On the lengths of divisible codes

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth

Oberwolfach Workshop 1912:
Contemporary Coding Theory
March 21, 2019

joint work with Thomas Honold,
Sascha Kurz and Alfred Wassermann
Divisible Codes
Divisible codes

- Introduced by Harold Ward in 1981.
- \mathbb{F}_q-linear code C Δ-divisible if $\Delta | w(c)$ for all $c \in C$.
- Only interesting case: Δ power of $p = \text{char}(\mathbb{F}_q)$.
- In this talk: $\Delta = q^r$ ($r \in \mathbb{N}_0$).
Why divisible codes?

▶ Many good codes are divisible.
▶ Connection to duality:
 Binary type II self-dual codes are 4-divisible.
 4-divisible binary codes are self-orthogonal.
 Self-orthogonal binary codes are 2-divisible.
 Self-orthogonal ternary codes are 3-divisible.
▶ Conjecture (Ward 2001):

\[C \text{ Griesmer code over } \mathbb{F}_q, \quad p^r \mid \text{minimum distance of } C \]
\[\implies C p^{r+1}/q\text{-divisible.} \]

True for \(q = p \) (Ward 1998), \(q = 4 \) (Ward 2001)
▶ Applications in finite geometry, subspace codes, etc.

If the weights of C are among $(b - m + 1)\Delta, (b - m + 2)\Delta, \ldots, b\Delta$, then

$$\dim(C) \leq \frac{m(v_p(\Delta) + v_p(q)) + v_p(\binom{b}{m})}{v_p(q)}.$$

Goal: Investigate effective lengths of q^r-divisible codes. (will be called realizable)

effective length: \# non-zero coordinates of C.

Observation: Set of realizable lengths additively closed. (Direct sum of codes!)

Find small starters.
Lemma

The following lengths are realizable:

\[s(r, i) := q^i \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0, \ldots, r\}) \]

Proof.

- Simplex code of dimension \(r - i + 1 \):
 - Length \(\frac{q^{r-i+1} - 1}{q - 1} \) and constant weight \(q^{r-i} \).
- Take \(q^i \)-fold repetition.

By additivity:

Lemma

The following lengths are realizable:

\[n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r) \quad (a_0, a_1, \ldots, a_r \in \mathbb{N}_0) \]

We will see: That’s all!
The numbers

\[s(r, i) = q^i \cdot \frac{q^{r-i+1} - 1}{q - 1} = q^i + q^{i+1} + \ldots + q^r \quad (i \in \{0, \ldots, r\}) \]

have the property

\[q^i \mid s(r, i) \quad \text{but} \quad q^{i+1} \nmid s(r, i). \]

\[\implies S(r) = (s(r, 0), s(r, 1), \ldots, s(r, r)) \]

suitable base numbers of a positional number system.

Each \(n \in \mathbb{Z} \) has unique \(S(r) \)-adic expansion

\[n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r) \quad (*) \]

with \(a_0, \ldots, a_{r-1} \in \{0, \ldots, q - 1\} \)
and leading coefficient \(a_r \in \mathbb{Z} \).

(Reason: Equation (\(*) \) mod \(q, q^2, q^3 \ldots \) yields unique \(a_0, a_1, a_2, \ldots \))
Example

- Let \(q = 3, \ r = 3 \). \(\implies \ S(3) = (40, 39, 36, 27) \).
- \(S(3) \)-adic expansion of \(n = 137 \) has the form
 \[
 a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.
 \]
 with \(a_0, a_1, a_2 \in \{0, 1, 2\} \) and \(a_3 \in \mathbb{Z} \).
- Modulo 3:
 \[
 a_0 \cdot 1 + a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0 \equiv 2 \pmod{3} \implies a_0 = 2
 \]
- \(a_0 = 2 \) in (*):
 \[
 a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137 - 2 \cdot 40 \equiv 57 \pmod{9}
 \]
 \(a_1 = 1 \)
- Modulo 9:
 \[
 a_1 \cdot 3 + a_2 \cdot 0 + a_3 \cdot 0 \equiv 3 \pmod{9} \implies a_1 = 1
 \]
- Modulo 27: \(\ldots a_2 = 2 \) and \(a_3 = -2 \).
Theorem 1 (MK, S. Kurz)
Let \(n \in \mathbb{Z} \) and \(r \in \mathbb{N}_0 \). Then:
There exists a \(q^r \)-divisible \(\mathbb{F}_q \)-linear code of effective length \(n \)
\[\iff \]
The leading coefficient of the \(S(r) \)-adic expansion of \(n \) is \(\geq 0 \).

Example (cont.)

- \(S(3) \)-adic expansion of \(n = 137 \) is
 \[137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27. \]

- Leading coefficient is \(-2\).
- Theorem 1 \(\iff \) There is no 27-divisible ternary code of effective length 137.
Proof of Theorem 1 (Idea)

- Let \(C \) be \(q^{r} \)-divisible of effective length \(n \).
 Have to show:
 Leading coefficient of \(S(r) \)-adic expansion of \(n \) is \(\geq 0 \).

