Derived designs of *q*-Fano planes and *q*-analogs of group divisible designs

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Academy Contact Forum "Coding Theory and Cryptography VIII" September 27, 2019 Brussels, Belgium

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Most frequent image in discrete math.
- Fano plane.

- Smallest projective plane.
- Smallest non-trivial Steiner triple system.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Block designs and their *q*-analogs

Derived *q*-Fano planes and α -points

q-analogs of group divisible designs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Block designs and their q-analogs

Derived q-Fano planes and α -points

q-analogs of group divisible designs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Subset lattice

Let V be a v-element set.

•
$$\binom{V}{k} :=$$
 Set of all *k*-subsets of *V*.

$$\blacktriangleright \# \binom{V}{k} = \binom{V}{k}.$$

Subsets of V form a distributive lattice (wrt. \subseteq).

Definition $D \subseteq \binom{V}{k}$ is a *t*-(*v*, *k*, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ blocks (elements of *D*).

- If $\lambda = 1$: *D* Steiner system
- If $\lambda = 1$, t = 2 and k = 3: D Steiner triple system STS(v)

Example

$$\begin{split} V &= \{1,2,3,4,5,6,7\} \\ D &= \{\{1,2,7\},\{1,3,6\},\{1,4,5\},\{2,3,5\}, \\ & \{2,4,6\},\{3,4,7\},\{5,6,7\}\} \end{split}$$

Fano plane D is a 2-(7,3,1) design, i.e an STS(7).

Lemma

Let *D* be a *t*-(v, k, λ) design and $i, j \in \{0, ..., t\}$ with $i + j \le t$. Then for all $I \in \binom{V}{i}$ and $J \in \binom{V}{v-j}$ with $I \subseteq J$

$$\lambda_{i,j} := \#\{B \in D \mid I \subseteq B \subseteq J\} = \lambda \cdot \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}.$$

In particular, $\#D = \lambda_{0,0}$.

Example

Fano plane STS(7) ($v = 7, k = 3, t = 2, \lambda = 1$):

$$\lambda_{0,0} = 7$$

 $\lambda_{1,0} = 3$
 $\lambda_{0,1} = 4$
 $\lambda_{2,0} = 1$
 $\lambda_{1,1} = 2$
 $\lambda_{0,2} = 2$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Corollary: Integrality conditions

If a *t*-(ν , k, λ) design exists, then all $\lambda_{i,j} \in \mathbb{Z}$.

Sufficient to check: $\lambda_i \coloneqq \lambda_{i,0} \in \mathbb{Z}$ (Parameters admissible)

(日) (日) (日) (日) (日) (日) (日)

Lemma

STS(v) admissible $\iff v \equiv 1,3 \pmod{6}$.

STS(v) for small v

• $STS(3) = \{V\}$ exists trivially.

- Smallest non-trivial Steiner triple system: Fano plane STS(7).
- Next admissible case: STS(9) exists (affine plane of order 3).

Theorem (Kirkman 1847)

All admissible STS(v) do exist.

Subspace lattice

- Let *V* be a *v*-dimensional \mathbb{F}_q vector space.
- Grassmannian $\begin{bmatrix} V \\ k \end{bmatrix}_q :=$ Set of all *k*-dim. subspaces of *V*.
- Gaussian Binomial coefficient

$$\# \begin{bmatrix} V \\ k \end{bmatrix}_q = \begin{bmatrix} v \\ k \end{bmatrix}_q = \frac{(q^{\nu} - 1)(q^{\nu - 1} - 1) \cdot \ldots \cdot (q^{\nu - k + 1} - 1)}{(q - 1)(q^2 - 1) \cdot \ldots \cdot (q^k - 1)}$$

Subspaces of V form a modular lattice (wrt. \subseteq).

Subspace lattice of V = projective geometry PG(v - 1, q)

- Elements of $\begin{bmatrix} V \\ 1 \end{bmatrix}_q$ are points.
- Elements of $\begin{bmatrix} V \\ 2 \end{bmatrix}_a$ are lines.
- Elements of $\begin{bmatrix} V\\3 \end{bmatrix}_a$ are planes.
- Elements of $\begin{bmatrix} v \\ v-1 \end{bmatrix}_q$ are hyperplanes.

