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Abstract

We consider the ring In of polynomial invariants over
weighted graphs on n vertices. Our primary interest is the
use of this ring to define and explore algebraic versions of
isomorphism problems of graphs, such as Ulam’s reconstruc-
tion conjecture.

There is a huge body of literature on invariant theory
which provides both general results and algorithms. How-
ever, there is a combinatorial explosion in the computations
involved and, to our knowledge, the ring In has only been
completely described for n ≤ 4.

This led us to study the ring In in its own right. We used
intensive computer exploration for small n, and developed
PerMuVAR, a library for MuPAD, for computing in invariant
rings of permutation groups.

We present general properties of the ring In, as well as
results obtained by computer exploration for small n, in-
cluding the construction of a medium sized generating set
for I5. We address several conjectures suggested by those
results (low degree system of parameters, unimodality), for
In as well as for more general invariant rings. We also show
that some particular sets are not generating, disproving a
conjecture of Pouzet related to reconstruction, as well as a
lemma of Grigoriev on the invariant ring over digraphs. We
finally provide a very simple minimal generating set of the
field of invariants.

Introduction

Let K be a field of characteristic zero, n be a positive integer,
and {x{1,2}, . . . , x{n−1,n}} be a set of

(
n
2

)
variables indexed

by the pairs {i, j} of {1, . . . , n}. The symmetric group Sn

acts naturally on those variables by

σ · x{i,j} := x{σ(i),σ(j)}.

Let K[x{i,j}] be the ring of polynomials in x{i,j}. We study

the subring In := K[x{i,j}]
Sn of the polynomials which re-

main invariant under the action of Sn.
Our motivation comes from graph theory and in partic-

ular from graph reconstruction. Pouzet [21, 22] formulated
an algebraic reconstruction conjecture for In, which im-
plies Ulam’s famous reconstruction conjecture for weighted
graphs [2]. We disprove Pouzet’s conjecture. Kocay pro-
posed a similar conjecture, by introducing the algebra of

This article was formally reviewed following the procedures described
in this Bulletin, 32(2), issue 124, 1998, pp 5–6.

subgraphs [19, 3]. This algebra is a quotient of In; however
this quotient is not graded, and we cannot apply our method
to disprove Kocay’s conjecture.

The ring In can also be used to study the shape of sets of
vectors [1]. Our primary goal is to construct complete sys-
tems of invariants (systems that separate weighted graphs
up to isomorphism), and in particular minimal generating
sets of In.

In § 1, we introduce the representation Gn of the symmet-
ric group Sn over the vector space Vn of weighted graphs
on n vertices, and the associated invariant ring In. We re-
view classical results and tools provided by invariant theory
(finite generation, grading, Hilbert series). Since Gn is a
permutation group, there is a combinatorial interpretation
of the invariant ring, and a reasonably fast algorithm for
computing the Hilbert series. We also review some general
properties of minimal generating sets, and the definition of
the smallest degree bound β(In).
§ 2 is devoted to generating sets of In. We provide a

finite generating set. By studying the Hilbert series, we show
that two other sets are not generating, disproving Pouzet’s
conjecture. We also prove that, for many common monomial
orders, In has no finite SAGBI basis.

Finding a good degree bound is crucial. In § 3, we re-
call how Hironaka decompositions of In can be used to ob-

tain the degree bound β(In) ≤
((n2)

2

)
− µn, where µn is a

non-negative O(n) integer. We calculate µn by constructing
minimal multigraphs without odd automorphisms.

In § 4, we try to refine the degree bound by constructing
low degree systems of parameters. The study of the Hilbert
series for n ≤ 21, combined with a conjecture of Mallows
and Sloane, suggests the existence of a system of parameters
composed of invariants of degrees 1, 2, . . . , n, 2, 3, . . . ,

(
n−1

2

)
.

