leq 132$ (best known bounds of today)
Projective divisible codes

- Study effective lengths of projective linear codes.
- As before: Set of realizable lengths additively closed.
- Find small starters.

Lemma

The following lengths are realizable:

\[n_1 = \frac{q^{r+1} - 1}{q - 1} \quad \text{and} \quad n_2 = q^{r+1} \]

Proof.
Simplex code of dim. \(r + 1 \) and
1st order Reed-Muller code of dim. \(r + 2 \).

Question: Are all realizable lengths sum of \(n_1 \)'s and \(n_2 \)'s?
Theorem 2 (T. Honold, MK, S. Kurz)
Length $n \leq rq^{r+1}$ realizable \iff n sum of n_1’s and n_2’s.

Restriction $n \leq rq^{r+1}$ necessary?

- Yes!
- For $r = 1$, $q^2 + 1$ is realizable (ovoid in $\text{PG}(3, q)$).
- Classification of lengths of projective divisible code apparently quite hard.
Theorem 3 (T. Honold, MK, S. Kurz, A. Wassermann 2020) [4, Th. 13] & [5])

(a) The lengths of projective 2-divisible (even) binary codes are

\[3, 4, 5, 6, \ldots\]

(b) The lengths of projective 4-divisible (doubly even) binary codes are

\[7, 8, 14, 15, 16, 17, \ldots\]

(c) The lengths of projective 8-divisible (triply even) binary codes are

\[15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51, 60, 61, 62, 63, \ldots\]

Hardest single case (by far)
Non-existence of 8-divisible code of length 59.
Research problem

Undecided effective lengths exist for:

- $q = 2, \Delta = 16.$
- $q = 3, \Delta = 9.$
- $q = 5, \Delta = 5.$
- ...
Outline

Parameters of divisible codes: The dimension

Parameters of divisible codes: The effective length

Application in Galois geometries: partial spreads

Application in subspace coding

Projective divisible codes

Generalization of a theorem by Huffman and Pless
Theorem 4 (MK, S. Kurz, submitted [7])

Let C be full-length Δ-divisible code spanned by codewords of weight Δ.
Then C is isomorphic to the direct sum of repeated codes of the following form:

- q-ary simplex code.
- Only $q = 2$: binary first order Reed-Muller code.
- Only $q = 2$: binary parity check code.

Remarks

- Generalizes Thm. 6.5 in [10] (Pless and Sloane 1975) on self-orthogonal binary codes spanned by weight-4-words.
- Motive of the generalization (again):
 Replace orthogonality by divisibility.
- Application:
 Classification of more general Δ-divisible codes by looking at the subcode spanned by weight-Δ-words.
Thank you!

Slides can be found at
https://www.mathe2.uni-bayreuth.de/michaelk/

