On the lengths of divisible codes

Michael Kiermaier

Institut für Mathematik Universität Bayreuth

Kolloquium über Kombinatorik (KolKom) 2018 November 24, 2018 Universität Paderborn

joint work with Sascha Kurz

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linear codes

- finite field \mathbb{F}_q of characteristic *p*.
- ▶ \mathbb{F}_q -linear code *C*: \mathbb{F}_q -subspace of \mathbb{F}_q^n .
- ▶ *n*: length of *C*.
- (Hamming) weight w(c) of c ∈ 𝔽ⁿ_q:
 # non-zero positions of c.

Divisible codes

- Introduced by Harold Ward in 1981.
- Linear code $C \Delta$ -divisible : $\iff \Delta \mid w(\mathbf{c})$ for all $\mathbf{c} \in C$.
- Only interesting case: Δ power of *p*.
- ln this talk: $\Delta = q^r$ $(r \in \mathbb{N}_0)$.

Linear codes

- finite field \mathbb{F}_q of characteristic *p*.
- ▶ \mathbb{F}_q -linear code *C*: \mathbb{F}_q -subspace of \mathbb{F}_q^n .
- ▶ *n*: length of *C*.
- (Hamming) weight w(c) of c ∈ Fⁿ_q: # non-zero positions of c.

Divisible codes

- Introduced by Harold Ward in 1981.
- Linear code $C \triangle$ -divisible : $\iff \Delta \mid w(\mathbf{c})$ for all $\mathbf{c} \in C$.
- Only interesting case: Δ power of *p*.
- ln this talk: $\Delta = q^r$ $(r \in \mathbb{N}_0)$.

Many good codes are divisible.

Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid \text{minimum distance of } C$ $\implies C p^{r+1}/q$ -divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)

Applications in finite geometry, subspace codes, etc. In this talk: Upper bounds for partial spreads.

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid \text{minimum distance of } C \implies C p^{r+1}/q$ -divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)

Applications in finite geometry, subspace codes, etc. In this talk: Upper bounds for partial spreads.

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid$ minimum distance of *C* $\implies C p^{r+1}/q$ -divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)

Applications in finite geometry, subspace codes, etc. In this talk: Upper bounds for partial spreads.

- Many good codes are divisible.
- Connection to duality:

Binary type II self-dual codes are 4-divisible. 4-divisible binary codes are self-orthogonal. Self-orthogonal binary codes are 2-divisible. Self-orthogonal ternary codes are 3-divisible.

Conjecture (Ward 2001):

C Griesmer code over \mathbb{F}_q , $p^r \mid$ minimum distance of *C* $\implies C p^{r+1}/q$ -divisible.

True for q = p (Ward 1998), q = 4 (Ward 2001)

Applications in finite geometry, subspace codes, etc.
 In this talk: Upper bounds for partial spreads.

Divisible code bound (Ward 1992): Bound on the dimensions of divisible codes.

Our Goal: Classification of the effective lengths of q^r-divisible codes.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

effective length: # non-zero coordinates of C.

- Divisible code bound (Ward 1992): Bound on the dimensions of divisible codes.
- Our Goal:

Classification of the effective lengths of q^r -divisible codes.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

effective length: # non-zero coordinates of C.

Projective geometry

- \mathbb{F}_q -vector space V of dimension v.
- Subspace lattice of V: projective geometry PG(V)
- ▶ 1-subspaces: points, (v 1)-subspaces: hyperplanes

$$\begin{bmatrix} v \\ k \end{bmatrix}_{q} := \#(k \text{-subspaces of } V)$$
$$= \begin{cases} \frac{(q^{v}-1)(q^{v-1}-1)\cdots(q^{v-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)} & \text{if } 0 \le k \le v; \\ 0 & \text{otherwise.} \end{cases}$$

Projective geometry

- \mathbb{F}_q -vector space V of dimension v.
- Subspace lattice of V: projective geometry PG(V)
- ▶ 1-subspaces: points, (*v* − 1)-subspaces: hyperplanes

$$\begin{bmatrix} v \\ k \end{bmatrix}_{q} := \#(k \text{-subspaces of } V)$$
$$= \begin{cases} \frac{(q^{v}-1)(q^{v-1}-1)\cdots(q^{v-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)} & \text{if } 0 \le k \le v; \\ 0 & \text{otherwise.} \end{cases}$$

Projective geometry

- \mathbb{F}_q -vector space V of dimension v.
- Subspace lattice of V: projective geometry PG(V)
- ▶ 1-subspaces: points, (*v* − 1)-subspaces: hyperplanes

$$\begin{bmatrix} \mathbf{v} \\ \mathbf{k} \end{bmatrix}_{q} := \#(\mathbf{k}\text{-subspaces of } \mathbf{V})$$

$$= \begin{cases} \frac{(q^{\nu}-1)(q^{\nu-1}-1)\cdots(q^{\nu-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)} & \text{if } 0 \le k \le \nu; \\ 0 & \text{otherwise.} \end{cases}$$

▶ \mathbb{F}_q -linear code *C* of effective length *n* ←→ multiset \mathcal{P} of *n* points in PG(*V*). (read columns of generator matrix as homogeneous coordinates)

codeword c of C

 \longleftrightarrow hyperplane *H* in PG(*V*)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

 \blacktriangleright C \triangle -divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes H. n this case: Call $\mathcal{P} \Delta$ -divisible.

