Derived designs of q-Fano planes and q-analogs of group divisible designs

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth

Academy Contact Forum
"Coding Theory and Cryptography VIII" September 27, 2019
Brussels, Belgium

What is this?

- Most frequent image in discrete math.
- Fano plane.

What is special about it?

- Smallest projective plane.
- Smallest non-trivial Steiner triple system.

Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points
q-analogs of group divisible designs

Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs

Subset lattice

- Let V be a v-element set.
- $\binom{V}{k}:=$ Set of all k-subsets of V.
- \# ($\left.\begin{array}{l}V \\ k\end{array}\right)=\binom{v}{k}$.
- Subsets of V form a distributive lattice (wrt. \subseteq).

Definition
$D \subseteq\binom{V}{k}$ is a $t-(v, k, \lambda)$ (block) design
if
each $T \in\binom{V}{t}$ is contained in exactly λ blocks (elements of D).

- If $\lambda=1: D$ Steiner system
- If $\lambda=1, t=2$ and $k=3: D$ Steiner triple system $\operatorname{STS}(v)$

Example

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7\} \\
& D=\{\{1,2,7\},\{1,3,6\},\{1,4,5\},\{2,3,5\}, \\
&\{2,4,6\},\{3,4,7\},\{5,6,7\}\}
\end{aligned}
$$

Fano plane D is a $2-(7,3,1)$ design, i.e an $\operatorname{STS}(7)$.

Lemma
Let D be a $t-(v, k, \lambda)$ design and $i, j \in\{0, \ldots, t\}$ with $i+j \leq t$. Then for all $I \in\binom{v}{i}$ and $J \in\binom{v}{v-j}$ with $I \subseteq J$

$$
\lambda_{i, j}:=\#\{B \in D \mid I \subseteq B \subseteq J\}=\lambda \cdot \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}} .
$$

In particular, \#D $=\lambda_{0,0}$.
Example
Fano plane $\operatorname{STS}(7)(v=7, k=3, t=2, \lambda=1)$:

$$
\begin{array}{ll}
\lambda_{2,0}=1 & \begin{array}{l}
\lambda_{1,0}=7 \\
\lambda_{1,1}=2
\end{array} \\
\lambda_{0,1}=4
\end{array} \lambda_{0,2}=2
$$

Corollary: Integrality conditions
If a $t-(v, k, \lambda)$ design exists, then all $\lambda_{i, j} \in \mathbb{Z}$.
Sufficient to check: $\lambda_{i}:=\lambda_{i, 0} \in \mathbb{Z} \quad$ (Parameters admissible)
Lemma
STS (v) admissible $\Longleftrightarrow v \equiv 1,3(\bmod 6)$.
STS(v) for small v

- $\operatorname{STS}(3)=\{V\}$ exists trivially.
- Smallest non-trivial Steiner triple system: Fano plane STS(7).
- Next admissible case: STS(9) exists (affine plane of order 3).

Theorem (Kirkman 1847)
All admissible STS(v) do exist.

Subspace lattice

- Let V be a v-dimensional \mathbb{F}_{q} vector space.
- Grassmannian $\left[\begin{array}{l}V \\ k\end{array}\right]_{q}:=$ Set of all k-dim. subspaces of V.
- Gaussian Binomial coefficient

$$
\#\left[\begin{array}{l}
V \\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
v \\
k
\end{array}\right]_{q}=\frac{\left(q^{v}-1\right)\left(q^{v-1}-1\right) \cdot \ldots \cdot\left(q^{v-k+1}-1\right)}{(q-1)\left(q^{2}-1\right) \cdot \ldots \cdot\left(q^{k}-1\right)}
$$

- Subspaces of V form a modular lattice (wrt. \subseteq).
- Subspace lattice of $V=$ projective geometry PG($v-1, q)$
- Elements of $\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$ are points.
- Elements of $\left[\begin{array}{c}V \\ 2\end{array}\right]_{q}$ are lines.
- Elements of $\left[\begin{array}{l}V \\ 3\end{array}\right]_{q}$ are planes.
- Elements of $\left[\begin{array}{c}V-1\end{array}\right]_{q}$ are hyperplanes.
- Fano plane is the projective geometry PG(2,2).

q-analogs in combinatorics

Replace subset lattice by subspace lattice!

- The subset lattice corresponds to $q=1$.
- Sometimes: Unary field \mathbb{F}_{1}.