This would give β(In) ≤
((n−1

2 )
2

)
− µn. We propose a natu-

ral construction for such a low degree system of parameters,
and check its validity for n ≤ 5 using a Gröbner basis com-
putation. Unfortunately, this computation is intractable for
n ≥ 6. Such a system of parameters seems to have nearly
optimally low degrees; therefore, this technique cannot be
refined much further in order to get better degree bounds.
§ 5 is devoted to the computation of minimal generating

sets. For n = 4, a minimal generating set was first con-
structed by hand by Aslaksen, Chan et Gulliksen [1]; it can
now be computed in a few seconds by invariant theory soft-
ware (e.g. Kemper’s packages in Maple [16] or Magma [17]).
However, for n ≥ 5, these software packages are unable to
compute even partial minimal generating sets. We wrote
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Thiéry: Algebraic invariants of graphs

PerMuVAR [32], a library of invariant theory routines for
MuPAD, which uses the usual algorithms [29, 17], but is spe-
cialized for permutation groups. This allows us to go a step
further: for n = 5, we compute a partial minimal generating
set, containing 57 polynomials of degree ≤ 91. This suggests
a much better degree bound: β(In) =

(
n
2

)
− 1.

In § 6, we prove that the invariant ring In is Gorenstein
when n is even. This fact could be used to accelerate the
computations of Hironaka decompositions [32].

We introduce in § 7 the chain product (a naive inter-
pretation of Stanley-Reisner rings [11]). This allows for
faster computations of generating sets at the expense of non-
minimality [32]: we obtain a generating set of I5 containing
about one thousand polynomials of degree ≤ 22.

In § 8 the projective limit I∞ is used to obtain results
about In; this includes the lower bound β(In) ≥ bn

2
c.

§ 9 presents various unimodality properties revealed by
computer exploration, for In as well as for more general
invariant rings.

Grigoriev [14] introduces a related invariant ring over di-
graphs. In § 10, we apply the Hilbert series tool of § 2 to
disprove lemma 1 of [14]. We also provide a simple counter-
example. Finally, in § 11, we study the field of invariants.
Grigoriev [14] gives a non-constructive proof for the exis-
tence of a small generating set of the field of invariants (the
proof of the degree bound is incorrect though, since it relies
on lemma 1 of [14]). We construct such a small generating
set, composed of the elementary symmetric polynomials and
a very simple invariant of degree 2; to the contrary of Grig-
oriev’s assertion, it is not a complete system of invariants.
We also derive a minimality property of the invariant ring,
by using basic Galois theory on the field of invariants.

The results presented in this paper are part of the Ph. D.
thesis [30] of the author. We refer to this document for the
detailed proofs.

1 The invariant ring over graphs

1.1 Valuated graphs as a vector space

Let V be a K-vector space of finite dimension m, and G be
a finite subgroup of GL(V ). Tacitly, we interpret G as a
group of m×m matrices or as a representation on V . Two
vectors v and w are isomorphic, or in the same G-orbit (for
short orbit), if σ · v = w for some σ ∈ G.

Let n be a positive integer. We consider labelled, undi-
rected graphs on the vertices {1, . . . , n}, without loops, and
whose edges are weighted in K. A simple graph is a graph
with weights in {0, 1}, and a multigraph is a graph with
weights in N. For any pair {i, j}, let e{i,j} be the simple
graph with one single edge {i, j}. The set of all graphs
is a K-vector space Vn of dimension m :=

(
n
2

)
with basis

{e{1,2}, . . . , e{n−1,n}}. Indeed, any graph g can be written
uniquely as g :=

∑
g{i,j}e{i,j}, where g{i,j} is the weight of

the edge {i, j}. Let {x{1,2}, . . . , x{n−1,n}} be the dual basis
(x{i,j}(g) is the weight g{i,j} of the graph g on the edge
{i, j}).