 Classify the sizes of q^r-divisible multisets of points! (will be called realizable sizes)

- Basis-free approach to coding theory.
- Geometry provides intuition.

► \mathbb{F}_q -linear code *C* of effective length *n* \longleftrightarrow multiset \mathcal{P} of *n* points in PG(*V*). (read columns of generator matrix as homogeneous coordinates)

codeword c of C

 \leftrightarrow hyperplane *H* in PG(*V*)

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

 \blacktriangleright C \triangle -divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes H. n this case: Call $\mathcal{P} \Delta$ -divisible.

 Classify the sizes of q^r-divisible multisets of points! (will be called realizable sizes)

- Basis-free approach to coding theory.
- Geometry provides intuition.

► \mathbb{F}_q -linear code *C* of effective length *n* \longleftrightarrow multiset \mathcal{P} of *n* points in PG(*V*). (read columns of generator matrix as homogeneous coordinates)

codeword c of C

 \leftrightarrow hyperplane *H* in PG(*V*)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

 \blacktriangleright C \triangle -divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes *H*. n this case: Call $\mathcal{P} \triangle$ -divisible.

 Classify the sizes of q^r-divisible multisets of points! (will be called realizable sizes)

- Basis-free approach to coding theory.
- Geometry provides intuition.

codeword c of C

 \leftrightarrow hyperplane *H* in PG(*V*)

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

C ∆-divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes *H*. In this case: Call $\mathcal{P} \bigtriangleup$ -divisible.

 Classify the sizes of q^r-divisible multisets of points! (will be called realizable sizes)

- Basis-free approach to coding theory.
- Geometry provides intuition.

codeword c of C

 \leftrightarrow hyperplane *H* in PG(*V*)

$$\blacktriangleright w(\mathbf{c}) = n - \#(\mathcal{P} \cap H).$$

C ∆-divisible

 $\iff \#(\mathcal{P} \cap H) \equiv \#\mathcal{P} \pmod{\Delta}$ for all hyperplanes *H*. In this case: Call $\mathcal{P} \bigtriangleup$ -divisible.

 Classify the sizes of q^r-divisible multisets of points! (will be called realizable sizes)

- Basis-free approach to coding theory.
- Geometry provides intuition.

Let $V_1 \subseteq V_2 \mathbb{F}_q$ -vector spaces and \mathcal{P} multiset of points in V_1 . Then:

$\mathcal{P} \text{ } q^r \text{-divisible in } V_1 \iff \mathcal{P} \text{ } q^r \text{-divisible in } V_2$

Lemma

Let U be \mathbb{F}_q -vector space of dimension $k \ge 1$. Let \mathcal{P} be the set of points in U.

Then \mathcal{P} is q^{k-1} -divisible.

Proof.

Choose ambient space V = U. For each hyperplane H

$$#(\mathcal{P} \cap H) = {\binom{k-1}{1}}_q = 1 + q + q^2 + \dots + q^{k-2}$$
$$\equiv (1 + q + q^2 + \dots + q^{k-2}) + q^{k-1} = {\binom{k}{1}}_q = #\mathcal{P} \pmod{q^{k-1}}$$

Let $V_1 \subseteq V_2 \mathbb{F}_q$ -vector spaces and \mathcal{P} multiset of points in V_1 . Then:

$$\mathcal{P} \text{ } q^r \text{-divisible in } V_1 \iff \mathcal{P} \text{ } q^r \text{-divisible in } V_2$$

Lemma

Let U be \mathbb{F}_q -vector space of dimension $k \ge 1$. Let \mathcal{P} be the set of points in U.

Then \mathcal{P} is q^{k-1} -divisible.

Proof.

Choose ambient space V = U. For each hyperplane H

$$#(\mathcal{P} \cap H) = {\binom{k-1}{1}}_q = 1 + q + q^2 + \ldots + q^{k-2}$$
$$\equiv (1 + q + q^2 + \ldots + q^{k-2}) + q^{k-1} = {\binom{k}{1}}_q = #\mathcal{P} \pmod{q^{k-1}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回, のへぐ

Let $V_1 \subseteq V_2 \mathbb{F}_q$ -vector spaces and \mathcal{P} multiset of points in V_1 . Then:

$$\mathcal{P} \ q^r$$
-divisible in $V_1 \iff \mathcal{P} \ q^r$ -divisible in V_2

Lemma

Let U be \mathbb{F}_q -vector space of dimension $k \ge 1$. Let \mathcal{P} be the set of points in U.

