On the lengths of divisible codes

Michael Kiermaier

Institut für Mathematik
Universität Bayreuth
Kolloquium über Kombinatorik (KolKom) 2018 November 24, 2018 Universität Paderborn
joint work with Sascha Kurz

Linear codes

- finite field \mathbb{F}_{q} of characteristic p.
- \mathbb{F}_{q}-linear code $C: \mathbb{F}_{q}$-subspace of \mathbb{F}_{q}^{n}.
- n : length of C.
- (Hamming) weight $w(\mathbf{c})$ of $\mathbf{c} \in \mathbb{F}_{q}^{n}$: \# non-zero positions of \mathbf{c}.

Divisible codes

- Introduced by Harold Ward in 1981.
$>$ Linear code $C \triangle$-divisible $: \Longleftrightarrow \Delta \mid w(\mathbf{c})$ for all $\mathbf{c} \in C$.
- Only interesting case: Δ power of p.
- In this talk: $\Delta=q^{r}$

Linear codes

- finite field \mathbb{F}_{q} of characteristic p.
- \mathbb{F}_{q}-linear code $C: \mathbb{F}_{q}$-subspace of \mathbb{F}_{q}^{n}.
- n : length of C.
- (Hamming) weight $w(\mathbf{c})$ of $\mathbf{c} \in \mathbb{F}_{q}^{n}$: \# non-zero positions of \mathbf{c}.

Divisible codes

- Introduced by Harold Ward in 1981.
- Linear code $C \Delta$-divisible $: \Longleftrightarrow \Delta \mid w(\mathbf{c})$ for all $\mathbf{c} \in C$.
- Only interesting case: Δ power of p.
- In this talk: $\Delta=q^{r} \quad\left(r \in \mathbb{N}_{0}\right)$.

Why divisible codes?

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

- Conjecture (Ward 2001):
C Griesmer code over $\mathbb{F}_{q}, \quad p^{r} \mid$ minimum distance of C $\Longrightarrow C p^{r+1} / q$-divisible.

True for $a=p$ (Ward 1998), $a=4$ (Ward 2001)

- Applications in finite geometry, subspace codes, etc.

In this talk: Upper bounds for partial spreads.

Why divisible codes?

- Many good codes are divisible.
- Connection to duality: Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

```
- Conjecture (Ward 2001):
\(C\) Griesmer code over \(\mathbb{F}_{q}, \quad p^{r} \mid\) minimum distance of \(C\)
\(\Longrightarrow C p^{r+1} / q\)-divisible.
True for \(q=p\) (Ward 1998), \(q=4\) (Ward 2001)
- Applications in finite geometry, subspace codes, etc.
In this talk: Upper bounds for partial spreads.
```


Why divisible codes?

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible.
4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

- Conjecture (Ward 2001):
C Griesmer code over $\mathbb{F}_{q}, \quad p^{r} \mid$ minimum distance of C $\Longrightarrow C p^{r+1} / q$-divisible.

True for $q=p$ (Ward 1998), $q=4$ (Ward 2001)

- Applications in finite geometry, subspace codes, etc. In this talk: Upper bounds for partial spreads.

Why divisible codes?

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible.
4-divisible binary codes are self-orthogonal.
Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

- Conjecture (Ward 2001):
C Griesmer code over $\mathbb{F}_{q}, \quad p^{r} \mid$ minimum distance of C $\Longrightarrow C p^{r+1} / q$-divisible.

True for $q=p$ (Ward 1998), $q=4$ (Ward 2001)

- Applications in finite geometry, subspace codes, etc. In this talk: Upper bounds for partial spreads.
- Divisible code bound (Ward 1992): Bound on the dimensions of divisible codes.
- Our Goal:

Classification of the effective lengths of q^{r}-divisible codes.
effective length: \#t non-zero coordinates of C.

- Divisible code bound (Ward 1992): Bound on the dimensions of divisible codes.
- Our Goal:

Classification of the effective lengths of q^{r}-divisible codes.
effective length: \# non-zero coordinates of C.

Projective geometry

- \mathbb{F}_{q}-vector space V of dimension v.
- Subspace lattice of V : projective geometry PG(V)

- 1-subspaces: points, ($v-1$)-subspaces: hyperplanes

$:=\#(k$-subspaces of $V)$

Projective geometry

- \mathbb{F}_{q}-vector space V of dimension v.
- Subspace lattice of V : projective geometry PG(V)
- 1-subspaces: points, $(v-1)$-subspaces: hyperplanes

if $0 \leq k \leq v$; otherwise.

Projective geometry

- \mathbb{F}_{q}-vector space V of dimension v.
- Subspace lattice of V : projective geometry PG(V)
- 1-subspaces: points, ($v-1$)-subspaces: hyperplanes

$$
\begin{aligned}
{\left[\begin{array}{l}
v \\
k
\end{array}\right]_{q} } & :=\#(k \text {-subspaces of } V) \\
& = \begin{cases}\frac{\left(q^{v}-1\right)\left(q^{v-1}-1\right) \cdots\left(q^{v-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)} & \text { if } 0 \leq k \leq v ; \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Linear codes and points

- \mathbb{F}_{q}-linear code C of effective length n
\longleftrightarrow multiset \mathcal{P} of n points in PG(V). (read columns of generator matrix
as homogeneous coordinates)
- codeword \mathbf{c} of C \longleftrightarrow hyperplane H in PG(V)
- $w(\mathbf{c})=n-\#(\mathcal{P} \cap H)$.
- C Δ-divisible $\Longleftrightarrow \#(\mathcal{P} \cap H) \equiv \# \mathcal{P}(\bmod \Delta)$ for all hyperplanes H.
In this case: Call $\mathcal{P} \triangle$-divisible.
- \rightsquigarrow Classify the sizes of q^{r}-divisible multisets of points! (will be called realizable sizes)

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.

