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Introduction

We are interested in the construction of linear [n, k; q] two-weight
codes. A linear code is a k−dimensional subspace C of the n−dimensional
vector space GF (q)n over the finite field GF (q) with q elements. The
qk codewords of length n are the elements of the subspace, they are
written as row vectors. The weight of a codeword c is the number of
nonzero components of the vector c ∈ GF (q)n. In the case of a two-
weight code C the nonzero elements of C have only two different
weights w1 and w2 with w1 < w2.

Two-weight codes are an interesting object, as there are connections
to objects in different areas of mathematics like strongly regular graphs,
partial geometries and projective point sets. But two-weight codes
are also interesting in the area of coding theory itself (e.g. uniformly
packed codes) and have been studied intensively [11]. Delsarte [12]
was the first to study the connections between two-weight codes,
strongly regular graphs and projective point-sets. A survey of this
relationship was given later by Calderbank and Kantor [10].
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Projective Point Sets

To formulate a two-weight code as a solution of a Diophantine system
of equations we use in a first step a well known equivalence between
linear two-weight [n, k; q] codes and point sets in the projective space
PG(k−1, q). A linear [n, k; q] code C is described by a generator ma-
trix, i.e. a k× n matrix over GF (q) whose row-space is the subspace
C. If we assume that the columns of a generator matrix are pairwise
linearly independent, we can take the columns of the generator matrix
as a set (no multiple points as columns are linearly independent) of
points in PG(k− 1, q). Because of this correspondence such a linear
code is called projective. Using this correspondence it is well-known
[10] that the weights of the code become the intersection numbers be-
tween the projective point set and the hyperplanes of PG(k−1, q). In
the case of a two-weight code the corresponding point set Ω has the
property that every hyperplane meets Ω in n − w1 or n − w2 points.
Such a point set is called a (n, k, n − w1, n − w2) point set. To con-
struct projective two-weight codes we construct the corresponding
point sets.
The next step is to formulate the construction of the point set as a
solution of a Diophantine system of linear equations. For this let M
be the point - hyperplane incidence matrix of PG(k−1, q). Incidence
is given by the subset relation between subspaces of GF (q)k. M is a
p×p square matrix, where p is the number of points. The columns are
labeled by the points and rows are labeled by the hyperplanes. This
incidence matrix M can be used to formulate the construction of the
point set as a solution of a system of equations.
Theorem 1 There is an (n, k, n − w1, n − w2) point set in PG(k −
1, q) if and only if there is a (0/1)−solution x = (x1, . . . , xp) of the
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Diophantine system of p + 1 linear equations:

(1) MxT =


n− w1 or n− w2

...

n− w1 or n− w2


(2)

∑
i=1,...,p xi = n.

An entry xi equal to one in the solution says that the corresponding
point labeling the i−th column of M is part of the (n, k, n−w1, n−
w2) point set. The first p equations given in a closed matrix notation
ensure that there are only two intersection numbers. The last equation
ensures that point set has order n.

To solve this system using the computer we transfer it in the following
form, where J is a p× p diagonal matrix with the entry (w2−w1) on
the diagonal:
Corollary 2 There is an (n, k, n− w1, n− w2) point set in PG(k −
1, q) if and only if there is a (0/1)−solution (x, y) = (x1, . . . , xp, y1, . . . , yp)
of the Diophantine system of p + 1 linear equations:

(1) (M, J)(x, y)T =


n− w1

...

n− w1


(2)

∑
i=1,...,p xi = n.

Here (M, J) denotes the p × 2p block matrix built from matrices M
and J . An entry yi equal to one says that the i−th point (which is in
the point set given by the solution x) is met by n−w2 hyperplanes, an
entry yi equal to zero says that this point is met by n−w1 hyperplanes.
The limiting factor for computation of a solution is the size (=number
of rows) of the incidence matrix which is (qk−1)/(q−1). Solving the
corresponding Diophantine system of equations is only possible for
small dimensions. Therefore we apply a well-known method [1,20]
to shrink this system by prescribing a group of automorphisms, i.e.
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a subgroup of the general linear group GL(k, q). This will be de-
scribed in the next section. This method to reduce the size of the
system of equations by prescribing automorphisms has since the first
use in 1976 by Kramer and Mesner [21] been successfully applied in
several cases like design theory [3,21], q−analoga of designs [9], arcs
[7] and the construction of distance-optimal codes [5,6]. Already in
[14] the author constructed new distance optimal codes by combining
orbits.