Then \mathcal{P} is q^{k-1} -divisible.

Proof.

Choose ambient space V = U. For each hyperplane H

$$\#(\mathcal{P} \cap H) = {\binom{k-1}{1}}_q = 1 + q + q^2 + \ldots + q^{k-2}$$
$$\equiv (1 + q + q^2 + \ldots + q^{k-2}) + q^{k-1} = {\binom{k}{1}}_q = \#\mathcal{P} \pmod{q^{k-1}}$$

The following sizes are realizable:

$$\mathbf{s}(\mathbf{r},\mathbf{i}) := \mathbf{q}^{\mathbf{i}} \cdot \begin{bmatrix} \mathbf{r} - \mathbf{i} + 1 \\ 1 \end{bmatrix}_{\mathbf{q}} = \mathbf{q}^{\mathbf{i}} + \mathbf{q}^{\mathbf{i}+1} + \ldots + \mathbf{q}^{\mathbf{r}} \quad (\mathbf{i} \in \{0,\ldots,r\})$$

Proof.

Set of points of a (r - i + 1)-subspace is q^{r-i} -divisible of size $\begin{bmatrix} r-i+1\\ 1 \end{bmatrix}_{q}$.

$$\implies q^{i}$$
-fold repetition
is $(q^{i} \cdot q^{r-i})$ -divisible of size $q^{i} \cdot \begin{bmatrix} r-i+1 \\ 1 \end{bmatrix}_{q}$.

Lemma

The following sizes are realizable:

 $n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$ $(a_0, a_1, \ldots, a_r \in \mathbb{N}_0)$

Proof.

The following sizes are realizable:

$$\boldsymbol{s}(\boldsymbol{r},\boldsymbol{i}) := \boldsymbol{q}^{\boldsymbol{i}} \cdot \begin{bmatrix} \boldsymbol{r} - \boldsymbol{i} + 1 \\ 1 \end{bmatrix}_{\boldsymbol{q}} = \boldsymbol{q}^{\boldsymbol{i}} + \boldsymbol{q}^{\boldsymbol{i}+1} + \ldots + \boldsymbol{q}^{\boldsymbol{r}} \quad (\boldsymbol{i} \in \{0,\ldots,r\})$$

Proof.

Set of points of a (r - i + 1)-subspace is q^{r-i} -divisible of size $\begin{bmatrix} r-i+1\\ 1 \end{bmatrix}_q$.

$$\implies q^{i} \text{-fold repetition} \\ \text{is } (q^{i} \cdot q^{r-i}) \text{-divisible of size } q^{i} \cdot \begin{bmatrix} r-i+1 \\ 1 \end{bmatrix}_{q}.$$

Lemma

The following sizes are realizable:

 $n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$ $(a_0, a_1, \ldots, a_r \in \mathbb{N}_0)$

Proof.

The following sizes are realizable:

$$\boldsymbol{s}(\boldsymbol{r},\boldsymbol{i}) := \boldsymbol{q}^{\boldsymbol{i}} \cdot \begin{bmatrix} \boldsymbol{r} - \boldsymbol{i} + 1 \\ 1 \end{bmatrix}_{\boldsymbol{q}} = \boldsymbol{q}^{\boldsymbol{i}} + \boldsymbol{q}^{\boldsymbol{i}+1} + \ldots + \boldsymbol{q}^{\boldsymbol{r}} \quad (\boldsymbol{i} \in \{0,\ldots,r\})$$

Proof.

Set of points of a (r - i + 1)-subspace is q^{r-i} -divisible of size $\begin{bmatrix} r-i+1\\ 1 \end{bmatrix}_q$.

$$\implies q^{i} \text{-fold repetition} \\ \text{is } (q^{i} \cdot q^{r-i}) \text{-divisible of size } q^{i} \cdot \begin{bmatrix} r-i+1 \\ 1 \end{bmatrix}_{q}. \qquad \Box$$

Lemma

The following sizes are realizable:

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
 $(a_0, a_1, \ldots, a_r \in \mathbb{N}_0)$

(日) (四) (日) (日) (日)

Proof.

The following sizes are realizable:

$$\boldsymbol{s}(\boldsymbol{r},\boldsymbol{i}) := \boldsymbol{q}^{\boldsymbol{i}} \cdot \begin{bmatrix} \boldsymbol{r} - \boldsymbol{i} + 1 \\ 1 \end{bmatrix}_{\boldsymbol{q}} = \boldsymbol{q}^{\boldsymbol{i}} + \boldsymbol{q}^{\boldsymbol{i}+1} + \ldots + \boldsymbol{q}^{\boldsymbol{r}} \quad (\boldsymbol{i} \in \{0,\ldots,r\})$$

Proof.