Linear codes and points

- \mathbb{F}_{q}-linear code C of effective length n
\longleftrightarrow multiset \mathcal{P} of n points in PG(V). (read columns of generator matrix
as homogeneous coordinates)
- codeword \mathbf{c} of C
\longleftrightarrow hyperplane H in PG (V)
- $w(\mathbf{c})=n-\#(\mathcal{P} \cap H)$.
- C Δ-divisible $\Longleftrightarrow \#(\mathcal{P} \cap H) \equiv \# \mathcal{P}(\bmod \triangle)$ for all hyperplanes H.
In this case: Call $\mathcal{P} \triangle$-divisible.
- \rightsquigarrow Classify the sizes of a^{r}-divisible multisets of points! (will be called realizable sizes)

Advantages of geometric setting

- Basis-froe approach to coding theory.
- Geometry provides intuition.

Linear codes and points

- \mathbb{F}_{q}-linear code C of effective length n
\longleftrightarrow multiset \mathcal{P} of n points in $\mathrm{PG}(V)$. (read columns of generator matrix
as homogeneous coordinates)
- codeword \mathbf{c} of C
\longleftrightarrow hyperplane H in $\mathrm{PG}(V)$
- $w(\mathbf{c})=n-\#(\mathcal{P} \cap H)$.

C \triangle-divisible $\Longleftrightarrow \#(\mathcal{P} \cap H) \equiv \# \mathcal{P}(\bmod \Delta)$ for all hyperplanes H.
In this case: Call $\mathcal{P} \triangle$-divisible.
$>\rightsquigarrow$ Classify the sizes of q^{r}-divisible multisets of points! (will be called realizable sizes)

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.

Linear codes and points

- \mathbb{F}_{q}-linear code C of effective length n
\longleftrightarrow multiset \mathcal{P} of n points in $\mathrm{PG}(V)$. (read columns of generator matrix
as homogeneous coordinates)
- codeword \mathbf{c} of C
\longleftrightarrow hyperplane H in $\mathrm{PG}(V)$
- $w(\mathbf{c})=n-\#(\mathcal{P} \cap H)$.
- $C \Delta$-divisible
$\Longleftrightarrow \#(\mathcal{P} \cap H) \equiv \# \mathcal{P}(\bmod \Delta)$ for all hyperplanes H. In this case: Call $\mathcal{P} \Delta$-divisible.
$-\rightsquigarrow$ Classify the sizes of q^{r}-divisible multisets of points! (will be called realizable sizes)

Advantages of geometric setting

- Basis-free approach to coding theory.

Linear codes and points

- \mathbb{F}_{q}-linear code C of effective length n
\longleftrightarrow multiset \mathcal{P} of n points in PG(V). (read columns of generator matrix
as homogeneous coordinates)
- codeword \mathbf{c} of C
\longleftrightarrow hyperplane H in $\mathrm{PG}(V)$
- $w(\mathbf{c})=n-\#(\mathcal{P} \cap H)$.
- $C \Delta$-divisible
$\Longleftrightarrow \#(\mathcal{P} \cap H) \equiv \# \mathcal{P}(\bmod \Delta)$ for all hyperplanes H. In this case: Call $\mathcal{P} \triangle$-divisible.
$-\rightsquigarrow$ Classify the sizes of q^{r}-divisible multisets of points! (will be called realizable sizes)

Advantages of geometric setting

- Basis-free approach to coding theory.
- Geometry provides intuition.

Lemma
Let $V_{1} \subseteq V_{2} \mathbb{F}_{q}$-vector spaces and \mathcal{P} multiset of points in V_{1}. Then:
$\mathcal{P} q^{r}$-divisible in $V_{1} \Longleftrightarrow \mathcal{P} q^{r}$-divisible in V_{2}

Lemma
Let U be \mathbb{F}_{q}-vector space of dimension $k \geq 1$.
Let P be the set of points in U.
Then \mathcal{P} is q^{k-1}-divisible.
Proof.
Choose ambient space $V=U$. For each hyperplane H

Lemma
Let $V_{1} \subseteq V_{2} \mathbb{F}_{q}$-vector spaces and \mathcal{P} multiset of points in V_{1}. Then:
$\mathcal{P} q^{r}$-divisible in $V_{1} \Longleftrightarrow \mathcal{P} q^{r}$-divisible in V_{2}
Lemma
Let U be \mathbb{F}_{q}-vector space of dimension $k \geq 1$.
Let \mathcal{P} be the set of points in U.
Then \mathcal{P} is q^{k-1}-divisible.
Proof.
Choose ambient space $V=U$. For each hyperplane H