Two-weight Codes with Prescribed Projective Groups

We no longer search for an arbitrary solution, which corresponds to
a selection of columns of the generator matrix or equivalently to a
selection of points in a projective point set. In the reduced system an
entry equal to one in the first half of the solution corresponds to a
selection of a complete orbit of points under the action (multiplica-
tion) of a subgroup G of GL(k, q). In the language of linear codes
this means that the linear code has G as a subgroup in its group of au-
tomorphisms. For the incidence matrix M the selection of complete
orbits of points corresponds to the addition of columns correspond-
ing to the points in the orbit. This reduces the size of the matrix M
to one, where the number of columns is the number of orbits. The
action of G on the points induces an action on subspaces, and this
action preserves incidence in the following sense:
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Lemma 3 Denote by B · v the action of a matrix B ∈ G < GL(k, q)
on a subspace v of GF (q)k. Let p be a point of PG(k − 1, q) and H
be a hyperplane in PG(k − 1, q). Then we have for all matrices B :

p ⊂ H ⇐⇒ B · p ⊂ B ·H.

Because of this property the rows labeled by the hyperplanes in an
orbit of G are identical after the column reduction. This shrinks the
square matrix M of size (qk − 1)/(q − 1) to a square matrix MG

of a smaller size m. Where m is the number of orbits. The rows of
MG are labeled by the orbits Ω1, . . . , Ωm of G on the hyperplanes,
the columns are labeled by the orbits ω1, . . . , ωm of G on the points.
For an entry in MG we have

MG
i,j = |{p ∈ ωj : p ⊂ Hi}|

for an arbitrary representative Hi ∈ Ωi. This allows us to give a ver-
sion of the above corollary 2 in the case of a prescribed group of
automorphisms.
Theorem 4 There is an (n, k, n − w1, n − w2) point set in PG(k −
1, q) with a subgroup G < GL(k, q) of automorphisms if and only if
there is a (0/1)−solution (x, y) of the Diophantine system of linear
equations:

(1) (MG, JG)(x, y)T =


n− w1

...

n− w1


(2)

∑
i=1,...,m |ωi| = n

Such a solution is a vector of length 2m where m is the number of
orbits of G on the points (resp. hyperplanes) in PG(k − 1, q). An
entry xi equal to one says that the corresponding orbit is part of the
(n, k, n−w1, n−w2) point set. The 0/1 distribution in y says, like in
the case of corollary 2, how many hyperplanes meet the points from
the corresponding i−th orbit.
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Results

To apply theorem 4 we need to know the two weights w1 and w2

of the linear code. As we are looking for projective codes, no two
columns of the generator matrix are linearly dependent, so we know
that the minimum distance of the dual code is at least 3. This allows
to use the first 3 MacWilliams [1] identities to get candidates for the
two weights. Using these candidates we apply theorem 4 for several
subgroups of GL(k, q). A last crucial step is the use of an effective
algorithm [25] by A. Wassermann for the solution of the reduced Dio-
phantine system of linear equations.
It is known [10,12] that a projective two-weight code can be used to
define a strongly regular graph. A strongly regular graph is a K−regular
graph with N vertices and each pair of adjacent vertices has λ com-
mon neighbors, and each pair of non-adjacent vertices has µ common
neighbors.
In the following tables we give the parameters of the two-weight
codes we found using our method together with parameters of the
corresponding strongly regular graph. Our table extends the results
in [15] which used backtracking algorithms to construct all possible
generator matrices. They got all inequivalent projective two weight
codes. We were able to compute some (not all) two-weight codes for
larger parameters. The left part of the tables below gives the parame-
ters of the code, the fourth column the minimum weight together with
the number of codewords of this weight, the fifth column the same in-
formation for the second weight. The next four columns give the pa-
rameters N, K, λ, µ of the corresponding strongly regular graph. In
the last column we give information on the found code, in the case of
already known codes we give a citation or a method of construction
already given in [10]. An entry ’known’ or some reference different
from a construction in [10] means that the corresponding strongly
regular graph was known before. This does not necessarily mean that
the code was already known.
Optimal codes (minimum distance meets some known upper bound)
are marked with ∗.
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The author thanks Andries Brouwer who helped to compare the pa-
rameters with his database of two-weight codes/strongly regular graphs.
We list the constructed two-weight codes for given q, k up to n =⌊

qk−1
4

⌋
which is half the number of all possible points. We do not list

codes known from the SU2 construction of [10].