Set of points of a (r - i + 1)-subspace is q^{r-i} -divisible of size $\begin{bmatrix} r-i+1\\ 1 \end{bmatrix}_q$.

$$\implies q^{i} \text{-fold repetition} \\ \text{is } (q^{i} \cdot q^{r-i}) \text{-divisible of size } q^{i} \cdot \begin{bmatrix} r-i+1 \\ 1 \end{bmatrix}_{q}. \qquad \Box$$

Lemma

The following sizes are realizable:

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
 $(a_0, a_1, \ldots, a_r \in \mathbb{N}_0)$

(1)

Proof.

The numbers

$$\mathbf{s}(\mathbf{r},\mathbf{i}) = \mathbf{q}^{\mathbf{i}} \cdot \begin{bmatrix} \mathbf{r} - \mathbf{i} + 1 \\ 1 \end{bmatrix}_{\mathbf{q}} = \mathbf{q}^{\mathbf{i}} + \mathbf{q}^{\mathbf{i}+1} + \ldots + \mathbf{q}^{\mathbf{r}} \quad (\mathbf{i} \in \{0,\ldots,r\})$$

have the property

$$q^i \mid s(r,i)$$
 but $q^{i+1} \nmid s(r,i)$.

 We can build positional number system upon base numbers

$$S(r) = (s(r, 0), s(r, 1), \dots s(r, r))$$

Each $n \in \mathbb{Z}$ has unique S(r)-adic expansion

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
(*)

with $a_0, \ldots, a_{r-1} \in \{0, \ldots, q-1\}$ and leading coefficient $a_r \in \mathbb{Z}$. (Reason: Equation (*) mod $q, q^2, q^3 \ldots$ yields unique a_0, a_1, a_2, \ldots)

$$\mathbf{s}(\mathbf{r},\mathbf{i}) = \mathbf{q}^{i} \cdot \begin{bmatrix} \mathbf{r} - \mathbf{i} + 1 \\ 1 \end{bmatrix}_{\mathbf{q}} = \mathbf{q}^{i} + \mathbf{q}^{i+1} + \ldots + \mathbf{q}^{\mathbf{r}} \quad (\mathbf{i} \in \{0,\ldots,r\})$$

have the property

$$q^i \mid s(r,i)$$
 but $q^{i+1} \nmid s(r,i)$.

 We can build positional number system upon base numbers

$$S(r) = (s(r,0), s(r,1), \ldots s(r,r))$$

Each $n \in \mathbb{Z}$ has unique S(r)-adic expansion

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
 (*)

with $a_0, \ldots, a_{r-1} \in \{0, \ldots, q-1\}$ and leading coefficient $a_r \in \mathbb{Z}$. (Reason: Equation (*) mod $q, q^2, q^3 \ldots$ yields unique a_0, a_1, a_2, \ldots)

The numbers

$$\mathbf{s}(\mathbf{r},\mathbf{i}) = \mathbf{q}^{\mathbf{i}} \cdot \begin{bmatrix} \mathbf{r} - \mathbf{i} + 1 \\ 1 \end{bmatrix}_{\mathbf{q}} = \mathbf{q}^{\mathbf{i}} + \mathbf{q}^{\mathbf{i}+1} + \ldots + \mathbf{q}^{\mathbf{r}} \quad (\mathbf{i} \in \{0,\ldots,r\})$$

have the property

$$q^i \mid s(r,i)$$
 but $q^{i+1} \nmid s(r,i)$.

 We can build positional number system upon base numbers

$$S(r) = (s(r,0), s(r,1), \dots s(r,r))$$

▶ Each $n \in \mathbb{Z}$ has unique S(r)-adic expansion

$$n = a_0 s(r, 0) + a_1 s(r, 1) + \ldots + a_r s(r, r)$$
 (*)

with $a_0, \ldots, a_{r-1} \in \{0, \ldots, q-1\}$ and leading coefficient $a_r \in \mathbb{Z}$. (Reason: Equation (*) mod $q, q^2, q^3 \ldots$ yields unique a_0, a_1, a_2, \ldots)

 Let q = 3, r = 3. ⇒ S(3) = (40, 39, 36, 27).
 S(3)-adic expansion of n = 137? Find a₀, a₁, a₂ ∈ {0, 1, 2} and a₃ ∈ Z with

 $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*)

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

▶
$$a_0 = 2$$
 in (*):

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$$
 (**)

Let *q* = 3, *r* = 3. ⇒ *S*(3) = (40, 39, 36, 27). *S*(3)-adic expansion of *n* = 137? Find *a*₀, *a*₁, *a*₂ ∈ {0, 1, 2} and *a*₃ ∈ Z with

 $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*)

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

▶
$$a_0 = 2$$
 in (*):

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$$
 (**)

- Let q = 3, r = 3. ⇒ S(3) = (40, 39, 36, 27).
 S(3)-adic expansion of n = 137?
 - Find $a_0, a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$ with

 $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*)

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

▶
$$a_0 = 2$$
 in (*):

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$$
 (**)

Modulo 9:

Let q = 3, r = 3. ⇒ S(3) = (40, 39, 36, 27).
 S(3)-adic expansion of n = 137?