Definition (block design, stated again)
Let V be a v-element set.
$D \subseteq\binom{V}{k}$ is a $t-(v, k, \lambda)$ (block) design
if each $T \in\binom{V}{t}$ is contained in exactly λ elements of D.
q-analog of a design?
Definition (subspace design)
Let V be a v-dimensional \mathbb{F}_{q} vector space.
$D \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]_{q}$ is a $t-(v, k, \lambda)_{q}$ (subspace) design if each $T \in\left[\begin{array}{c}V \\ t\end{array}\right]_{q}$ is contained in exactly λ elements of D.

- If $\lambda=1: D$-Steiner system
- If $\lambda=1, t=2, k=3: D q$-Steiner triple system $\operatorname{STS}_{q}(v)$
- Geometrically:
$\mathrm{STS}_{q}(v)$ is a set of planes in $\mathrm{PG}(v-1, q)$ covering each line exactly once.

Lemma
Let D be a $t-(v, k, \lambda)_{q}$ design and $i, j \in\{0, \ldots, t\}$ with $i+j \leq t$. Then for all $I \in\left[\begin{array}{c}V \\ i\end{array}\right]_{q}$ and $J \in\left[\begin{array}{c}v \\ v-j\end{array}\right]_{q}$ with $I \subseteq J$

$$
\lambda_{i, j}:=\#\{B \in D \mid I \subseteq B \subseteq J\}=\lambda \frac{\left[\begin{array}{c}
v-i-j \\
k-i
\end{array}\right]_{q}}{\left[\begin{array}{c}
v-t \\
k-t
\end{array}\right]_{q}} .
$$

In particular, \#D $=\lambda_{0,0}$.
Corollary: Integrality conditions
If a $t-(v, k, \lambda)_{q}$ design exists, then all $\lambda_{i, j} \in \mathbb{Z}$.
Sufficient to check: $\lambda_{i}:=\lambda_{i, 0} \in \mathbb{Z}$
(Parameters admissible)

Lemma
$\mathrm{STS}_{q}(v)$ admissible $\Longleftrightarrow v \equiv 1,3(\bmod 6)$.
$\mathrm{STS}_{q}(v)$ for small v

- $v=3: \mathrm{STS}_{q}(3)=\{V\}$ exists trivially.
- $v=7: q$-analog of the Fano plane $\mathrm{STS}_{q}(7)$. Existence undecided for every field order q.

Most important open problem in q-analogs of designs.

- $v=9: \operatorname{STS}_{q}(9)$: existence open for every q.
- $v=13$: Only known non-trivial q-STS:
$\mathrm{STS}_{2}(13)$ exists (Braun, Etzion, Östergård, Vardy, Wassermann 2013)

Status of the binary q-analog of the Fano plane.

\[

\]

- $\mathrm{STS}_{2}(7)$ consists of $\lambda_{0,0}=381$ blocks (out of $\left[\begin{array}{l}7 \\ 3\end{array}\right]_{2}=11811$ planes).
- Huge search space (($\left.\begin{array}{c}11811 \\ 381\end{array}\right)$ has 730 digits).
- Heinlein, MK, Kurz, Wassermann 2019: Best known packing has size 333.
- Braun, MK, Nakić 2016; MK, Kurz, Wassermann 2018: $\mathrm{STS}_{2}(7)$ has at most 2 automorphisms.

For general q :

$$
\begin{array}{cc}
\left(q^{2}-q+1\right)\left[\begin{array}{l}
7 \\
1
\end{array}\right]_{q} & \\
q^{2}+1 & \left(q^{3}+1\right)\left(q^{2}+1\right) \\
& q^{2}+1
\end{array}
$$

Theme for remainder of the talk

- Let D be a $\mathrm{STS}_{q}(7)$.
- Fix a point P.
- What can be said about the "local" point of view of D from P ?

Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs

- Let P be a point.
- For $t-(v, k, \lambda)_{q}$ design D : Derived design in P :

$$
\{B / P \mid B \in D \text { with } P \subseteq B\} \subseteq V / P
$$

is $(t-1)-(v-1, k-1, \lambda)_{q}$ design.

- For $\mathrm{STS}_{q}(7)$: Derived design is $1-(6,2,1)_{q}$ design.
- That is a set of $\lambda_{1,0}=q^{4}+q^{2}+1$ lines in $\operatorname{PG}(5, q)$ covering all points exactly once.
- In other words:

The derived design of $\mathrm{STS}_{q}(7)$ in a point P is a line spread of $\operatorname{PG}(5, q)$.