Table 1: Binary codes of dimension 8

n k q w1 w2 N K λ µ info

51∗ 8 2 24(204) 32(51) 256 51 2 12 known

60 8 2 24(60) 32(195) 256 60 20 12 SU2,FE1

68∗ 8 2 32(187) 40(68) 256 68 12 20 FE1

85∗ 8 2 40(170) 48(85) 256 85 24 30 known

102∗ 8 2 48(153) 56(102) 256 102 38 42 known

119 8 2 56(136) 64(119) 256 119 54 56 RT2

128∗ 8 2 64(254) 128(1) 256 128 0 128 CY2,SU1

Table 2: Binary codes of dimension 9

The codes for n = 70 and n = 196 were found by Bierbrauer/Edel in
1997. (update Aug. 07)

n k q w1 w2 N K λ µ info

70∗ 9 2 32(315) 40(196) 512 70 6 10 [4]

73∗ 9 2 32(219) 40(292) 512 73 12 10 [17]

196∗ 9 2 96(441) 112(70) 512 196 60 84 [4]

219 9 2 96(73) 112(438) 512 219 106 84 [17]

256∗ 9 2 128(510) 256(1) 512 256 0 256 SU1
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Table 3: Binary codes of dimension 10

The code for n = 198 may be a new optimal two-weight code, the
strongly regular graph was known.

n k q w1 w2 N K λ µ info

198∗ 10 2 96(825) 112(198) 1024 198 22 42 new

231∗ 10 2 112(792) 128(231) 1024 231 38 56 [13]

264∗ 10 2 128(759) 144(264) 1024 264 56 72 FE1

297 10 2 144(726) 160(297) 1024 297 76 90 [13]

330 10 2 160(693) 176(330) 1024 330 98 110 [13]

363 10 2 176(660) 192(363) 1024 363 122 132 [13]

396 10 2 192(627) 208(396) 1024 396 148 156 [13]

429 10 2 208(594) 224(429) 1024 429 176 182 [13]

462 10 2 224(561) 240(462) 1024 462 206 210 [13]

495 10 2 240(528) 256(495) 1024 495 238 240 known

512 10 2 256(1022) 512(1) 1024 512 0 512 SU1

Table 4: Binary codes of dimension 11

There are no new codes.
n k q w1 w2 N K λ µ info

276 11 2 128(759) 144(1288) 2048 276 44 36 RT5

759 11 2 352(276) 384(1771) 2048 759 310 264 RT5d

1024 11 2 512(2046) 1024(1) 2048 1024 0 1024 SU1
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Table 5: Binary codes of dimension 12

We list codes different from the construction SU2 . ’new’ means that
the strongly regular graph and the two weight code are both new.

n k q w1 w2 N K λ µ info

234∗ 12 2 112(2808) 128(1287) 4096 234 2 14 FE3

270 12 2 128(2295) 144(2184) 4096 270 14 18 known

273 12 2 128(1911) 144(2184) 4096 273 20 18 [22]

455∗ 12 2 224(3640) 256(455) 4096 455 6 56 known

780 12 2 384(3315) 416(780) 4096 780 116 156 known

845 12 2 416(3250) 448(845) 4096 845 144 182 new

910 12 2 448(3185) 480(910) 4096 910 174 210 new

975 12 2 480(3120) 512(975) 4096 975 206 240 known

1040 12 2 512(3055) 544(1040) 4096 1040 240 272 known

1105 12 2 544(2990) 576(1105) 4096 1105 276 306 new

1170 12 2 576(2925) 608(1170) 4096 1170 314 342 [24]

1300 12 2 640(2795) 672(1300) 4096 1300 396 420 new

1365 12 2 672(2730) 704(1365) 4096 1365 440 462 known

1430 12 2 704(2665) 736(1430) 4096 1430 486 506 new

1495 12 2 736(2600) 768(1495) 4096 1495 534 552 new

1560 12 2 768(2535) 800(1560) 4096 1560 584 600 known

1625 12 2 800(2470) 832(1625) 4096 1625 636 650 new

1690 12 2 832(2405) 864(1690) 4096 1690 690 702 new

1755 12 2 864(2340) 896(1755) 4096 1755 746 756 new

1800∗ 12 2 896(3825) 960(270) 4096 1800 728 840 known

1820 12 2 896(2275) 928(1820) 4096 1820 804 812 new

1885 12 2 928(2210) 960(1885) 4096 1885 864 870 new

1911 12 2 896(273) 960(3822) 4096 1911 950 840 [22]