Lemma
Let $V_{1} \subseteq V_{2} \mathbb{F}_{q}$-vector spaces and \mathcal{P} multiset of points in V_{1}.
Then:

$$
\mathcal{P} q^{r} \text {-divisible in } V_{1} \Longleftrightarrow \mathcal{P} q^{r} \text {-divisible in } V_{2}
$$

Lemma

Let U be \mathbb{F}_{q}-vector space of dimension $k \geq 1$.
Let \mathcal{P} be the set of points in U.
Then \mathcal{P} is q^{k-1}-divisible.
Proof.
Choose ambient space $V=U$. For each hyperplane H

$$
\begin{aligned}
& \#(\mathcal{P} \cap H)=\left[\begin{array}{c}
k-1 \\
1
\end{array}\right]_{q}=1+q+q^{2}+\ldots+q^{k-2} \\
\equiv & \left(1+q+q^{2}+\ldots+q^{k-2}\right)+q^{k-1}=\left[\begin{array}{l}
k \\
1
\end{array}\right]_{q}=\# \mathcal{P} \quad\left(\bmod q^{k-1}\right)
\end{aligned}
$$

Lemma
The following sizes are realizable:
$s(r, i):=q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})$
Proof.
Set of points of a $(r-i+1)$-subspace
is q^{r-i}-divisible of size
$\Longrightarrow q^{i}$-fold repetition
is $\left(q^{i} \cdot q^{r-i}\right)$-divisible of size q^{i}
Lemma
The following sizes are realizable:
$n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r) \quad\left(a_{0}, a_{1}, \ldots, a_{r} \in \mathbb{N}_{0}\right)$
Proof.
Take unions of the above multisets.

Lemma

The following sizes are realizable:
$s(r, i):=q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})$
Proof.
Set of points of a $(r-i+1)$-subspace
is q^{r-i}-divisible of size $\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.
$\Longrightarrow q^{i}$-fold repetition is $\left(q^{i} \cdot q^{r-i}\right)$-divisible of size $q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.

Lemma
The following sizes are realizable:

Lemma

The following sizes are realizable:
$s(r, i):=q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})$
Proof.
Set of points of a $(r-i+1)$-subspace is q^{r-i}-divisible of size $\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.
$\Longrightarrow q^{i}$-fold repetition is $\left(q^{i} \cdot q^{r-i}\right)$-divisible of size $q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.

Lemma
The following sizes are realizable:
$n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r) \quad\left(a_{0}, a_{1}, \ldots, a_{r} \in \mathbb{N}_{0}\right)$

Lemma

The following sizes are realizable:
$s(r, i):=q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})$
Proof.
Set of points of a $(r-i+1)$-subspace is q^{r-i}-divisible of size $\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.
$\Longrightarrow q^{i}$-fold repetition is $\left(q^{i} \cdot q^{r-i}\right)$-divisible of size $q^{i} \cdot\left[\begin{array}{c}r-i+1 \\ 1\end{array}\right]_{q}$.

Lemma
The following sizes are realizable:
$n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r) \quad\left(a_{0}, a_{1}, \ldots, a_{r} \in \mathbb{N}_{0}\right)$
Proof.
Take unions of the above multisets.

- The numbers

$$
s(r, i)=q^{i} \cdot\left[\begin{array}{c}
r-i+1 \\
1
\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})
$$

have the property

$$
q^{i} \mid s(r, i) \quad \text { but } \quad q^{i+1} \nmid s(r, i)
$$

\Longrightarrow We can build positional number system upon base
numbers

$$
S(r)=(s(r, 0), s(r, 1), \ldots s(r, r))
$$

- Each $n \in \mathbb{Z}$ has unique $S(r)$-adic expansion

$$
n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r)
$$

with $a_{0}, \ldots, a_{r-1} \in\{0, \ldots, q-1\}$
and leading coefficient $a_{r} \in \mathbb{Z}$.
(Reason: Equation (*) mod $q, q^{2}, q^{3} \ldots$ yields unique $\left.a_{0}, a_{1}, a_{2}, \ldots\right)$

- The numbers

$$
s(r, i)=q^{i} \cdot\left[\begin{array}{c}
r-i+1 \\
1
\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})
$$

have the property

$$
q^{i} \mid s(r, i) \quad \text { but } \quad q^{i+1} \nmid s(r, i)
$$

\Longrightarrow We can build positional number system upon base numbers

$$
S(r)=(s(r, 0), s(r, 1), \ldots s(r, r))
$$

- Each $n \in \mathbb{Z}$ has unique $S(r)$-adic expansion

$$
n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r)
$$

with $a_{0}, \ldots, a_{r-1} \in\{0, \ldots, q-1\}$
and leading coefficient $a_{r} \in \mathbb{Z}$.
(Reason: Equation (*) mod $q, q^{2}, q^{3} \ldots$ yields unique $\left.a_{0}, a_{1}, a_{2}, \ldots\right)$

