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Abstract

In this short note we state how we construct new good linear codes C over the finite field
with q elements. We start with already good (= high minimum distance d for given length n
and dimension k) codes which we got for example by our method [2,3,4,5]. The advantage
of this method is that we explictly get the words of minimum weight d. We try to extend
the generator matrix of C by adding columns with the property that at least s of the letters
added to the codewords are different from 0. Using this we know that the minimum distance
of the extended code is d + s as long as the second smallest weight was ≥ d + s.

In this note we only state the method and the results. A full version [8] is submitted to
the proceedings of Combinatorics 2006.
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Method

A linear [n, k]q−code C is connected (see e.g. [1]) to its generator matrix Γ by the
identity:

C = {vΓ : v ∈ GF (q)k}.

The minimum distance d measures the error correction capability of C. We call
C an [n, k, d]q code. We want to know which vectors v1, . . . , vs from GF (q)k cor-
respond via multiplication with the generator matrix to codewords of minimum
weight d. We call these vectors the minimum weight generators of the code C. De-
note by V = {v1, . . . , vs} the set of elements from GF (q)k which is the minimum
weight generator of C. Our aim is to find a extension of the generator matrix Γ by
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l columns in a way such that the corresponding extended code C ′ has minimum
distance > d. If this is possible we call C ′ an l−extension of C.

We define the following intersection matrix D, which is a t× h matrix with entries
equal to 0 or 1. The rows are labelled by the t minimum weight generators g1, . . . , gt

and the columns are labelled by the h possible columns γ1, . . . , γh of the generator
matrix. The entries are defined as (<,>denotes the inner product ):

Di,j :=

 1 if < gi, γj >6= 0

0 if < gi, γj >= 0
.

Using this matrix D, the problem of an good extension is a covering problem and
we get the following theorem which in a certain sense is an inverse result to the
special puncturing in [7]:

Theorem 1 l−Extension

Let C be a linear [n, k, d]q code. We get an [n+l, k, d+1]q code if we find l columns
of the matrix D, such that for each row there is at least one non-zero entry among
the l columns.

In the case of a large enough gap between the minimum weight of C and the second
smallest weight we get:

Corollary 2 (l, s)−Extension

Let C be a linear [n, k, d]q code with a second smallest weight d + s. We get an
[n + l, k, d + s]q code if we can find l columns of the matrix D, such that for each
row there are at a least s non-zero entries among the l columns.

To solve this problem we use the following equivalent formulation:

Corollary 3 l−Extension as Diophantine inequality

Let C be a linear [n, k, d]q code. If there is a (0/1)−solution x = (x1, . . . , xh) of
the Diophantine system of inequalities:

D x

≥ 1
...

...

≥ 1

1 . . . 1 . . . 1 . . . 1 = l

then there is an [n + l, k, d + 1]q code.
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Computational Problems

The size of the problem is given by the size of the matrix D. We can handle systems
with about 500000 entries. The typical linear codes C, where we can apply this
method are in the range of codes with about 5000 codewords. In [8] we describe
several methods to reduce the size of D.

To apply l−extension to a code C, we need to know the minimum weight generator
of the code. It is known [9] that already the computation of the minimum weight
(which is less information) is NP−hard.

But if we apply the corresponding extension algorithm to a code C, we have con-
structed using the methods described in [2,3,4,5] we already got during this con-
struction the minimum weight generator.

On the other hand codes which can be handled using this method are in most cases
small enough, so that it is not difficult to compute the minimum weight generator
using complete enumeration or more sophisticated algorithms based on advanced
methods for the computation of the minimum distance [1,7].

Results

We found a new [n = 82, k = 8, d = 49]q=3 code, which is a 2−extension of a
previously computed [80, 8, 48]3 code with 1320 codewords of minimum weight.

This new code can be extended twice using 1−extension, giving also new [83, 8, 50]3
and [84, 8, 51]3 codes. For the last one we again apply 2−extension and afterwards
1−extension and get new [86, 8, 53]3 and [87, 9, 54]3 codes.

More codes found using l−extension have the following parameters:

[130, 8, 79]3

[187, 6, 135]4, [197, 6, 142]4, [212, 6, 153]4, [227, 6, 165]4,

[232, 6, 169]4, [242, 6, 177]4, [247, 6, 181]4

[191, 7, 134]4, [192, 7, 135]4

Here we do not list the derived codes. All these codes are improvements of Brouw-
ers online table [6] of codes, where one can look up the largest known minimum
distance for given triples of (n, k, q).
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