- Average weight is \(\frac{q-1}{q} \cdot n \).
 \[\implies \exists \text{ codeword } c \text{ with } w(c) > \frac{q-1}{q} \cdot n. \]

- Lemma: Residual code wrt \(c \) is \(q^{r-1} \)-divisible.
 Use induction on \(r \).

Byproduct of proof

For all codewords \(c \):

\[w(c) \leq q^{r} \cdot \text{cross sum of } S(r) \text{-adic expansion of } n \]
Application to Partial Spreads
Linear codes and points

- \mathbb{F}_q-linear code C of effective length n and dim. k \leftrightarrow multiset P of n points in $\text{PG}(k - 1, q)$.
 (read columns of generator matrix as homogeneous coordinates)

- nonzero codeword c of C \leftrightarrow hyperplane $H = c^\perp$ in $\text{PG}(V)$

- $w(c) = n - \#(P \cap H)$.

- C Δ-divisible $\iff \#(P \cap H) \equiv \#P \pmod{\Delta}$ for all hyperplanes H.
 In this case: Call P Δ-divisible.

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.
Definition

- Let V be \mathbb{F}_q vector space of dimension v.
- Let S be a set of k-subspaces of V.
- S is partial $(k-1)$-spread
 if each point in V is covered by at most 1 element of S.

Research Problem
Find maximum possible size $A_q(v, k)$ of partial spread.
History

Write $v = tk + r$, $r \in \{0, \ldots, k - 1\}$, $t \geq 2$.

- 1964 Segre:
 All points can be covered $\iff k \mid v$ (settles $r = 0$).
 In this case, S spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

- 1975 Beutelspacher:

 \[
 A_q(v, k) \geq \frac{q^v - q^{k+r}}{q^k - 1} + 1 \quad (\ast)
 \]

 Bound sharp for $r = 1$.

- 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.

- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:
 Computer construction for $A_2(8, 3) = 34$.
 Settles all cases with $q = 2$, $r = 2$, $k = 3$ recursively.
 Here, bound (\ast) is not sharp!

- 2016 Kurz: Bound (\ast) sharp for $q = 2$, $r = 2$, $k \geq 4$.

- 2017 Năstase, Sissokho: (\ast) sharp whenever $k > \left\lceil \frac{r}{1} \right\rceil q$.

Năstase and Sissokho as a corollary from Theorem 1

- Let S be partial $(k - 1)$-spread.
- Set \mathcal{P} of holes (points not covered by S) is q^{k-1}-divisible!
- Assume $\# S = \frac{q^{v} - q^{k+r}}{q^{k-1}} + 2$.

\[
\Longrightarrow \# \mathcal{P} = \left[\begin{array}{c} k + r \\ 1 \end{array} \right]_q - 2 \left[\begin{array}{c} k \\ 1 \end{array} \right]_q
\]

$S(k - 1)$-adic ex. $= \sum_{i=0}^{k-2} (q - 1) s(k - 1, i)$

$$+ \left(q \cdot \left(\left[\begin{array}{c} r \\ 1 \end{array} \right]_q - k + 1 \right) - 1 \right) s(k - 1, k - 1)$$

- Theorem 1: Leading coefficient $q \cdot (\left[\begin{array}{c} r \\ 1 \end{array} \right]_q - k + 1) - 1 \geq 0$.

\[\iff k \leq \left[\begin{array}{c} r \\ 1 \end{array} \right]_q.\]
Projective Divisible Codes
Motivation

- ∃ partial 3-spread in \mathbb{F}_2^{11} of size 133?
- Hole set \mathcal{P} is 8-divisible multiset of size 52.
 \[S(4)\text{-adic expansion: } 52 = 0 \cdot 15 + 0 \cdot 14 + 1 \cdot 12 + 5 \cdot 8 \]
 no contradiction.
- However, \mathcal{P} is a proper set. Will see: Does not exist!
 \[\implies 129 \leq A_2(11, 4) \leq 132. \]
Projective divisible codes

- Sets of points \leftrightarrow projective linear codes.
- Study effective lengths of projective linear codes.
- As before: Set of realizable lengths additively closed.
- Find small starters.

Lemma

The following lengths are realizable:

$$n_1 = \frac{q^{r+1} - 1}{q - 1} \quad \text{and} \quad n_2 = q^{r+1}$$

Proof.

Simplex code of dim. $r + 1$ and 1st order Reed-Muller code of dim. $r + 2$.

Question: Are all realizable lengths sum of n_1’s and n_2’s?
Theorem 2 (T. Honold, MK, S. Kurz)
Length \(n \leq rq^{r+1} \) realizable \(\iff \) \(n \) sum of \(n_1 \)'s and \(n_2 \)'s.