► Fano plane is the projective geometry PG(2,2).

q-analogs in combinatorics

Replace subset lattice by subspace lattice!

orig.	<i>q</i> -analog
v-element setV	<i>v</i> -dim. \mathbb{F}_q vector space <i>V</i>
$\binom{V}{k}$	$\begin{bmatrix} V\\ k \end{bmatrix}_q$
$\binom{v}{k}$	$\begin{bmatrix} v \\ k \end{bmatrix}_q$
cardinality	dimension
\cap	\cap
U	+
The subset lattice corresponds to $q = 1$.	
Sometimes: Unary field \mathbb{F}_1 .	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition (block design, stated again) Let V be a v-element set. $D \subseteq \binom{V}{k}$ is a t-(v, k, λ) (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ elements of D.

q-analog of a design?

Definition (subspace design) Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $D \subseteq {V \brack k}_q$ is a *t*-(*v*, *k*, $\lambda)_q$ (subspace) design if each $T \in {V \brack t}_q$ is contained in exactly λ elements of *D*.

• If $\lambda = 1$: *D q*-Steiner system

▶ If $\lambda = 1$, t = 2, k = 3: D q-Steiner triple system $STS_q(v)$

Geometrically: STS_q(v) is a set of planes in PG(v – 1, q) covering each line exactly once.

Lemma

Let *D* be a t- $(v, k, \lambda)_q$ design and $i, j \in \{0, ..., t\}$ with $i + j \le t$. Then for all $I \in \begin{bmatrix} v \\ i \end{bmatrix}_q$ and $J \in \begin{bmatrix} v \\ v-j \end{bmatrix}_q$ with $I \subseteq J$

$$\lambda_{i,j} \coloneqq \# \{ \boldsymbol{B} \in \boldsymbol{D} \mid \boldsymbol{I} \subseteq \boldsymbol{B} \subseteq \boldsymbol{J} \} = \lambda \frac{\begin{bmatrix} \boldsymbol{v} - i - j \\ \boldsymbol{k} - i \end{bmatrix}_{\boldsymbol{q}}}{\begin{bmatrix} \boldsymbol{v} - t \\ \boldsymbol{k} - t \end{bmatrix}_{\boldsymbol{q}}}$$

In particular, $\#D = \lambda_{0,0}$.

Corollary: Integrality conditions If a *t*-(v, k, λ)_{*q*} design exists, then all $\lambda_{i,j} \in \mathbb{Z}$. Sufficient to check: $\lambda_i := \lambda_{i,0} \in \mathbb{Z}$ (Parameters admissible) Lemma $STS_q(v)$ admissible $\iff v \equiv 1,3 \pmod{6}$.

 $STS_q(v)$ for small v

• v = 3: STS_q(3) = {V} exists trivially.

v = 7: q-analog of the Fano plane STS_q(7).
 Existence undecided for every field order q.

Most important open problem in *q*-analogs of designs.

▶
$$v = 9$$
: STS_q(9): existence open for every q.

 v = 13: Only known non-trivial *q*-STS: STS₂(13) exists (Braun, Etzion, Östergård, Vardy, Wassermann 2013) Status of the binary *q*-analog of the Fano plane.

$$\lambda_{0,0} = 381$$

$$\lambda_{1,0} = 21$$

$$\lambda_{0,1} = 45$$

$$\lambda_{0,1} = 5$$

$$\lambda_{0,2} = 5$$

STS₂(7) consists of
$$\lambda_{0,0} = 381$$
 blocks (out of $\begin{bmatrix} 7\\3 \end{bmatrix}_2 = 11811$ planes).

- Huge search space $\binom{11811}{381}$ has 730 digits).
- Heinlein, MK, Kurz, Wassermann 2019: Best known *packing* has size 333.
- Braun, MK, Nakić 2016; MK, Kurz, Wassermann 2018: STS₂(7) has at most 2 automorphisms.

For general *q*:

$$(q^{2}-q+1)[^{7}_{1}]_{q}$$

$$q^{4}+q^{2}+1$$

$$q^{2}+1$$

$$(q^{3}+1)(q^{2}+1)$$

$$q^{2}+1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theme for remainder of the talk

- Let *D* be a $STS_q(7)$.
- Fix a point *P*.
- What can be said about the "local" point of view of D from P?