- The numbers

$$
s(r, i)=q^{i} \cdot\left[\begin{array}{c}
r-i+1 \\
1
\end{array}\right]_{q}=q^{i}+q^{i+1}+\ldots+q^{r} \quad(i \in\{0, \ldots, r\})
$$

have the property

$$
q^{i} \mid s(r, i) \quad \text { but } \quad q^{i+1} \nmid s(r, i)
$$

\Longrightarrow We can build positional number system upon base numbers

$$
S(r)=(s(r, 0), s(r, 1), \ldots s(r, r))
$$

- Each $n \in \mathbb{Z}$ has unique $S(r)$-adic expansion

$$
\begin{equation*}
n=a_{0} s(r, 0)+a_{1} s(r, 1)+\ldots+a_{r} s(r, r) \tag{*}
\end{equation*}
$$

with $a_{0}, \ldots, a_{r-1} \in\{0, \ldots, q-1\}$ and leading coefficient $a_{r} \in \mathbb{Z}$.
(Reason: Equation $(*) \bmod q, q^{2}, q^{3} \ldots$ yields unique $\left.a_{0}, a_{1}, a_{2}, \ldots\right)$

Example

- Let $q=3, r=3 . \quad \Longrightarrow \quad S(3)=(40,39,36,27)$.
- $S(3)$-adic expansion of $n=137$?

Find $a_{0}, a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
a_{0} \cdot 40+a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=137 .
$$

- Modulo 3:

$a_{0}=2$ in (*):

$$
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{137-2 \cdot 40}_{=57}
$$

- Modulo 9:

$$
a_{1} \cdot 3+a_{2} \cdot 0+a_{3} \cdot 0 \equiv 3 \quad(\bmod 9)
$$

Example

- Let $q=3, r=3 . \quad \Longrightarrow \quad S(3)=(40,39,36,27)$.
- $S(3)$-adic expansion of $n=137$?

Find $a_{0}, a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{0} \cdot 40+a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=137 \tag{*}
\end{equation*}
$$

- Modulo 3:

- Modulo 9:

Example

- Let $q=3, r=3 . \quad \Longrightarrow \quad S(3)=(40,39,36,27)$.
- $S(3)$-adic expansion of $n=137$?

Find $a_{0}, a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{0} \cdot 40+a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=137 \tag{*}
\end{equation*}
$$

- Modulo 3:

$$
a_{0} \cdot 1+\underbrace{a_{1} \cdot 0+a_{2} \cdot 0+a_{3} \cdot 0}_{=0} \equiv 2(\bmod 3) \quad \Longrightarrow \quad a_{0}=2
$$

Example

- Let $q=3, r=3 . \quad \Longrightarrow \quad S(3)=(40,39,36,27)$.
- $S(3)$-adic expansion of $n=137$?

Find $a_{0}, a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{0} \cdot 40+a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=137 . \tag{*}
\end{equation*}
$$

- Modulo 3 :

$$
a_{0} \cdot 1+\underbrace{a_{1} \cdot 0+a_{2} \cdot 0+a_{3} \cdot 0}_{=0} \equiv 2(\bmod 3) \quad \Longrightarrow \quad a_{0}=2
$$

- $\mathrm{a}_{0}=2 \mathrm{in}(*):$

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{137-2 \cdot 40}_{=57} \tag{**}
\end{equation*}
$$

- Modulo 9:

Example

- Let $q=3, r=3 . \quad \Longrightarrow \quad S(3)=(40,39,36,27)$.
- $S(3)$-adic expansion of $n=137$?

Find $a_{0}, a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{0} \cdot 40+a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=137 . \tag{*}
\end{equation*}
$$

- Modulo 3 :

$$
a_{0} \cdot 1+\underbrace{a_{1} \cdot 0+a_{2} \cdot 0+a_{3} \cdot 0}_{=0} \equiv 2(\bmod 3) \quad \Longrightarrow \quad a_{0}=2
$$

- $\mathrm{a}_{0}=2 \mathrm{in}(*):$

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{137-2 \cdot 40}_{=57} \tag{**}
\end{equation*}
$$

- Modulo 9:

$$
a_{1} \cdot 3+a_{2} \cdot 0+a_{3} \cdot 0 \equiv 3 \quad(\bmod 9) \quad \Longrightarrow \quad a_{1}=1
$$

Example (cont.)

Find $a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=57 \tag{**}
\end{equation*}
$$

- Modulo 27:

$\Rightarrow \quad \Longrightarrow(3)$-adic expansion of $n=137$ is

Example (cont.)

Find $a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=57 \tag{**}
\end{equation*}
$$

- $a_{1}=1 \mathrm{in}(* *):$

$$
a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{57-1 \cdot 39}_{=18}
$$

Example (cont.)

Find $a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=57 \tag{**}
\end{equation*}
$$

- $a_{1}=1 \mathrm{in}(* *):$
- Modulo 27:

$$
a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{57-1 \cdot 39}_{=18}
$$

$$
a_{2} \cdot 9+a_{3} \cdot 0 \equiv 18 \quad(\bmod 27) \quad \Longrightarrow \quad a_{2}=2
$$

Example (cont.)

Find $a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=57 \tag{**}
\end{equation*}
$$

- $a_{1}=1 \mathrm{in}(* *):$
- Modulo 27:

$$
a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{57-1 \cdot 39}_{=18}
$$

$$
a_{2} \cdot 9+a_{3} \cdot 0 \equiv 18 \quad(\bmod 27) \quad \Longrightarrow \quad a_{2}=2
$$

$-\ln (* * *)$:

$$
a_{3} \cdot 27=\underbrace{18-2 \cdot 36}_{=-54} \Longrightarrow a_{3}=-2
$$

Example (cont.)