Find $a_0, a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$ with

 $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*)

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

•
$$a_0 = 2 \text{ in } (*)$$
:
 $a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$ (**)

Modulo 9:

Let q = 3, r = 3. ⇒ S(3) = (40, 39, 36, 27).
 S(3)-adic expansion of n = 137?

Find $a_0, a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$ with

 $a_0 \cdot 40 + a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 137.$ (*)

Modulo 3:

$$a_0 \cdot 1 + \underbrace{a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0}_{=0} \equiv 2 \pmod{3} \implies a_0 = 2$$

•
$$a_0 = 2$$
 in (*):
 $a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{137 - 2 \cdot 40}_{=57}$ (**)

Modulo 9:

Find $a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$ with

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 57.$$
 (**)

▶
$$a_1 = 1$$
 in (**):

► Modulo 27:
$$a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{57 - 1 \cdot 39}_{=18}$$
 (***)

$$a_2 \cdot 9 + a_3 \cdot 0 \equiv 18 \pmod{27} \implies a_2 = 2$$

 $\blacktriangleright \ln (***):$

$$a_3 \cdot 27 = \underbrace{18 - 2 \cdot 36}_{=-54} \implies a_3 = -2$$

 $\triangleright \implies S(3)$ -adic expansion of n = 137 is

 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27$

(日)

▶ ... Find $a_1, a_2 \in \{0, 1, 2\}$ and $a_3 \in \mathbb{Z}$ with $a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 57.$ (**) ▶ $a_1 = 1$ in (**): $a_2 \cdot 36 + a_3 \cdot 27 = 57 - 1 \cdot 39$ (***)

Modulo 27:

 $a_2 \cdot 9 + a_3 \cdot 0 \equiv 18 \pmod{27} \implies a_2 = 2$ $\blacktriangleright \ln (***):$

$$a_3 \cdot 27 = \underbrace{18 - 2 \cdot 36}_{=-54} \implies a_3 = -2$$

 $\triangleright \implies S(3)$ -adic expansion of n = 137 is

 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27$

=18

Find
$$a_1, a_2 \in \{0, 1, 2\}$$
 and $a_3 \in \mathbb{Z}$ with

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 57.$$
 (**)

•
$$a_1 = 1$$
 in (**):
 $a_2 \cdot 36 + a_3 \cdot 27 = \underbrace{57 - 1 \cdot 39}_{=18}$ (***)

$$a_2 \cdot 9 + a_3 \cdot 0 \equiv 18 \pmod{27} \implies a_2 = 2$$

► In (***):

$$a_3 \cdot 27 = \underbrace{18 - 2 \cdot 36}_{=-54} \implies a_3 = -2$$

 $\triangleright \implies S(3)$ -adic expansion of n = 137 is

 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27$

(日)

Find
$$a_1, a_2 \in \{0, 1, 2\}$$
 and $a_3 \in \mathbb{Z}$ with

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 57.$$
 (**)

=18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

►
$$a_1 = 1$$
 in (**):
 $a_2 \cdot 36 + a_3 \cdot 27 = 57 - 1 \cdot 39$ (***)

Modulo 27:

$$a_2 \cdot 9 + a_3 \cdot 0 \equiv 18 \pmod{27} \implies a_2 = 2$$

In (***):

$$a_3 \cdot 27 = \underbrace{18 - 2 \cdot 36}_{=-54} \implies a_3 = -2$$

 $\triangleright \implies S(3)$ -adic expansion of n = 137 is

 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27$

Find
$$a_1, a_2 \in \{0, 1, 2\}$$
 and $a_3 \in \mathbb{Z}$ with

$$a_1 \cdot 39 + a_2 \cdot 36 + a_3 \cdot 27 = 57.$$
 (**)

=18

►
$$a_1 = 1$$
 in (**):
 $a_2 \cdot 36 + a_3 \cdot 27 = 57 - 1 \cdot 39$ (***)

Modulo 27:

$$a_2 \cdot 9 + a_3 \cdot 0 \equiv 18 \pmod{27} \implies a_2 = 2$$

 \blacktriangleright In (***):

$$a_3 \cdot 27 = \underbrace{18 - 2 \cdot 36}_{=-54} \implies a_3 = -2$$

 \blacktriangleright \implies S(3)-adic expansion of n = 137 is

 $137 = 2 \cdot 40 + 1 \cdot 39 + 2 \cdot 36 + (-2) \cdot 27$

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Theorem 1

Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_0$. Then:

There exists a q^r -divisible \mathbb{F}_q -linear code of effective length n

The leading coefficient of the S(r)-adic expansion of n is ≥ 0 .

Example (cont.)