Outline

Block designs and their q-analogs

Derived *q*-Fano planes and α -points

q-analogs of group divisible designs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Let P be a point.
- For t-(v, k, λ)_q design D: Derived design in P:

 $\{B/P \mid B \in D \text{ with } P \subseteq B\} \subseteq V/P$

is
$$(t-1)$$
- $(v-1, k-1, \lambda)_q$ design.

- For STS_q(7): Derived design is 1-(6, 2, 1)_q design.
- ► That is a set of λ_{1,0} = q⁴ + q² + 1 lines in PG(5, q) covering all points exactly once.
- In other words: The derived design of STS_q(7) in a point P is a line spread of PG(5, q).

- Spread S called geometric if for all distinct $L_1, L_2 \in S$: { $L \in S \mid L \subseteq L_1 + L_2$ } is spread of the solid $L_1 + L_2$.
- ► *P* is called α -point of STS_q(7) if the derived design in *P* is a geometric spread.
- S. Thomas 1996: There exists a non- α -point.
- O. Heden, P. Sissokho 2016: For q = 2: Each hyperplane contains non-α-point.
- ► Goal: Investigate Heden-Sissokho result for general *q*!

(ロ) (同) (三) (三) (三) (○) (○)

- Assume that *H* is hyperplane containing only α -points.
- Fix a poor solid *S* in *H* (not containing any block).

► Let
$$\mathcal{F} = \{F \in \begin{bmatrix}H\\5\end{bmatrix}_q \mid S \subseteq F\}$$
.
We have $\#\mathcal{F} = q + 1$.

For $F \in \mathcal{F}$, let

$$\mathcal{L}_{F} \coloneqq \{B \cap S \mid B \in D \text{ and } B + S = F\}.$$

Dimension formula: $\dim(B \cap S) = \dim(B) + \dim(S) - \dim(F) = 3 + 4 - 5 = 2.$ So \mathcal{L}_F is a set of lines in *S*.

• Lemma \mathcal{L}_F is a line spread of *S*.

Conclusion

 $\mathcal{L} := \biguplus_{F \in \mathcal{F}} \mathcal{L}_F$ is a set of $(q+1)(q^2+1)$ lines in PG(3, q) admitting a partition into q+1 line spreads.

Lemma

For each point *P* in *S*, the q + 1 lines in \mathcal{L} passing through *P* span only a plane E_P .

(In other words, the lines form a pencil in E_P through P.)

Corollary $\left(\begin{bmatrix} S\\1 \end{bmatrix}_q, \mathcal{L} \right)$ is a generalized quadrangle.

Classification

Classification of projective generalized quadrangles:

(F. Buekenhout, C. Lefèvre 1974)

 $\implies (\begin{bmatrix} S\\1 \end{bmatrix}_q, \mathcal{L})$ is symplectic generalized quadrangle W(q).

► By property of L: The lines of W(q) admit a partition into q + 1 line spreads.

- Equivalently: The points of the parabolic quadric Q(4, q) admit a partition into ovoids.
- Not possible for even *q*.
 - Payne, Thas: Finite generalized quadrangles, 3.4.1(i)
- Not possible for prime *q*.
 - Ball, Govaerts, Storme 2006:
 Each ovoid in Q(4, q) is an elliptic quadric.
 - Any two of them have non-trivial intersection.

Theorem

Let *q* be prime or even and *D* a $STS_q(7)$.

Then each hyperplane contains a non- α -point of *D*.

Research problem

Investigate the remaining q (i.e. q a proper odd prime power).

Outline

Block designs and their *q*-analogs

Derived q-Fano planes and α -points

q-analogs of group divisible designs

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

joint work with S. Kurz, A. Wassermann.

Definition (Classical group divisible design) Let V be a finite set of size v. $(\mathcal{G}, \mathcal{B})$ is a (v, k, λ, g) group divisible design (gdd), if

- $\mathcal{G} \subseteq \binom{V}{q}$ is a partition of V.
- $\blacktriangleright \ \mathcal{B} \subseteq \binom{V}{k}$
- ▶ such that each $T \in \binom{V}{2}$ is either contained in a group, or in exactly λ blocks.