- Spread \mathcal{S} called geometric if for all distinct $L_{1}, L_{2} \in \mathcal{S}$:
$\left\{L \in \mathcal{S} \mid L \subseteq L_{1}+L_{2}\right\}$ is spread of the solid $L_{1}+L_{2}$.
- P is called α-point of $\mathrm{STS}_{q}(7)$ if the derived design in P is a geometric spread.
- S. Thomas 1996: There exists a non- α-point.
- O. Heden, P. Sissokho 2016: For $q=2$: Each hyperplane contains non- α-point.
- Goal: Investigate Heden-Sissokho result for general q!
- Assume that H is hyperplane containing only α-points.
- Fix a poor solid S in H (not containing any block).
- Let $\mathcal{F}=\left\{\left.F \in\left[\begin{array}{c}H \\ 5\end{array}\right]_{q} \right\rvert\, S \subseteq F\right\}$.

We have $\# \mathcal{F}=q+1$.

- For $F \in \mathcal{F}$, let

$$
\mathcal{L}_{F}:=\{B \cap S \mid B \in D \text { and } B+S=F\} .
$$

Dimension formula:
$\operatorname{dim}(B \cap S)=\operatorname{dim}(B)+\operatorname{dim}(S)-\operatorname{dim}(F)=3+4-5=2$. So \mathcal{L}_{F} is a set of lines in S.

- Lemma \mathcal{L}_{F} is a line spread of S.

Conclusion
$\mathcal{L}:=\biguplus_{F \in \mathcal{F}} \mathcal{L}_{F}$ is a set of $(q+1)\left(q^{2}+1\right)$ lines in $\operatorname{PG}(3, q)$ admitting a partition into $q+1$ line spreads.

Lemma
For each point P in S, the $q+1$ lines in \mathcal{L} passing through P span only a plane E_{P}.
(In other words, the lines form a pencil in E_{P} through P.)
Corollary
$\left(\left[\begin{array}{c}S \\ 1\end{array}\right]_{q}, \mathcal{L}\right)$ is a generalized quadrangle.
Classification
Classification of projective generalized quadrangles:
(F. Buekenhout, C. Lefèvre 1974)
$\Longrightarrow\left(\left[\begin{array}{l}S \\ 1\end{array}\right]_{q}, \mathcal{L}\right)$ is symplectic generalized quadrangle $W(q)$.

- By property of \mathcal{L} : The lines of $W(q)$ admit a partition into $q+1$ line spreads.
- Equivalently: The points of the parabolic quadric $Q(4, q)$ admit a partition into ovoids.
- Not possible for even q.
- Payne, Thas: Finite generalized quadrangles, 3.4.1(i)
- Not possible for prime q.
- Ball, Govaerts, Storme 2006: Each ovoid in $Q(4, q)$ is an elliptic quadric.
- Any two of them have non-trivial intersection.

Theorem
Let q be prime or even and D a $\operatorname{STS}_{q}(7)$.
Then each hyperplane contains a non- α-point of D.

Research problem

Investigate the remaining q (i.e. q a proper odd prime power).

Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs
joint work with S. Kurz, A. Wassermann.

Definition (Classical group divisible design)
Let V be a finite set of size v.
$(\mathcal{G}, \mathcal{B})$ is a (v, k, λ, g) group divisible design (gdd), if

- $\mathcal{G} \subseteq\binom{V}{g}$ is a partition of V.
- $\mathcal{B} \subseteq\binom{V}{k}$
- such that each $T \in\binom{V}{2}$ is either contained in a group, or in exactly λ blocks.

Example

A (6, 3, 1, 2)-gdd. (So: $v=6, k=3, \lambda=1, g=2$)

$$
\begin{aligned}
V & =\{1,2,3,4,5,6\} \\
\mathcal{G} & =\{\{1,2\},\{3,4\},\{5,6\}\} \\
\mathcal{B} & =\{\{1,3,6\},\{1,4,5\},\{2,3,5\},\{2,4,6\}\}
\end{aligned}
$$

Definition (q-analog of group divisible design)
Let V be a v-dimensional \mathbb{F}_{q} vector space.
$(\mathcal{G}, \mathcal{B})$ is a $(v, k, \lambda, g)_{q}$ group divisible design (gdd), if

- $\mathcal{G} \subseteq\left[\begin{array}{l}V \\ g\end{array}\right]_{q}$ is a spread of V.
- $\mathcal{B} \subseteq\left[\begin{array}{l}\mathrm{V} \\ k\end{array}\right]_{q}$
- such that each $T \in\left[\begin{array}{c}V \\ 2\end{array}\right]_{q}$ is either contained in a group, or in exactly λ blocks.