- S(3)-adic expansion of n = 137 is 137 = 2 ⋅ 40 + 1 ⋅ 39 + 2 ⋅ 36 + (-2) ⋅ 27.
- ► Leading coefficient is -2.

Theorem 1

Let $n \in \mathbb{Z}$ and $r \in \mathbb{N}_0$. Then:

There exists a q^r -divisible \mathbb{F}_q -linear code of effective length n

The leading coefficient of the S(r)-adic expansion of n is ≥ 0 .

Example (cont.)

▶ *q* = 3, *r* = 3

- S(3)-adic expansion of n = 137 is 137 = 2 ⋅ 40 + 1 ⋅ 39 + 2 ⋅ 36 + (-2) ⋅ 27.
- Leading coefficient is -2.

Let \mathcal{P} be non-empty and q^r -divisible. Then for all hyperplanes H, $\mathcal{P} \cap H$ is q^{r-1} -divisible.

Proof of Theorem 1 (Idea)

 Let *P* be non-empty and *q^r*-divisible. Have to show: Leading coefficient of *S*(*r*)-adic expansion of #*P* is ≥ 0.

On average, a hyperplane contains

$$\#\mathcal{P}\cdot\frac{1}{q+\frac{1}{\left[\frac{\nu-1}{1}\right]_q}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

elements of \mathcal{P} .

- ► ⇒ Exists hyperplane *H* with $\#(\mathcal{P} \cap H) < \frac{\#\mathcal{P}}{a}$.
- Apply Lemma to this *H*, use induction on *r*.

Let \mathcal{P} be non-empty and q^r -divisible. Then for all hyperplanes H, $\mathcal{P} \cap H$ is q^{r-1} -divisible.

Proof of Theorem 1 (Idea)

 Let *P* be non-empty and *q^r*-divisible. Have to show: Leading coefficient of *S*(*r*)-adic expansion of #*P* is ≥ 0.

• On average, a hyperplane contains

$$\#\mathcal{P}\cdot\frac{1}{q+\frac{1}{\left[\frac{\nu-1}{1}\right]_q}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

elements of \mathcal{P} .

- ► ⇒ Exists hyperplane *H* with $\#(\mathcal{P} \cap H) < \frac{\#\mathcal{P}}{a}$.
- Apply Lemma to this *H*, use induction on *r*.

Let \mathcal{P} be non-empty and q^r -divisible. Then for all hyperplanes H, $\mathcal{P} \cap H$ is q^{r-1} -divisible.

Proof of Theorem 1 (Idea)

 Let *P* be non-empty and *q^r*-divisible. Have to show: Leading coefficient of *S*(*r*)-adic expansion of #*P* is ≥ 0.

On average, a hyperplane contains

$$\#\mathcal{P}\cdot\frac{1}{q+\frac{1}{\binom{\nu-1}{1}_q}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

elements of \mathcal{P} .

► ⇒ Exists hyperplane *H* with $\#(\mathcal{P} \cap H) < \frac{\#\mathcal{P}}{a}$.

Apply Lemma to this *H*, use induction on *r*.

Let \mathcal{P} be non-empty and q^r -divisible. Then for all hyperplanes $H, \mathcal{P} \cap H$ is q^{r-1} -divisible.

Proof of Theorem 1 (Idea)

 Let *P* be non-empty and *q^r*-divisible. Have to show: Leading coefficient of *S*(*r*)-adic expansion of #*P* is ≥ 0.

On average, a hyperplane contains

$$\#\mathcal{P}\cdot\frac{1}{q+\frac{1}{\binom{\nu-1}{1}_q}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

elements of \mathcal{P} .

Let \mathcal{P} be non-empty and q^r -divisible. Then for all hyperplanes H, $\mathcal{P} \cap H$ is q^{r-1} -divisible.

Proof of Theorem 1 (Idea)

 Let *P* be non-empty and *q^r*-divisible. Have to show: Leading coefficient of *S*(*r*)-adic expansion of #*P* is ≥ 0.

On average, a hyperplane contains

$$\#\mathcal{P}\cdot\frac{1}{q+\frac{1}{\binom{\nu-1}{1}_q}}$$

elements of \mathcal{P} .

- ► ⇒ Exists hyperplane *H* with $\#(\mathcal{P} \cap H) < \frac{\#\mathcal{P}}{q}$.
- Apply Lemma to this H, use induction on r.

Definition

- Let V be \mathbb{F}_q vector space of dimension v.
- Let S be a set of k-subspaces of V.
- S is partial (k 1)-spread if each point in V is covered by at most 1 element of S.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Research Problem

Find maximum possible size $A_q(v, k)$ of partial spread.

Definition

- Let V be \mathbb{F}_q vector space of dimension v.
- Let S be a set of k-subspaces of V.
- S is partial (k 1)-spread

if each point in V is covered by at most 1 element of S.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Research Problem

Find maximum possible size $A_q(v, k)$ of partial spread.

