Derived designs of q-Fano planes and q-analogs of group divisible designs

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth

Academy Contact Forum
“Coding Theory and Cryptography VIII”
September 27, 2019
Brussels, Belgium
What is this?

- Most frequent image in discrete math.
- Fano plane.
What is special about it?

- Smallest projective plane.
- Smallest non-trivial Steiner triple system.
Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs
Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs
Subset lattice

- Let V be a ν-element set.
- $\binom{V}{k} :=$ Set of all k-subsets of V.
- $\#(\binom{V}{k}) = \binom{\nu}{k}$.
- Subsets of V form a distributive lattice (wrt. \subseteq).

Definition
$D \subseteq \binom{V}{k}$ is a $t-(\nu, k, \lambda)$ (block) design if each $T \in \binom{V}{t}$ is contained in exactly λ blocks (elements of D).

- If $\lambda = 1$: D Steiner system
- If $\lambda = 1$, $t = 2$ and $k = 3$: D Steiner triple system STS(ν)
Example

\[V = \{1, 2, 3, 4, 5, 6, 7\} \]
\[D = \{\{1, 2, 7\}, \{1, 3, 6\}, \{1, 4, 5\}, \{2, 3, 5\}, \]
\[\{2, 4, 6\}, \{3, 4, 7\}, \{5, 6, 7\}\} \]

Fano plane \(D \) is a 2-(7, 3, 1) design, i.e an STS(7).
Lemma
Let D be a t-(v, k, λ) design and $i, j \in \{0, \ldots, t\}$ with $i + j \leq t$. Then for all $I \in \binom{V}{i}$ and $J \in \binom{V}{v-j}$ with $I \subseteq J$

$$\lambda_{i,j} := \# \{ B \in D \mid I \subseteq B \subseteq J \} = \lambda \cdot \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}.$$

In particular, $\# D = \lambda_{0,0}$.

Example
Fano plane STS(7) ($v = 7$, $k = 3$, $t = 2$, $\lambda = 1$):

$$\lambda_{0,0} = 7 \quad \lambda_{1,0} = 3 \quad \lambda_{2,0} = 1$$
$$\lambda_{0,1} = 4 \quad \lambda_{1,1} = 2 \quad \lambda_{0,2} = 2$$
Corollary: Integrality conditions
If a \(t-(\nu, k, \lambda) \) design exists, then all \(\lambda_{i,j} \in \mathbb{Z} \).
Sufficient to check: \(\lambda_i := \lambda_{i,0} \in \mathbb{Z} \) (Parameters admissible)

Lemma
\(\text{STS}(\nu) \) admissible \(\iff \nu \equiv 1, 3 \pmod{6} \).

\(\text{STS}(\nu) \) for small \(\nu \)
- \(\text{STS}(3) = \{V\} \) exists trivially.
- Smallest non-trivial Steiner triple system:
 Fano plane \(\text{STS}(7) \).
- Next admissible case:
 \(\text{STS}(9) \) exists (affine plane of order 3).

Theorem (Kirkman 1847)
All admissible \(\text{STS}(\nu) \) do exist.
Subspace lattice

- Let V be a $ν$-dimensional \mathbb{F}_q vector space.
- Grassmannian $\binom{V}{k}_q :=$ Set of all k-dim. subspaces of V.
- Gaussian Binomial coefficient

\[
\# \binom{V}{k}_q = \binom{ν}{k}_q = \frac{(q^ν - 1)(q^{ν-1} - 1) \cdots (q^{ν-k+1} - 1)}{(q - 1)(q^2 - 1) \cdots (q^k - 1)}
\]

- Subspaces of V form a modular lattice (wrt. \subseteq).
- Subspace lattice of $V =$ projective geometry $\text{PG}(ν-1,q)$
 - Elements of $\binom{V}{1}_q$ are points.
 - Elements of $\binom{V}{2}_q$ are lines.
 - Elements of $\binom{V}{3}_q$ are planes.
 - Elements of $\binom{V}{ν-1}_q$ are hyperplanes.
- Fano plane is the projective geometry $\text{PG}(2,2)$.
q-analogs in combinatorics

Replace subset lattice by subspace lattice!