Find $a_{1}, a_{2} \in\{0,1,2\}$ and $a_{3} \in \mathbb{Z}$ with

$$
\begin{equation*}
a_{1} \cdot 39+a_{2} \cdot 36+a_{3} \cdot 27=57 \tag{**}
\end{equation*}
$$

- $a_{1}=1 \mathrm{in}(* *):$
- Modulo 27:

$$
\begin{equation*}
a_{2} \cdot 36+a_{3} \cdot 27=\underbrace{57-1 \cdot 39}_{=18} \tag{***}
\end{equation*}
$$

$$
a_{2} \cdot 9+a_{3} \cdot 0 \equiv 18 \quad(\bmod 27) \quad \Longrightarrow \quad a_{2}=2
$$

$-\ln (* * *):$

$$
a_{3} \cdot 27=\underbrace{18-2 \cdot 36}_{=-54} \Longrightarrow a_{3}=-2
$$

- $\Longrightarrow S(3)$-adic expansion of $n=137$ is

$$
137=2 \cdot 40+1 \cdot 39+2 \cdot 36+(-2) \cdot 27
$$

Theorem 1
Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_{0}$. Then:
There exists a q^{r}-divisible \mathbb{F}_{q}-linear code of effective length n

The leading coefficient of the $S(r)$-adic expansion of n is ≥ 0.
Example (cont.)

- $q=3, r=3$
- S(3)-adic expansion of $n=137$ is $137=2 \cdot 40+1 \cdot 39+2 \cdot 36+(-2) \cdot 27$.
- Leading coefficient is -2 .
- Theorem $1 \Longrightarrow$ There is no 27-divisible ternary code of effective length 137.

Theorem 1

Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_{0}$. Then:
There exists a q^{r}-divisible \mathbb{F}_{q}-linear code of effective length n

The leading coefficient of the $S(r)$-adic expansion of n is ≥ 0.
Example (cont.)

- $q=3, r=3$
- $S(3)$-adic expansion of $n=137$ is $137=2 \cdot 40+1 \cdot 39+2 \cdot 36+(-2) \cdot 27$.
- Leading coefficient is -2 .
- Theorem $1 \Longrightarrow$ There is no 27-divisible ternary code of effective length 137.

Lemma
Let \mathcal{P} be non-empty and q^{r}-divisible.
Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1}-divisible.

Proof of Theorem 1 (Idea)

- Let \mathcal{P} be non-empty and q^{r}-divisible.

Have to show:
Leading coefficient of $S(r)$-adic expansion of $\# \mathcal{P}$ is ≥ 0.

- On average, a hyperplane contains

elements of \mathcal{P}.
- \Longrightarrow Exists hyperplane H with $\#(\mathcal{P} \cap H)<\frac{\# P}{q}$. - Apply Lemma to this H, use induction on r.

Lemma
Let \mathcal{P} be non-empty and q^{r}-divisible.
Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1}-divisible.

Proof of Theorem 1 (Idea)

- Let \mathcal{P} be non-empty and q^{r}-divisible. Have to show:
Leading coefficient of $S(r)$-adic expansion of $\# \mathcal{P}$ is ≥ 0.
- On average, a hyperplane contains

elements of \mathcal{P}.
- \Longrightarrow Exists hyperplane H with $\#(\mathcal{P} \cap H)<\frac{\# P}{q}$. - Apply Lemma to this H, use induction on r.

Lemma

Let \mathcal{P} be non-empty and q^{r}-divisible.
Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1}-divisible.

Proof of Theorem 1 (Idea)

- Let \mathcal{P} be non-empty and q^{r}-divisible. Have to show:
Leading coefficient of $S(r)$-adic expansion of $\# \mathcal{P}$ is ≥ 0.
- On average, a hyperplane contains

$$
\# \mathcal{P} \cdot \frac{1}{q+\frac{1}{\left[\begin{array}{c}
V-1 \\
1
\end{array}\right]_{q}}}
$$

elements of \mathcal{P}.
$>\Longrightarrow$ Exists hyperplane H with $\#(\mathcal{P} \cap H)$
\square

Lemma

Let \mathcal{P} be non-empty and q^{r}-divisible.
Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1}-divisible.

Proof of Theorem 1 (Idea)

- Let \mathcal{P} be non-empty and q^{r}-divisible. Have to show:
Leading coefficient of $S(r)$-adic expansion of $\# \mathcal{P}$ is ≥ 0.
- On average, a hyperplane contains

$$
\# \mathcal{P} \cdot \frac{1}{q+\frac{1}{\left[\begin{array}{c}
V-1 \\
1
\end{array}\right]_{q}}}
$$

elements of \mathcal{P}.

- \Longrightarrow Exists hyperplane H with $\#(\mathcal{P} \cap H)<\frac{\# \mathcal{P}}{q}$.
- Apply Lemma to this H, use induction on r.

Lemma

Let \mathcal{P} be non-empty and q^{r}-divisible.
Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1}-divisible.

Proof of Theorem 1 (Idea)

- Let \mathcal{P} be non-empty and q^{r}-divisible. Have to show:
Leading coefficient of $S(r)$-adic expansion of $\# \mathcal{P}$ is ≥ 0.
- On average, a hyperplane contains

$$
\# \mathcal{P} \cdot \frac{1}{q+\frac{1}{\left[\begin{array}{c}
v-1 \\
1
\end{array}\right]_{q}}}
$$

elements of \mathcal{P}.