Write $v = tk + r, r \in \{0, ..., k - 1\}, t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge \frac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

Bound sharp for r = 1.

▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.

- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively. Here, bound (*) is not sharp!
- ▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_q$.

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

- ▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.
- 1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively. Here, bound (*) is not sharp!
- ▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.
- ▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_q$.

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively. Here, bound (*) is not sharp!
- ▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > {r \brack 1}_q$.

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively.
 Here, bound (*) is not sharp!
- ▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > {r \brack 1}_q$.

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

・ロト・西ト・田・・田・・日・

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively.
 Here, bound (*) is not sharp!
- ▶ 2016 Kurz: Bound (*) sharp for q = 2, r = 2, k ≥ 4.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_{\alpha}$.

Write v = tk + r, $r \in \{0, ..., k - 1\}$, $t \ge 2$.

▶ 1964 Segre: All points can be covered $\iff k \mid v \text{ (settles } r = 0\text{).}$ In this case, *S* spread, $A_q(v, k) = \frac{q^v - 1}{q^k - 1}$.

1975 Beutelspacher:

$$A_q(v,k) \ge rac{q^v - q^{k+r}}{q^k - 1} + 1$$
 (*)

· ロ ト 4 母 ト 4 母 ト 4 母 ト 4 日 ト

Bound sharp for r = 1.

- ▶ 1979 Drake, Freeman: Improved upper bound on $A_q(v, k)$.
- 2010 El-Zanati, Jordon, Seelinger, Sissokho, Spence: Computer construction for A₂(8,3) = 34.
 Settles all cases with q = 2, r = 2, k = 3 recursively.
 Here, bound (*) is not sharp!

▶ 2016 Kurz: Bound (*) sharp for $q = 2, r = 2, k \ge 4$.

▶ 2017 Năstase, Sissokho: (*) sharp whenever $k > \begin{bmatrix} r \\ 1 \end{bmatrix}_{q}$.

- Let S be partial (k 1)-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1} -divisible!

Assume
$$\#S = \frac{q^{v} - q^{k+r}}{q^{k-1}} + 2.$$

 $\implies \#\mathcal{P} = \begin{bmatrix} k+r \\ 1 \end{bmatrix}_{q} - 2 \begin{bmatrix} k \\ 1 \end{bmatrix}_{q}$
 $S(k-1)$ -adic ex. $= \sum_{i=0}^{k-2} (q-1)s(k-1,i)$
 $+ \left(q \cdot (\begin{bmatrix} r \\ 1 \end{bmatrix}_{q} - k + 1) - 1\right) s(k-1,k-1)$

Theorem 1: Leading coefficient q ⋅ ([^r₁]_q - k + 1) - 1 ≥ 0.
 ⇔ k ≤ [^r₁]_q.
 > 2017 result of Năstase and Sissokho follows as

(日)(1)(1

corollary from Theorem 1!.

• Let S be partial (k - 1)-spread.

Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1} -divisible!

Assume
$$\#S = \frac{q^v - q^{k+r}}{q^{k-1}} + 2.$$

 $\implies \#\mathcal{P} = \begin{bmatrix} k+r \\ 1 \end{bmatrix}_q - 2 \begin{bmatrix} k \\ 1 \end{bmatrix}_q$
 $S(k-1)$ -adic ex. $= \sum_{i=0}^{k-2} (q-1)s(k-1,i)$
 $+ \left(q \cdot (\begin{bmatrix} r \\ 1 \end{bmatrix}_q - k + 1) - 1\right) s(k-1,k-1)$

Theorem 1: Leading coefficient q ⋅ ([^r₁]_q - k + 1) - 1 ≥ 0.
 ⇔ k ≤ [^r₁]_q.
 > 2017 result of Năstase and Sissokho follows as

(日)(1)(1

corollary from Theorem 1!.

• Let S be partial (k - 1)-spread.

Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1} -divisible!

Assume
$$\#S = \frac{q^{v}-q^{k+r}}{q^{k}-1} + 2.$$

 $\implies \#\mathcal{P} = \begin{bmatrix} k+r\\1 \end{bmatrix}_{q} - 2 \begin{bmatrix} k\\1 \end{bmatrix}_{q}$
 $S(k-1)$ -adic ex. $= \sum_{i=0}^{k-2} (q-1)s(k-1,i)$
 $+ \left(q \cdot (\begin{bmatrix} r\\1 \end{bmatrix}_{q} - k + 1) - 1\right)s(k-1,k-1)$

Theorem 1: Leading coefficient q ⋅ ([^r₁]_q - k + 1) - 1 ≥ 0.
 ⇔ k ≤ [^r₁]_q.
 → 2017 result of Năstase and Sissokho follows as corollary from Theorem 1!.