(日) (日) (日) (日) (日) (日) (日)

Example

A (6,3,1,2)-gdd. (So: $v = 6, k = 3, \lambda = 1, g = 2$)

$$\begin{split} &V = \{1,2,3,4,5,6\} \\ &\mathcal{G} = \{\{1,2\},\{3,4\},\{5,6\}\} \\ &\mathcal{B} = \{\{1,3,6\},\{1,4,5\},\{2,3,5\},\{2,4,6\}\} \end{split}$$

Definition (*q*-analog of group divisible design) Let *V* be a *v*-dimensional \mathbb{F}_q vector space. $(\mathcal{G}, \mathcal{B})$ is a $(v, k, \lambda, g)_q$ group divisible design (gdd), if $\blacktriangleright \mathcal{G} \subseteq \begin{bmatrix} V \\ g \end{bmatrix}_q$ is a spread of *V*. $\triangleright \mathcal{B} \subseteq \begin{bmatrix} V \\ k \end{bmatrix}_q$

▶ such that each $T \in \begin{bmatrix} V \\ 2 \end{bmatrix}_q$ is either contained in a group, or in exactly λ blocks.

(日) (日) (日) (日) (日) (日) (日)

Lemma Let *D* be a 2- $(v, k, 1)_q$ Steiner system on *V* and $P \in \begin{bmatrix} V \\ 1 \end{bmatrix}_q$. Projection mod *P* is

$$\pi: \mathsf{PG}(V) \to \mathsf{PG}(V/P), \quad U \mapsto (U+P)/P$$

Set

$$\mathcal{G} \coloneqq \{\pi(B) \mid B \in D \text{ and } P \subseteq B\}$$

 $\mathcal{B} \coloneqq \{\pi(B) \mid B \in D \text{ and } P \not\subseteq B\}$

Then $(\mathcal{G}, \mathcal{B})$ is a $(v - 1, k, q^2, k - 1)_q$ -gdd.

Application to *q*-Fano plane Existence of $STS_q(7) \implies$ Existence of $(6,3,q^2,2)_q$ -gdd

Admissibility of the parameters

- 1. Spread \mathcal{G} exists $\iff g \mid v$
- 2. For all blocks $B \in \mathcal{B}$ and $G \in \mathcal{G}$: dim $(B \cap G) \le 1$ (*B* scattered wrt \mathcal{G}) $\implies k \le v - g$
- 3. Double count incidences (B, T) with $B \in \mathcal{B}$ and $T \in \begin{bmatrix} B \\ 2 \end{bmatrix}_{a}$

$$\implies \#\mathcal{B} = \lambda \cdot \frac{\binom{\nu}{2}_{q} - \binom{\nu}{1}_{q} / \binom{g}{1}_{q} \cdot \binom{g}{2}_{q}}{\binom{k}{2}_{q}} \in \mathbb{Z}$$

4. Fix $P \in {V \brack 1}_q$, let $r = \#\{B \in \mathcal{B} \mid P \subseteq B\}$ replication number. Double count incid. (B, T) with $B \in \mathcal{B}, T \in {B \brack 2}_q, P \subseteq T$

$$\implies \mathbf{r} = \lambda \cdot \frac{\binom{v-1}{1}_q - \binom{g-1}{1}_q}{\binom{k-1}{1}_q} \in \mathbb{Z}$$

1. -4. are counterparts of conditions for classical gdds.

New admissibility condition (no classical counterpart):

Lemma $q^{k-g} \mid \lambda$

Proof.

- Let *P* be a point.
- There is a unique $G \in \mathcal{G}$ passing through *P*.
- Let G' be image of G mod P.
- Points outside of G' are covered λ times by the images of the blocks (k − 1-subspaces).

- $\implies \lambda$ -fold repetition of the complement of G' is q^{k-2} -divisible.
- $\implies \lambda$ -fold repetition of *G'* is q^{k-2} -divisible.
- G' is exactly q^{g-2} -divisible, so $q^{k-g} \mid \lambda$.

Lemma

Let $\mathcal{G} \subseteq \begin{bmatrix} V \\ g \end{bmatrix}_{a}$ be spread, *G* subgroup of $\mathsf{PFL}(v,q)_{\mathcal{G}}$.