- \Longrightarrow Exists hyperplane H with $\#(\mathcal{P} \cap H)<\frac{\# \mathcal{P}}{q}$.
- Apply Lemma to this H, use induction on r.

Definition

- Let V be \mathbb{F}_{q} vector space of dimension v.
- Let \mathcal{S} be a set of k-subspaces of V.
- \mathcal{S} is partial $(k-1)$-spread
if each point in V is covered by at most 1 element of \mathcal{S}.

Research Problem
Find maximum possible size $A_{g}(v, k)$ of partial spread.

Definition

- Let V be \mathbb{F}_{q} vector space of dimension v.
- Let \mathcal{S} be a set of k-subspaces of V.
- \mathcal{S} is partial $(k-1)$-spread
if each point in V is covered by at most 1 element of \mathcal{S}.

Research Problem
Find maximum possible size $A_{q}(v, k)$ of partial spread.

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$). In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

Bound sharp for $r=1$.

- 1979 Drake, Freeman: Improved upper bound on $A_{q}(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for $A_{2}(8,3)=34$. Settles all cases with $q=2, r=2, k=3$ recursively. Here, bound ($*$) is not sharp!
- 2016 Kurz: Bound ($*$) sharp for $q=2, r=2, k \geq 4$.
- 2017 Năstase, Sissokho: (*) sharp whenever $k>\left[\begin{array}{r}r \\ 1\end{array}\right]_{\sim}$

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$).
In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

$$
\begin{equation*}
A_{q}(v, k) \geq \frac{q^{v}-q^{k+r}}{q^{k}-1}+1 \tag{*}
\end{equation*}
$$

Bound sharp for $r=1$.

- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for $A_{2}(8,3)=34$. Seitles all cases with $q=2, r=2, k=3$ recursively. Here, bound (*) is not sharp!
- 2016 Kurz: Bound (*) sharp for $q=2, r=2, k \geq 4$.

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$).
In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

$$
\begin{equation*}
A_{q}(v, k) \geq \frac{q^{v}-q^{k+r}}{q^{k}-1}+1 \tag{*}
\end{equation*}
$$

Bound sharp for $r=1$.

- 1979 Drake, Freeman: Improved upper bound on $A_{q}(v, k)$.

Computer construction for $A_{2}(8,3)=34$. Settles all cases with $q=2, r=2, k=3$ recursively. Here, bound ($*$) is not sharp!

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$).
In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

$$
\begin{equation*}
A_{q}(v, k) \geq \frac{q^{v}-q^{k+r}}{q^{k}-1}+1 \tag{*}
\end{equation*}
$$

Bound sharp for $r=1$.

- 1979 Drake, Freeman: Improved upper bound on $A_{q}(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:

Computer construction for $A_{2}(8,3)=34$.
Settles all cases with $q=2, r=2, k=3$ recursively. Here, bound ($*$) is not sharp!

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$).
In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

$$
\begin{equation*}
A_{q}(v, k) \geq \frac{q^{v}-q^{k+r}}{q^{k}-1}+1 \tag{*}
\end{equation*}
$$

Bound sharp for $r=1$.

- 1979 Drake, Freeman: Improved upper bound on $A_{q}(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:

Computer construction for $A_{2}(8,3)=34$.
Settles all cases with $q=2, r=2, k=3$ recursively. Here, bound (*) is not sharp!

- 2016 Kurz: Bound ($*$) sharp for $q=2, r=2, k \geq 4$.

History
Write $v=t k+r, r \in\{0, \ldots, k-1\}, t \geq 2$.

- 1964 Segre:

All points can be covered $\Longleftrightarrow k \mid v$ (settles $r=0$).
In this case, \mathcal{S} spread, $A_{q}(v, k)=\frac{q^{v}-1}{q^{k}-1}$.

- 1975 Beutelspacher:

$$
\begin{equation*}
A_{q}(v, k) \geq \frac{q^{v}-q^{k+r}}{q^{k}-1}+1 \tag{*}
\end{equation*}
$$

Bound sharp for $r=1$.

- 1979 Drake, Freeman: Improved upper bound on $A_{q}(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence:

Computer construction for $A_{2}(8,3)=34$.
Settles all cases with $q=2, r=2, k=3$ recursively. Here, bound (*) is not sharp!

- 2016 Kurz: Bound ($*$) sharp for $q=2, r=2, k \geq 4$.
- 2017 Năstase, Sissokho: (*) sharp whenever $k>\left[\begin{array}{l}r \\ 1\end{array}\right]_{q}$.

Năstase and Sissokho as a corollary from Theorem 1

- Let \mathcal{S} be partial $(k-1)$-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1}-divisible!
\rightarrow Assume $\# S=\frac{q^{v}-q^{k+1}}{q^{k}-1}+2$.

$S(k-1)$-adic ex. $=\sum_{i=0}(q-1) s(k-1, i)$
- Theorem 1: Leading coefficient $q \cdot\left(\left[\begin{array}{c}r \\ 1\end{array}\right] q-k+1\right)-1 \geq 0$. $\Longleftrightarrow k \leq\left[\begin{array}{l}r \\ 1\end{array}\right]_{q}$.
$>\rightsquigarrow 2017$ result of Năstase and Sissokho follows as corollary from Theorem 1!.