Lemma

Let D be a $2-(v, k, 1)_{q}$ Steiner system on V and $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$. Projection $\bmod P$ is

$$
\pi: \mathrm{PG}(V) \rightarrow \mathrm{PG}(V / P), \quad U \mapsto(U+P) / P
$$

Set

$$
\begin{aligned}
\mathcal{G} & :=\{\pi(B) \mid B \in D \text { and } P \subseteq B\} \\
\mathcal{B} & :=\{\pi(B) \mid B \in D \text { and } P \nsubseteq B\}
\end{aligned}
$$

Then $(\mathcal{G}, \mathcal{B})$ is a $\left(v-1, k, q^{2}, k-1\right)_{q}$-gdd.
Application to q-Fano plane
Existence of $\mathrm{STS}_{q}(7) \Longrightarrow$ Existence of $\left(6,3, q^{2}, 2\right)_{q}$-gdd

Admissibility of the parameters

1. Spread \mathcal{G} exists $\Longleftrightarrow g \mid v$
2. For all blocks $B \in \mathcal{B}$ and $G \in \mathcal{G}$: $\operatorname{dim}(B \cap G) \leq 1 \quad(B$ scattered wrt $\mathcal{G}) \quad \Longrightarrow k \leq v-g$
3. Double count incidences (B, T) with $B \in \mathcal{B}$ and $T \in\left[\begin{array}{l}B \\ 2\end{array}\right]_{q}$

$$
\Longrightarrow \# \mathcal{B}=\lambda \cdot \frac{\left[\begin{array}{l}
V \\
2
\end{array}\right]_{q}-\left[\begin{array}{c}
V \\
1
\end{array}\right]_{q} /\left[\begin{array}{l}
g \\
1
\end{array}\right]_{q} \cdot\left[\begin{array}{l}
g \\
2
\end{array}\right]_{q}}{\left[\begin{array}{l}
k \\
2
\end{array}\right]_{q}} \in \mathbb{Z}
$$

4. Fix $P \in\left[\begin{array}{l}V \\ 1\end{array}\right]_{q}$, let $r=\#\{B \in \mathcal{B} \mid P \subseteq B\}$ replication number.

Double count incid. (B, T) with $B \in \mathcal{B}, T \in\left[\begin{array}{l}B \\ 2\end{array}\right]_{q}, P \subseteq T$

$$
\Longrightarrow r=\lambda \cdot \frac{\left[\begin{array}{c}
v-1 \\
1
\end{array}\right]_{q}-\left[\begin{array}{c}
g-1 \\
1
\end{array}\right]_{q}}{\left[\begin{array}{c}
k-1 \\
1
\end{array}\right]_{q}} \in \mathbb{Z}
$$

1. -4 . are counterparts of conditions for classical gdds.

New admissibility condition (no classical counterpart):
Lemma
$q^{k-g} \mid \lambda$

Proof.

- Let P be a point.
- There is a unique $G \in \mathcal{G}$ passing through P.
- Let G^{\prime} be image of $G \bmod P$.
- Points outside of G^{\prime} are covered λ times by the images of the blocks ($k-1$-subspaces).
$-\Longrightarrow \lambda$-fold repetition of the complement of G^{\prime} is q^{k-2}-divisible.
$-\Longrightarrow \lambda$-fold repetition of G^{\prime} is q^{k-2}-divisible.
- G^{\prime} is exactly q^{g-2}-divisible, so $q^{k-g} \mid \lambda$.

Lemma

Let $\mathcal{G} \subseteq\left[\begin{array}{l}V \\ g\end{array}\right]_{q}$ be spread, G subgroup of $\operatorname{P\Gamma L}(v, q)_{\mathcal{G}}$.
If action of G on $\left[\begin{array}{l}V \\ 2\end{array}\right]_{q} \backslash \cup_{U \in \mathcal{G}}\left[\begin{array}{l}U \\ 2\end{array}\right]_{q}$ is transitive
\Longrightarrow For any union \mathcal{B} of G-orbits on the scattered k-subspaces
$(\mathcal{G}, \mathcal{B})$ is a $(v, k, \lambda, g)_{q}$-gdd (with suitable λ).
Proof.
Use transitivity.