<table>
<thead>
<tr>
<th>orig.</th>
<th>q-analog</th>
</tr>
</thead>
<tbody>
<tr>
<td>v-element set V</td>
<td>v-dim. \mathbb{F}_q vector space V</td>
</tr>
<tr>
<td>$\binom{V}{k}$</td>
<td>$\left[\binom{V}{k}\right]_q$</td>
</tr>
<tr>
<td>$\binom{V}{k}$</td>
<td>$\left[\binom{V}{k}\right]_q$</td>
</tr>
</tbody>
</table>

- The subset lattice corresponds to $q = 1$.
- Sometimes: Unary field \mathbb{F}_1.
Definition (block design, stated again)
Let \(V \) be a \(v \)-element set. \(D \subseteq \binom{V}{k} \) is a \(t-(v,k,\lambda) \) (block) design if each \(T \in \binom{V}{t} \) is contained in exactly \(\lambda \) elements of \(D \).

\(q \)-analog of a design?

Definition (subspace design)
Let \(V \) be a \(v \)-dimensional \(\mathbb{F}_q \) vector space. \(D \subseteq \left[V \atop k \right]_q \) is a \(t-(v,k,\lambda)_q \) (subspace) design if each \(T \in \left[V \atop t \right]_q \) is contained in exactly \(\lambda \) elements of \(D \).

- If \(\lambda = 1 \): \(D \) \(q \)-Steiner system
- If \(\lambda = 1, t = 2, k = 3 \): \(D \) \(q \)-Steiner triple system \(\text{STS}_q(v) \)
- Geometrically:
 \(\text{STS}_q(v) \) is a set of planes in \(\text{PG}(v - 1, q) \) covering each line exactly once.
Lemma
Let D be a $t-(v, k, \lambda)_q$ design and $i, j \in \{0, \ldots, t\}$ with $i + j \leq t$. Then for all $I \in \begin{bmatrix} V \end{bmatrix}_q$ and $J \in \begin{bmatrix} V \end{bmatrix}_{v-j}$ with $I \subseteq J$

$$\lambda_{i,j} = \lambda \frac{\begin{bmatrix} v-i-j \end{bmatrix}_q}{\begin{bmatrix} k-i \end{bmatrix}_q}.$$

In particular, $\#D = \lambda_{0,0}$.

Corollary: Integrality conditions
If a $t-(v, k, \lambda)_q$ design exists, then all $\lambda_{i,j} \in \mathbb{Z}$.

Sufficient to check: $\lambda_i := \lambda_{i,0} \in \mathbb{Z}$ (Parameters admissible)
Lemma
$\text{STS}_q(\nu)$ admissible $\iff \nu \equiv 1, 3 \pmod{6}$.

$\text{STS}_q(\nu)$ for small ν

- $\nu = 3$: $\text{STS}_q(3) = \{V\}$ exists trivially.
- $\nu = 7$: q-analog of the Fano plane $\text{STS}_q(7)$.
 Existence undecided for every field order q.
 Most important open problem in q-analogs of designs.
- $\nu = 9$: $\text{STS}_q(9)$: existence open for every q.
- $\nu = 13$: Only known non-trivial q-STS: $\text{STS}_2(13)$ exists (Braun, Etzion, Östergård, Vardy, Wassermann 2013)
Status of the binary q-analog of the Fano plane.

\[
\begin{align*}
\lambda_{0,0} &= 381 \\
\lambda_{1,0} &= 21 \\
\lambda_{0,1} &= 45 \\
\lambda_{1,1} &= 5 \\
\lambda_{0,2} &= 5 \\
\lambda_{2,0} &= 1
\end{align*}
\]

- STS$_2(7)$ consists of $\lambda_{0,0} = 381$ blocks (out of $\binom{7}{3} = 11811$ planes).
- Huge search space ($(\binom{11811}{381})$ has 730 digits).
- Heinlein, MK, Kurz, Wassermann 2019: Best known packing has size 333.
- Braun, MK, Nakić 2016; MK, Kurz, Wassermann 2018: STS$_2(7)$ has at most 2 automorphisms.
For general q:

\[
\begin{array}{c}
q^4 + q^2 + 1 \\
1 \\
\end{array}
\begin{array}{c}
(q^2 - q + 1)[^7]_q \\
(q^3 + 1)(q^2 + 1) \\
q^2 + 1 \\
q^2 + 1
\end{array}
\]

Theme for remainder of the talk

- Let D be a $\text{STS}_q(7)$.
- Fix a point P.
- What can be said about the “local” point of view of D from P?
Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs
Let P be a point.