Năstase and Sissokho as a corollary from Theorem 1

- Let \mathcal{S} be partial $(k-1)$-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1}-divisible!
- Assume $\# \mathcal{S}=\frac{q^{v}-q^{k+r}}{q^{k}-1}+2$.

$$
\begin{aligned}
\Longrightarrow \# \mathcal{P}= & {\left[\begin{array}{c}
k+r \\
1
\end{array}\right]_{q}-2\left[\begin{array}{l}
k \\
1
\end{array}\right]_{q} } \\
S(k-1) \text {-adic ex. }= & \sum_{i=0}^{k-2}(q-1) s(k-1, i) \\
& +\left(q \cdot\left(\left[\begin{array}{l}
r \\
1
\end{array}\right]_{q}-k+1\right)-1\right) s(k-1, k-1)
\end{aligned}
$$

$\begin{aligned}> & \text { Theorem 1: Leading coefficient } q \cdot\left(\left[\begin{array}{c}r \\ 1\end{array} q^{-k+1}-k+\right.\right. \\ & \Longleftrightarrow k \leq\left[\begin{array}{c}r \\ 1\end{array}\right]_{q} \\ > & \rightsquigarrow 2017 \text { result of Năstase and Sissokho follows as }\end{aligned}$

Năstase and Sissokho as a corollary from Theorem 1

- Let \mathcal{S} be partial $(k-1)$-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1}-divisible!
- Assume $\# \mathcal{S}=\frac{q^{v}-q^{k+r}}{q^{k}-1}+2$.

$$
\begin{aligned}
\Longrightarrow \# \mathcal{P}= & {\left[\begin{array}{c}
k+r \\
1
\end{array}\right]_{q}-2\left[\begin{array}{c}
k \\
1
\end{array}\right]_{q} } \\
S(k-1) \text {-adic ex. }= & \sum_{i=0}^{k-2}(q-1) s(k-1, i) \\
& +\left(q \cdot\left(\left[\begin{array}{l}
r \\
1
\end{array}\right]_{q}-k+1\right)-1\right) s(k-1, k-1)
\end{aligned}
$$

- Theorem 1: Leading coefficient $q \cdot\left(\left[\begin{array}{l}r \\ 1\end{array}\right] q-k+1\right)-1 \geq 0$.
$\Longleftrightarrow k \leq\left[\begin{array}{l}r \\ 1\end{array}\right]_{q}$.
$>\rightsquigarrow 2017$ result of Năstase and Sissokho follows as

Năstase and Sissokho as a corollary from Theorem 1

- Let \mathcal{S} be partial $(k-1)$-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1}-divisible!
- Assume $\# \mathcal{S}=\frac{q^{v}-q^{k+r}}{q^{k}-1}+2$.

$$
\begin{aligned}
\Longrightarrow \# \mathcal{P}= & {\left[\begin{array}{c}
k+r \\
1
\end{array}\right]_{q}-2\left[\begin{array}{l}
k \\
1
\end{array}\right]_{q} } \\
S(k-1) \text {-adic ex. }= & \sum_{i=0}^{k-2}(q-1) s(k-1, i) \\
& +\left(q \cdot\left(\left[\begin{array}{l}
r \\
1
\end{array}\right]_{q}-k+1\right)-1\right) s(k-1, k-1)
\end{aligned}
$$

- Theorem 1: Leading coefficient $q \cdot\left(\left[\begin{array}{l}r \\ 1\end{array}\right] q-k+1\right)-1 \geq 0$. $\Longleftrightarrow k \leq\left[\begin{array}{l}r \\ 1\end{array}\right]_{q}$.
- $\rightsquigarrow 2017$ result of Năstase and Sissokho follows as corollary from Theorem 1!.

Projective divisible codes

- For partial spreads: \mathcal{P} is a proper set (not only a multiset). Can we make use of this extra information?
\checkmark Sets of points \longleftrightarrow projective linear codes.
- Classification of the lengths
of projective q^{r}-divisible linear codes apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code of length n

$$
\begin{aligned}
\Longleftrightarrow n & \notin\{1,2,3,4,5,6,7,8,9,10,11, \mathbf{1 2}, 13, \mathbf{1 4}\} \\
& \cup\{17,18,19, \mathbf{2 0}, 21,22,23,24,25, \mathbf{2 6}, \mathbf{2 7}, \mathbf{2 8}, 29\} \\
& \cup\{33, \mathbf{3 4}, \mathbf{3 5}, \mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{3 9}, \mathbf{4 0}, \mathbf{4 1}, \mathbf{4 2}, \mathbf{4 3}, \mathbf{4 4}\} \\
& \cup\{52,53,54,55,56,57,58,59\}
\end{aligned}
$$