1950 12 2 960(2145) 992(1950) 4096 1950 926 930 new

2015 12 2 992(2080) 1024(2015) 4096 2015 990 992 known

2048 12 2 1024(4094) 2048(1) 4096 2048 0 2048 SU1
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Table 6: Ternary codes of dimension 5

n k q w1 w2 N K λ µ info

11 5 3 6(132) 9(110) 243 22 1 2 known

55 5 3 36(220) 45(22) 243 110 37 60 known

Table 7: Ternary codes of dimension 6

There is no new two-weight code, but we mention references to the
found codes.

n k q w1 w2 N K λ µ

56 6 3 36(616) 45(112) 729 112 1 20 FE2

84 6 3 54(560) 63(168) 729 168 27 42 [18]

98 6 3 63(532) 72(196) 729 196 43 56 [18]

112 6 3 72(504) 81(224) 729 224 61 72 RT2

126 6 3 81(476) 90(252) 729 252 81 90 RT2,FE1

140 6 3 90(286) 99(280) 729 280 103 110 DeResmini

154 6 3 99(420) 108(308) 729 308 127 132 [19,14]

168 6 3 108(392) 117(336) 729 336 153 156 [23]

We found no new ternary two-weight codes of dimension 7, the only
parameters were those from the construction SU1.
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Table 8: Ternary codes of dimension 8

’new’ means that the strongly regular graph and the two weight code
are both new.

n k q w1 w2 N K λ µ

328∗ 8 3 216(5904) 243(656) 6561 656 7 72 known

656 8 3 432(5248) 459(1312) 6561 1312 223 272 known

738 8 3 486(5087) 513(1476) 6561 1476 297 342 known

820 8 3 540(4920) 567(1640) 6561 1640 379 420 new

902 8 3 594(4756) 621(1804) 6561 1804 469 506 new

984 8 3 648(4592) 675(1968) 6561 1968 567 600 new

1066 8 3 702(4428) 729(2132) 6561 2132 673 702 known

1107 8 3 729(4346) 756(2214) 6561 2214 729 756 known

1148 8 3 756(4264) 783(2296) 6561 2296 787 812 [22]

1189 8 3 783(4182) 810(2378) 6561 2378 847 870 new

1230 8 3 810(4100) 837(2460) 6561 2460 909 930 new

1271 8 3 837(4018) 864(2542) 6561 2542 973 992 new

1312 8 3 864(3936) 891(2624) 6561 2624 1039 1056 known

1353 8 3 891(3854) 918(2706) 6561 2706 1107 1122 new

1394 8 3 918(3772) 945(2788) 6561 2788 1177 1190 new

1435 8 3 945(3690) 972(2870) 6561 2870 1249 1260 [22]

1476 8 3 972(3608) 999(2952) 6561 2952 1323 1332 known

1517 8 3 999(3526) 1026(3034) 6561 3034 1399 1406 new

1558 8 3 1026(3444) 1053(3116) 6561 3116 1477 1482 new

1599 8 3 1053(3362) 1080(3198) 6561 3198 1557 1560 new

A more detailed version of these tables (together with generator ma-
trices and the used group of automorphisms) can be found at the URL:
http://linearcodes.uni-bayreuth.de/twoweight/.

Concluding remark

There is the construction SU2 of Calderbank/Kantor [10] which gives
two-weight codes for a series of parameters. Looking at the results for
the pairs (q, k) = (2, 12), (3, 6), (3, 8) (see tables 5,7,8) suggests that
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there might be a similar series sharing the same weights of the SU2-
two-weight codes, but having different lengths of the codewords. For
example in the case q = 3 and k = 8 the construction SU2 gives
codes with weights w1, w2 and length n:

w1 = 27 · i, w2 = 27 + w1, n = 40 + 40 · i (i = 1, . . . , 40).

The above table 8 indicates that we found two-weight codes for nearly
all pairs of weights of this SU2 series but for a different length n =
41 · i starting with i = 8.
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