For $t-(v, k, \lambda)_q$ design D:
Derived design in P:

$$\{B/P \mid B \in D \text{ with } P \subseteq B\} \subseteq V/P$$

is $(t - 1)-(v - 1, k - 1, \lambda)_q$ design.

For $STS_q(7)$:
Derived design is $1-(6, 2, 1)_q$ design.

That is a set of $\lambda_{1,0} = q^4 + q^2 + 1$ lines in $PG(5, q)$ covering all points exactly once.

In other words:
The derived design of $STS_q(7)$ in a point P is a line spread of $PG(5, q)$.
Spread S called **geometric** if for all distinct $L_1, L_2 \in S$:
$$\{L \in S \mid L \subseteq L_1 + L_2\}$$ is spread of the solid $L_1 + L_2$.

P is called α-point of $STS_q(7)$
if the derived design in P is a geometric spread.

S. Thomas 1996: There exists a **non-α-point**.

O. Heden, P. Sissokho 2016: For $q = 2$:
Each hyperplane contains **non-α-point**.

Goal: Investigate Heden-Sissokho result for general q!
Assume that H is hyperplane containing only α-points.

Fix a poor solid S in H (not containing any block).

Let $\mathcal{F} = \{ F \in [H_5^q] | S \subseteq F \}$.
We have $\# \mathcal{F} = q + 1$.

For $F \in \mathcal{F}$, let

$$\mathcal{L}_F := \{ B \cap S \mid B \in D \text{ and } B + S = F \}.$$

Dimension formula:
$$\dim(B \cap S) = \dim(B) + \dim(S) - \dim(F) = 3 + 4 - 5 = 2.$$
So \mathcal{L}_F is a set of lines in S.

Lemma \mathcal{L}_F is a line spread of S.

Conclusion
\[\mathcal{L} := \bigcup_{F \in \mathcal{F}} \mathcal{L}_F \] is a set of $(q + 1)(q^2 + 1)$ lines in $\mathrm{PG}(3, q)$ admitting a partition into $q + 1$ line spreads.
Lemma
For each point P in S, the $q + 1$ lines in \mathcal{L} passing through P span only a plane E_P.
(In other words, the lines form a pencil in E_P through P.)

Corollary
$([S^1_q, \mathcal{L}])$ is a generalized quadrangle.

Classification
Classification of projective generalized quadrangles:
(F. Buekenhout, C. Lefèvre 1974)
$\implies ([S^1_q, \mathcal{L}])$ is symplectic generalized quadrangle $W(q)$.
By property of \(\mathcal{L} \):
The lines of \(W(q) \) admit a partition into \(q + 1 \) line spreads.

Equivalently: The points of the parabolic quadric \(Q(4, q) \) admit a partition into ovoids.

Not possible for even \(q \).

 Payne, Thas: Finite generalized quadrangles, 3.4.1(i)

Not possible for prime \(q \).

 Ball, Govaerts, Storme 2006:

 Each ovoid in \(Q(4, q) \) is an elliptic quadric.

 Any two of them have non-trivial intersection.

Theorem

Let \(q \) be prime or even and \(D \) a \(\text{STS}_q(7) \).

Then each hyperplane contains a non-\(\alpha \)-point of \(D \).

Research problem

Investigate the remaining \(q \) (i.e. \(q \) a proper odd prime power).
Outline

Block designs and their q-analogs

Derived q-Fano planes and α-points

q-analogs of group divisible designs
Definition (Classical group divisible design)

Let V be a finite set of size v.