Projective divisible codes

- For partial spreads: \mathcal{P} is a proper set (not only a multiset). Can we make use of this extra information?
- Sets of points \longleftrightarrow projective linear codes.
- Classification of the lengths
of projective q^{r}-divisible linear codes apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code of length n

$$
\begin{aligned}
\Longleftrightarrow n & \notin\{1,2,3,4,5,6,7, \mathbf{8}, 9,10,11, \mathbf{1 2}, 13, \mathbf{1 4}\} \\
& \cup\{17,18,19, \mathbf{2 0}, 21,22, \mathbf{2 3}, \mathbf{2 4}, 25, \mathbf{2 6}, \mathbf{2 7}, \mathbf{2 8}, \mathbf{2 9}\} \\
& \cup\{33, \mathbf{3 4}, \mathbf{3 5}, \mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{3 9}, \mathbf{4 0}, \mathbf{4 1}, \mathbf{4 2}, \mathbf{4 3}, 44\} \\
& \cup\{52,53,54,55,56,57,58,59\}
\end{aligned}
$$

Projective divisible codes

- For partial spreads: \mathcal{P} is a proper set (not only a multiset). Can we make use of this extra information?
- Sets of points \longleftrightarrow projective linear codes.
- Classification of the lengths of projective q^{r}-divisible linear codes apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code of length n

$$
\begin{aligned}
\Longleftrightarrow n & \notin\{1,2,3,4,5,6,7,8,9,10,11, \mathbf{1 2}, 13,14\} \\
& \cup\{17,18,19,20,21,22, \mathbf{2 3}, \mathbf{2 4}, 25, \mathbf{2 6}, \mathbf{2 7}, \mathbf{2 8}, 29\} \\
& \cup\{33, \mathbf{3 4}, \mathbf{3 5}, \mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{3 9}, \mathbf{4 0}, \mathbf{4 1}, \mathbf{4 2}, \mathbf{4 3}, \mathbf{4 4}\} \\
& \cup\{52,53,54,55,56,57,58,59\}
\end{aligned}
$$

Projective divisible codes

- For partial spreads: \mathcal{P} is a proper set (not only a multiset). Can we make use of this extra information?
- Sets of points \longleftrightarrow projective linear codes.
- Classification of the lengths of projective q^{r}-divisible linear codes apparently much harder.

Theorem 2
There exists a projective 8-divisible binary linear code of length n

$$
\begin{aligned}
\Longleftrightarrow n & \notin\{1,2,3,4,5,6,7, \mathbf{8}, 9,10,11, \mathbf{1 2}, 13, \mathbf{1 4}\} \\
& \cup\{17, \mathbf{1 8}, \mathbf{1 9}, \mathbf{2 0}, 21, \mathbf{2 2}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{2 5}, \mathbf{2 6}, \mathbf{2 7}, \mathbf{2 8}, \mathbf{2 9}\} \\
& \cup\{33, \mathbf{3 4}, \mathbf{3 5}, \mathbf{3 6}, \mathbf{3 7}, \mathbf{3 8}, \mathbf{3 9}, \mathbf{4 0}, \mathbf{4 1}, \mathbf{4 2}, \mathbf{4 3}, \mathbf{4 4}\} \\
& \cup\{\mathbf{5 2}, \mathbf{5 3}, \mathbf{5 4}, \mathbf{5 5}, \mathbf{5 6}, \mathbf{5 7}, \mathbf{5 8}, \mathbf{5 9}\}
\end{aligned}
$$

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set
> of a partial 3 -spread in \mathbb{F}_{2}^{11} of size 133. $\Longrightarrow 129 \leq A_{2}(11,4) \leq 132$.

No projective 8-divisible code of length 59

- 'lardest single case.
- Cannot have weights 56 and 48
(residuals would be proj. 4-divisible of length 3 and 11)
- If it has weiaht 40:

Residual is projective 4-divisible of length 19.
3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.

Excluded computationally.

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3 -spread in \mathbb{F}_{2}^{11} of size 133.
$\Longrightarrow 129 \leq A_{2}(11,4) \leq 132$.
No projective 8-divisible code of length 59
- 'Hardest single case.
- Cannot have weights 56 and 48
(residuals would be proj. 4-divisible of length 3 and 11)
- If it has weiaht 40:

Residual is projective 4-divisible of length 19.
3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.

Excluded computationally.

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3 -spread in \mathbb{F}_{2}^{11} of size 133.

$$
\Longrightarrow 129 \leq A_{2}(11,4) \leq 132 .
$$

No projective 8-divisible code of length 59

- Hardest single case.

```
- Cannot have weights 56 and 48
(residuals would be proj. 4-divisible of length 3 and 11)
- If it has weight 40:
    Residual is projective 4-divisible of length 19.
    3 isomorphism types.
    - 2 excluded by theoretical argument.
    - 1 excluded computationally.
- Otherwise, must have weight 32.
Excluded computationally.
```

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3 -spread in \mathbb{F}_{2}^{11} of size 133.

$$
\Longrightarrow 129 \leq A_{2}(11,4) \leq 132 .
$$

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)
- If it has weight 40:

Residual is projective 4-divisible of length 19.
3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weiaht 32.

Excluded computationally.

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3 -spread in \mathbb{F}_{2}^{11} of size 133.

$$
\Longrightarrow 129 \leq A_{2}(11,4) \leq 132 .
$$

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)
- If it has weight 40:

Residual is projective 4-divisible of length 19. 3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.

Excluded computationally.

No projective 8-divisible code of length 52

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in \mathbb{F}_{2}^{11} of size 133.

$$
\Longrightarrow 129 \leq A_{2}(11,4) \leq 132 .
$$

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)
- If it has weight 40:

Residual is projective 4-divisible of length 19. 3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.

Excluded computationally.

Thank you!