Restriction \(n \leq rq^{r+1} \) necessary?

- Yes!
- For \(r = 1 \), \(q^2 + 1 \) is realizable (ovoid in \(\text{PG}(3, q) \)).
- Classification of lengths of projective divisible code apparently quite hard.
Theorem 3 (T. Honold, MK, S. Kurz, A. Wassermann)

(a) The lengths of projective 2-divisible (even) binary codes are

\[3, 4, 5, 6, \ldots \]

(b) The lengths of projective 4-divisible (doubly even) binary codes are

\[7, 8, 14, 15, 16, 17, \ldots \]

(c) The lengths of projective 8-divisible (triply even) binary codes are

\[15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51, 60, 61, 62, 63, \ldots \]

Hardest single case (by far)
Non-existence of 8-divisible code of length 59.
No projective 8-divisible code of length 59

Let C be such code of smallest possible dimension k, weight enumerator $w(C) = 1 + a_8 x^8 + a_{16} x^{16} + \ldots + a_{56} x^{56}$

Lemma: $a_{56} = a_{48} = 0$
Residuals would be projective 4-divisible of length 3 and 11

Lemma: $k \geq 10$: First 4 MacWilliams identities \leadsto

$$a_{16} + a_{40} = -6 - 3a_8 + \frac{1}{128} \#C \quad (\ast)$$

$$\implies 0 \leq -6 + \frac{1}{128} \#C \implies \#C \geq 768.$$

Lemma: $k = 10$

k min. \implies all codim 1 subcodes are non-projective.
Geometr.: All $2^k - 60$ points outside of C lie on a secant.

$\#$secants $\leq (\#C^2) = 1711.$

$$\implies 2^k - 60 \leq 1711 \implies k \leq 10.$$

Lemma: $a_8 = 0$ and $a_{16} + a_{40} = 2$

$(k = 10$ into $(\ast) \implies a_{16} + a_{40} = 2 - 3a_8)$

$\ldots \leadsto$ Lemma: $a_{16} = 0 \leadsto \ldots \leadsto$ finally a contradiction.
Further Applications
The Johnson bound for subspace codes

Most competitive bound for subspace codes:
Johnson type bound II (Xia, Fu)

\[A_q(v, d; k) \leq \left\lfloor \frac{q^v - 1}{q^k - 1} \cdot A_q(v - 1, d; k - 1) \right\rfloor \]

Similar to partial spreads: Improvement via divisible codes.

Example

Johnson type bound II:

\[A_2(9, 6; 4) \leq \left\lfloor \frac{2^9 - 1}{2^4 - 1} \cdot A_2(8, 6; 3) \right\rfloor = 1158 \]

Improvement:

\[A_2(9, 6; 4) \leq 1156 \]
The Barth sextic
The Barth sextic

- **Record surface**: Sextic surface with the maximum possible number of nodes (ordinary double points).
- Its even sets of nodes form a binary 8-divisible code C of length 65.
- **Via classification**: Generator matrix of C is

\[
\begin{bmatrix}
1111000111000000110101101101110100110011010000001110011101010100001110
1100011110000011010001101100110001111010000111101001100110100000001
1001111000011011001101001101000110110011001100011010000001100110011
00111000111111010110100011001100110111001100110000011110100110100001
0111001110100001101101001101100110001101000000011011010100001110010
01100011100001101100011010101000011011001100110000011011010100100001
11100011100001101100011010101000011011001100110000011011010100100001
11001110000110100011010001101011000110100000001101001011000001111001
00111000111111010110100011001100110111001100110000011110100101000011
00111000111111010110100011001100110111001100110000011110100100100001
0111001110100001101101001101100110001101000000011011010100001110010
01100011100001101100011010101000011011001100110000011011010100100001
11100011100001101100011010101000011011001100110000011011010100100001
11001110000110100011010001101011000110100000001101001011000001111001
00111000111111010110100011001100110111001100110000011110100101000011
00111000111111010110100011001100110111001100110000011110100100100001
0111001110100001101101001101100110001101000000011011010100001110010
\end{bmatrix}
\]

- $w(C) = 1 + 390x^{24} + 3055x^{32} + 650x^{40}$

- $\# \text{Aut}(C) = 15600$, $\text{Aut}(C) \cong \text{PSL}(2, 25) \rtimes \mathbb{Z}/2\mathbb{Z}$
Open problems

- Effective lengths of general p^s-divisible codes.

 Example 8-divisible over \mathbb{F}_4.

- Open cases for lengths of projective linear codes for:
 - Binary 16-divisible
 - Ternary 9-divisible
 - 5-divisible over \mathbb{F}_5

- Lengths of divisible codes with
 - restricted dimension and/or
 - restricted point multiplicity

- Classifications.

- Divisible codes of high minimum distance.

- Indecomposable divisible codes.

- q-analog question: divisible rank metric codes.

- ...