(G, B) is a (v, k, λ, g) group divisible design (gdd), if

1. $G \subseteq \binom{V}{g}$ is a partition of V.
2. $B \subseteq \binom{V}{k}$
3. such that each $T \in \binom{V}{2}$ is either contained in a group, or in exactly λ blocks.
Example

A $(6, 3, 1, 2)$-gdd. (So: $v = 6$, $k = 3$, $\lambda = 1$, $g = 2$)

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$G = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$$

$$B = \{\{1, 3, 6\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 6\}\}$$
Definition (q-analog of group divisible design)

Let V be a v-dimensional \mathbb{F}_q vector space. $(\mathcal{G}, \mathcal{B})$ is a $(v, k, \lambda, g)_q$ group divisible design (gdd), if

- $\mathcal{G} \subseteq \binom{V}{g}_q$ is a spread of V.
- $\mathcal{B} \subseteq \binom{V}{k}_q$
- such that each $T \in \binom{V}{2}_q$ is either contained in a group, or in exactly λ blocks.
Lemma
Let D be a $2-(v, k, 1)_q$ Steiner system on V and $P \in \binom{V}{1}_q$. Projection mod P is
\[\pi: \text{PG}(V) \to \text{PG}(V/P), \quad U \mapsto (U + P)/P\]
Set
\[\mathcal{G} := \{\pi(B) | B \in D \text{ and } P \subseteq B\}\]
\[\mathcal{B} := \{\pi(B) | B \in D \text{ and } P \nsubseteq B\}\]
Then $(\mathcal{G}, \mathcal{B})$ is a $(v - 1, k, q^2, k - 1)_q$-gdd.

Application to q-Fano plane
Existence of $\text{STS}_q(7) \implies$ Existence of $(6, 3, q^2, 2)_q$-gdd
Admissibility of the parameters

1. Spread G exists $\iff g \mid \nu$

2. For all blocks $B \in \mathcal{B}$ and $G \in \mathcal{G}$:
\[\dim(B \cap G) \leq 1 \quad \text{(B scattered wrt G)} \implies k \leq \nu - g \]

3. Double count incidences (B, T) with $B \in \mathcal{B}$ and $T \in \left[\frac{B}{2} \right]_q$
\[\implies \#\mathcal{B} = \lambda \cdot \frac{\left[\frac{\nu}{2} \right]_q - \left[\frac{\nu}{1} \right]_q / \left[\frac{g}{1} \right]_q \cdot \left[\frac{g}{2} \right]_q}{\left[\frac{k}{2} \right]_q} \in \mathbb{Z} \]

4. Fix $P \in \left[\frac{V}{1} \right]_q$, let $r = \#\{B \in \mathcal{B} \mid P \subseteq B\}$ replication number.
Double count incid. (B, T) with $B \in \mathcal{B}$, $T \in \left[\frac{B}{2} \right]_q$, $P \subseteq T$
\[\implies r = \lambda \cdot \frac{\left[\frac{v-1}{1} \right]_q - \left[\frac{g-1}{1} \right]_q}{\left[\frac{k-1}{1} \right]_q} \in \mathbb{Z} \]

1. – 4. are counterparts of conditions for classical gdds.
New admissibility condition (no classical counterpart):

Lemma

\[q^{k-g} \mid \lambda \]

Proof.

- Let \(P \) be a point.
- There is a unique \(G \in \mathcal{G} \) passing through \(P \).
- Let \(G' \) be image of \(G \mod P \).
- Points outside of \(G' \) are covered \(\lambda \) times by the images of the blocks \((k-1\)-subspaces\).
- \(\Rightarrow \lambda \)-fold repetition of the complement of \(G' \) is \(q^{k-2} \)-divisible.
- \(\Rightarrow \lambda \)-fold repetition of \(G' \) is \(q^{k-2} \)-divisible.
- \(G' \) is exactly \(q^{g-2} \)-divisible, so \(q^{k-g} \mid \lambda \).
Lemma
Let \(G \subseteq \binom{V}{g} q \) be spread, \(G \) subgroup of \(\text{PGL}(v, q) G \).

If action of \(G \) on \(\binom{V}{2} q \setminus \bigcup_{U \in G} \binom{U}{2} q \) is transitive
\[\implies \text{For any union } \mathcal{B} \text{ of } G\text{-orbits on the scattered } k\text{-subspaces} \]
\((G, \mathcal{B}) \) is a \((v, k, \lambda, g) q\)-gdd (with suitable \(\lambda \)).

Proof.
Use transitivity.