If action of G on $\begin{bmatrix} V \\ 2 \end{bmatrix}_q \setminus \bigcup_{U \in \mathcal{G}} \begin{bmatrix} U \\ 2 \end{bmatrix}_q$ is transitive

 \implies For any union \mathcal{B} of *G*-orbits on the scattered *k*-subspaces $(\mathcal{G}, \mathcal{B})$ is a $(v, k, \lambda, g)_q$ -gdd (with suitable λ).

Proof.

Use transitivity.

Remark on the principle

Powerful construction method for classical designs.

(日) (日) (日) (日) (日) (日) (日)

 Does not work for subspace designs (lack of suitable groups).

Now:

 $\blacktriangleright v = g \cdot s$

►
$$V = (\mathbb{F}_{q^g})^s$$

- $\mathcal{G} = \begin{bmatrix} V \\ 1 \end{bmatrix}_{q^g}$ Desarguesian (g 1)-spread.
- ► $\forall U \leq_{\mathbb{F}_q} V : \dim_{\mathbb{F}_{q^g}}(\langle U \rangle_{\mathbb{F}_{q^g}}) \leq \dim_{\mathbb{F}_q}(U).$ In case of equality: *U* fat
- Let \mathcal{F}_k be set of fat k-subspaces.
- Lines covered by elements of $\mathcal{G} = \text{non-fat 2-subspaces.}$

Lemma

Action of $\mathsf{SL}(s,q^g)/(\mathbb{F}_q^{\times}\cap\mathsf{SL}(s,q))$ on \mathcal{F}_k

• for k < s: is transitive

• for
$$k = s$$
: $\frac{q^g - 1}{q - 1}$ orbits of equal length

Theorem

Let $g \ge 2$ and $s \ge 3$. Case $k \in \{3, \dots, s-1\}$: $(\mathcal{G}, \mathcal{F}_k)$ is $(gs, k, \lambda, g)_q$ -gdd with

$$\lambda = q^{(g-1)\binom{k}{2}-1} \prod_{i=2}^{k-1} \frac{q^{g(s-i)}-1}{q^{k-i}-1}.$$

Case k = s: For all α ∈ {1,..., ^{q^g-1}/_{q-1}} and any union B of α orbits of the action of SL(s, q^g)/(ℝ[×]_q ∩ SL(s, q)) on F_s: (G, F_k) is a (gs, s, λ, g)_q-gdd with

$$\lambda = \alpha \boldsymbol{q}^{(g-1)\binom{k}{2}-1} \prod_{i=2}^{s-2} \frac{\boldsymbol{q}^{gi}-1}{\boldsymbol{q}^i-1}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

- Theorem with g = 2, k = s = 3, α = 1: → ∃(6,3, q², 2)_q gdds
- We have seen: gdds with these parameters would arise from *q*-analog of the Fano plane STS_q(7).
- First (6,3, q², 2)_q-gdds constructed by Etzion, Hooker 2018.
- If STS_q(7) exists ⇒ (6,3, q², 2)_q-gdds exist for non-Desarguesian spreads, too. (α-points!)
 Found computationally for q = 2.

Conclusion for binary q-analog of the Fano plane

STS₂(7) cannot look too nice.
 (at most 2 automorphisms; result on α-points)
 → Might be seen as sign for non-existence.

So far, all "local" investigations lead to consistent answers. Might be seen as sign for existence.

Open problems

- Further investigate α -points.
- Computational evidence:
 - For the Desarguesian spread: (6,3, λ ,2)₂ exists $\iff \lambda \in \{2,4,6,8,10,12\}$
 - For the 131.043 non-Desarguesian spreads: $(6, 3, \lambda, 2)_2$ exists only for $\lambda \in \{4, 8, 12\}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Explain this!

For any of the 8 solid spreads in PG(7,2): No (8,4,7,4)₂ does exist. Explanation?

Invitation!

Conference ALCOMA 20

(Algebraic Combinatorics and Applications)

- 2020-3-29 2020-4-4
- Kloster Banz, Lichtenfels, Germany
- https://alcoma20.uni-bayreuth.de/

Photo from Wikipedia, © Reinhold Möller