- Let S be partial (k 1)-spread.
- Set \mathcal{P} of holes (points not covered by \mathcal{S}) is q^{k-1} -divisible!
- Assume $\#S = \frac{q^{v}-q^{k+r}}{q^{k}-1} + 2$. $\implies \#\mathcal{P} = \begin{bmatrix} k+r\\1 \end{bmatrix}_{a} - 2\begin{bmatrix} k\\1 \end{bmatrix}_{a}$ S(k-1)-adic ex. = $\sum_{k=1}^{\infty} (q-1)s(k-1,i)$ $+\left(q\cdot \left(\begin{bmatrix}r\\1\end{bmatrix}-k+1\right)-1\right)s(k-1,k-1)$
- ► Theorem 1: Leading coefficient $q \cdot ({r \brack 1}_q k + 1) 1 \ge 0$. $\iff k \le {r \brack 1}_q$.

► ~→ 2017 result of Năstase and Sissokho follows as corollary from Theorem 1!.

- For partial spreads: P is a proper set (not only a multiset). Can we make use of this extra information?
- ► Sets of points ↔ projective linear codes.
- Classification of the lengths of projective q^r-divisible linear codes apparently much harder.

Theorem 2

There exists a projective 8-divisible binary linear code of length n

 $\iff n \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ $\cup \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29\}$ $\cup \{33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$ $\cup \{52, 53, 54, 55, 56, 57, 58, 59\}$

- For partial spreads: P is a proper set (not only a multiset). Can we make use of this extra information?
- ► Sets of points ↔ projective linear codes.
- Classification of the lengths of projective q^r-divisible linear codes apparently much harder.

Theorem 2

There exists a projective 8-divisible binary linear code of length n

 $\iff n \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ $\cup \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29\}$ $\cup \{33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$ $\cup \{52, 53, 54, 55, 56, 57, 58, 59\}$

- For partial spreads: P is a proper set (not only a multiset). Can we make use of this extra information?
- ► Sets of points ↔ projective linear codes.
- Classification of the lengths of projective q^r-divisible linear codes apparently much harder.

Theorem 2

There exists a projective 8-divisible binary linear code of length *n*

 $\iff n \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ $\cup \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29\}$ $\cup \{33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$ $\cup \{52, 53, 54, 55, 56, 57, 58, 59\}$

- For partial spreads: P is a proper set (not only a multiset). Can we make use of this extra information?
- ► Sets of points ↔ projective linear codes.
- Classification of the lengths of projective q^r-divisible linear codes apparently much harder.

Theorem 2

There exists a projective 8-divisible binary linear code of length n

$$\iff n \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$$
$$\cup \{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29\}$$
$$\cup \{33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$$
$$\cup \{52, 53, 54, 55, 56, 57, 58, 59\}$$

Use first 4 MacWilliams-identities.

▶ Would be the size of the hole set of a partial 3-spread in \mathbb{F}_2^{11} of size 133. $\implies 129 \le A_2(11,4) \le 132.$

No projective 8-divisible code of length 59

- ► Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

▶ If it has weight 40:

Residual is projective 4-divisible of length 19.

3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.
 Excluded computationally.

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in F₂¹¹ of size 133.
 ⇒ 129 ≤ A₂(11, 4) ≤ 132.

No projective 8-divisible code of length 59

- ► Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

▶ If it has weight 40:

Residual is projective 4-divisible of length 19.

- 3 isomorphism types.
 - 2 excluded by theoretical argument.
 - 1 excluded computationally.
- Otherwise, must have weight 32.
 Excluded computationally.

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in F₂¹¹ of size 133.
 ⇒ 129 ≤ A₂(11, 4) ≤ 132.

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

If it has weight 40:

Residual is projective 4-divisible of length 19.

3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.
 Excluded computationally.

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in F₂¹¹ of size 133.
 ⇒ 129 ≤ A₂(11, 4) ≤ 132.

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

▶ If it has weight 40:

Residual is projective 4-divisible of length 19.

3 isomorphism types.

- 2 excluded by theoretical argument.
- 1 excluded computationally.
- Otherwise, must have weight 32.
 Excluded computationally.

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in F₂¹¹ of size 133.
 ⇒ 129 ≤ A₂(11, 4) ≤ 132.

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

- If it has weight 40: Residual is projective 4-divisible of length 19. 3 isomorphism types.
 - 2 excluded by theoretical argument.
 - 1 excluded computationally.

Otherwise, must have weight 32.
 Excluded computationally.

- Use first 4 MacWilliams-identities.
- Would be the size of the hole set of a partial 3-spread in F₂¹¹ of size 133.
 ⇒ 129 ≤ A₂(11, 4) ≤ 132.

No projective 8-divisible code of length 59

- Hardest single case.
- Cannot have weights 56 and 48 (residuals would be proj. 4-divisible of length 3 and 11)

- If it has weight 40: Residual is projective 4-divisible of length 19. 3 isomorphism types.
 - 2 excluded by theoretical argument.
 - 1 excluded computationally.
- Otherwise, must have weight 32.
 Excluded computationally.

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●