Remark on the principle

- Powerful construction method for classical designs.
- Does not work for subspace designs (lack of suitable groups).
Now:

- \(v = g \cdot s \)
- \(V = (\mathbb{F}_{q^g})^s \)
- \(\mathcal{G} = \begin{bmatrix} V \\ 1 \end{bmatrix}_{q^g} \) Desarguesian \((g - 1)\)-spread.
- \(\forall U \leq_{\mathbb{F}_q} V : \dim_{\mathbb{F}_{q^g}}(\langle U \rangle_{\mathbb{F}_{q^g}}) \leq \dim_{\mathbb{F}_q}(U) \).
 In case of equality: \(U \) fat
- Let \(\mathcal{F}_k \) be set of fat \(k \)-subspaces.
- Lines covered by elements of \(\mathcal{G} = \) non-fat 2-subspaces.

Lemma

Action of \(SL(s, q^g)/(\mathbb{F}_q^\times \cap SL(s, q)) \) on \(\mathcal{F}_k \)

- for \(k < s \): is transitive
- for \(k = s \): \(\frac{q^g - 1}{q - 1} \) orbits of equal length
Theorem
Let \(g \geq 2 \) and \(s \geq 3 \).

- **Case** \(k \in \{3, \ldots, s - 1\} \):
 \((\mathcal{G}, \mathcal{F}_k) \) is \((g^s, k, \lambda, g)_q\)-gdd with
 \[
 \lambda = q^{(g-1)((k\choose 2)-1)} \prod_{i=2}^{k-1} \frac{q^{g(s-i)} - 1}{q^{k-i} - 1}.
 \]

- **Case** \(k = s \):
 For all \(\alpha \in \{1, \ldots, \frac{q^{g-1}}{q-1}\} \) and any union \(B \) of \(\alpha \) orbits of the action of \(\text{SL}(s, q^g)/(\mathbb{F}_q^\times \cap \text{SL}(s, q)) \) on \(\mathcal{F}_s \):
 \((\mathcal{G}, \mathcal{F}_k) \) is a \((g^s, s, \lambda, g)_q\)-gdd with
 \[
 \lambda = \alpha q^{(g-1)((k\choose 2)-1)} \prod_{i=2}^{s-2} \frac{q^{g_i} - 1}{q^i - 1}.
 \]
Remark

- Theorem with \(g = 2, k = s = 3, \alpha = 1 \):
 \[\exists (6, 3, q^2, 2)_q \text{ gdds} \]

- We have seen: gdds with these parameters would arise from \(q \)-analog of the Fano plane \(\text{STS}_q(7) \).

- First \((6, 3, q^2, 2)_q \)-gdds constructed by Etzion, Hooker 2018.

- If \(\text{STS}_q(7) \) exists \(\implies (6, 3, q^2, 2)_q \)-gdds exist for non-Desarguesian spreads, too. \((\alpha \text{-points!}) \)
 Found computationally for \(q = 2 \).

Conclusion for binary \(q \)-analog of the Fano plane

- \(\text{STS}_2(7) \) cannot look too nice.
 (at most 2 automorphisms; result on \(\alpha \)-points)
 \[\exists \text{ Might be seen as sign for \text{non-existence}.} \]

- So far, all “local” investigations lead to consistent answers.
 \[\exists \text{ Might be seen as sign for \text{existence}.} \]
Open problems

▶ Further investigate α-points.
▶ Computational evidence:
 ▶ For the Desarguesian spread:
 $(6, 3, \lambda, 2)_q$ exists $\iff \lambda \in \{2, 4, 6, 8, 10, 12\}$
 ▶ For the 131.043 non-Desarguesian spreads:
 $(6, 3, \lambda, 2)_q$ exists only for $\lambda \in \{4, 8, 12\}$.

Explain this!

▶ For any of the 8 solid spreads in $\text{PG}(7, 2)$:
 No $(8, 4, 7, 4)_2$ does exist. Explanation?
Invitation!
Conference ALCOMA 20
(Algebraic Combinatorics and Applications)
▶ 2020-3-29 – 2020-4-4
▶ Kloster Banz, Lichtenfels, Germany
▶ https://alcoma20.uni-bayreuth.de/

Photo from Wikipedia, © Reinhold Möller