Remark on the principle

- Powerful construction method for classical designs.
- Does not work for subspace designs (lack of suitable groups).

Now:

- $v=g \cdot s$
- $V=\left(\mathbb{F}_{q^{g}}\right)^{S}$
- $\mathcal{G}=\left[\begin{array}{l}V \\ 1\end{array}\right]_{q^{g}}$ Desarguesian $(g-1)$-spread.
$-\forall U \leq_{\mathbb{F}_{q}} V: \operatorname{dim}_{\mathbb{F}_{q^{g}}}\left(\langle U\rangle_{\mathbb{F}_{q^{g}}}\right) \leq \operatorname{dim}_{\mathbb{F}_{q}}(U)$.
In case of equality: U fat
- Let \mathcal{F}_{k} be set of fat k-subspaces.
- Lines covered by elements of $\mathcal{G}=$ non-fat 2 -subspaces.

Lemma
Action of $\operatorname{SL}\left(s, q^{g}\right) /\left(\mathbb{F}_{q}^{\times} \cap \mathrm{SL}(s, q)\right)$ on \mathcal{F}_{k}

- for $k<s$: is transitive
- for $k=s$: $\frac{q^{g}-1}{q-1}$ orbits of equal length

Theorem
Let $g \geq 2$ and $s \geq 3$.

- Case $k \in\{3, \ldots, s-1\}$:
$\left(\mathcal{G}, \mathcal{F}_{k}\right)$ is $(g s, k, \lambda, g)_{q}$-gdd with

$$
\lambda=q^{\left.(g-1)\binom{k}{2}-1\right)} \prod_{i=2}^{k-1} \frac{q^{g(s-i)}-1}{q^{k-i}-1} .
$$

- Case $k=s$:

For all $\alpha \in\left\{1, \ldots, \frac{q^{g}-1}{q-1}\right\}$ and any union \mathcal{B} of α orbits of the action of $\operatorname{SL}\left(s, q^{g}\right) /\left(\mathbb{F}_{q}^{\times} \cap \mathrm{SL}(s, q)\right)$ on \mathcal{F}_{s} :
$\left(\mathcal{G}, \mathcal{F}_{k}\right)$ is a $(g s, s, \lambda, g)_{q}$-gdd with

$$
\lambda=\alpha q^{(g-1)\left(\binom{k}{2}-1\right)} \prod_{i=2}^{s-2} \frac{q^{g i}-1}{q^{i}-1} .
$$

Remark

- Theorem with $g=2, k=s=3, \alpha=1$:
$\rightsquigarrow \exists\left(6,3, q^{2}, 2\right)_{q}$ gdds
- We have seen: gdds with these parameters would arise from q-analog of the Fano plane $\operatorname{STS}_{q}(7)$.
- First $\left(6,3, q^{2}, 2\right)_{q}$-gdds constructed by Etzion, Hooker 2018.
- If $\mathrm{STS}_{q}(7)$ exists $\Longrightarrow\left(6,3, q^{2}, 2\right)_{q}$-gdds exist for non-Desarguesian spreads, too. (α-points!) Found computationally for $q=2$.

Conclusion for binary q-analog of the Fano plane

- $\mathrm{STS}_{2}(7)$ cannot look too nice. (at most 2 automorphisms; result on α-points) \rightsquigarrow Might be seen as sign for non-existence.
- So far, all "local" investigations lead to consistent answers. \rightsquigarrow Might be seen as sign for existence.

Open problems

- Further investigate α-points.
- Computational evidence:
- For the Desarguesian spread: $(6,3, \lambda, 2)_{2}$ exists $\Longleftrightarrow \lambda \in\{2,4,6,8,10,12\}$
- For the 131.043 non-Desarguesian spreads:
$(6,3, \lambda, 2)_{2}$ exists only for $\lambda \in\{4,8,12\}$.
Explain this!
- For any of the 8 solid spreads in PG(7,2): No $(8,4,7,4)_{2}$ does exist. Explanation?

Invitation!

Conference ALCOMA 20
(Algebraic Combinatorics and Applications)

- 2020-3-29-2020-4-4
- Kloster Banz, Lichtenfels, Germany
- https://alcoma20.uni-bayreuth.de/

Photo from Wikipedia, © Reinhold Möller