Throughout the text, we denote objects attached to Vn
by cursive symbols, and objects attached to the generic vec-
tor space V by ordinary symbols. Let Sn be the symmetric
group of all permutations of the n vertices. Our group Gn
is the linear representation of Sn defined on the basis of Vn

1Using ad hoc computations, Kemper [18] checked recently that
this system was indeed a complete minimal generating set, thus prov-
ing that β(I5) = 9.

by σ · e{i,j} := e{σ(i),σ(j)}. The notion of isomorphism de-
fined above coincides with the usual notion of isomorphism
of graphs. Orbits of labelled graphs are called unlabelled
graphs. Unless otherwise stated, all graphs are unlabelled.

The representation of Gn on Vn splits into three irre-
ducible components: [n] ⊕ [n − 1, 1] ⊕ [n − 2, 2], where
[n− 2, 2] represents the irreducible representation of Sn in-
dexed by the partition λ = (n − 2, 2) of n [1, 10]. The
first component has dimension 1 and corresponds to the
vector space spanned by the complete graph. The sum
[n] ⊕ [n − 1, 1] of the first two components is of dimension
n, and corresponds to the vector space spanned by the n
stars E1, . . . ,En, where Ei :=

∑
j 6=i e{i,j}. This representa-

tion is the natural representation of Sn by permutation of
E1, . . . ,En. Let X1, . . . , Xn be the basis of the dual, defined
by Xi :=

∑
j 6=i x{i,j}. If g is a graph, Xi(g) is the degree

of the vertex i of g. Finally, the last irreducible component
[n− 2, 2] is the orthogonal of the two previous components,
that is the subspace of all 0-regular graphs (graphs where
each vertex as degree 0).

1.2 The invariant ring

Recall that if G acts on V , a complete system of invariants
is a set S of functions such that two elements v and w of V
are in the same orbit if and only if they give the same value
to all functions in S (i.e. p(v) = p(w) for all p ∈ S). Our
primary goal is to construct, or at least find information
about, complete systems of invariants. We introduce the
invariant ring of G which provides a mechanical way to do
this. We refer to [27, 29, 5, 26, 17] for classical literature on
invariant theory of finite groups. Parts of what follows are
strongly inspired by [17].

Let (x1, . . . , xm) be a basis of the dual of V ; for
Vn, we take (x1, . . . , xm) := (x{1,2}, . . . , x{n−1,n}). Let
K[x1, . . . , xm] be the ring of polynomials over V . The ac-
tion of G on V extends naturally to an action of G on
K[x1, . . . , xm] by σ · p := p ◦ σ−1. An invariant polyno-
mial, or invariant, is a polynomial p ∈ K[x1, . . . , xm] such
that σ · p = p for all σ ∈ G. The invariant ring I(G) is the
set of all invariants. We call In := I(Gn) the invariant ring
over graphs. Note that σ ·x{i,j} := x{i,j}◦σ−1 = x{σ(i),σ(j)}.

Obviously, I(G) is a K-algebra. Hilbert’s famous the-
orem states that I(G) is finitely generated : there exists a
finite set S of invariants such that any invariant can be ex-
pressed as a polynomial combination of invariants in S. We
call S a generating set. If no proper subset of S is gener-
ating, S is a minimal generating set. Since I(G) is finitely
generated, there exists a degree bound d such that I(G) is
generated by the set of all invariants of degree at most d.
We denote by β(I(G)) the smallest degree bound.

There exist algorithms to compute (minimal) generating
sets, and a basic result of invariant theory states that they
are complete systems of invariants. However, this often leads
to very intensive computations, and rather large complete
systems of invariants.

1.3 Invariant ring of a permutation group

The most famous invariant ring is the ring of symmetric
polynomials I(Sm), defined by the natural action of Sm

on the variables (x1, . . . , xm). The fundamental theorem of
symmetric polynomials [29, p. 2] states that I(Sm) is gener-
ated by m algebraically independent symmetric polynomi-
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als, for example the m elementary symmetric polynomials
or the first m symmetric power sums.

Gn is a permutation group, since it acts by permuting
the variables x{i,j}; thus, we also view Gn as a subgroup of
the full group Sm of the permutations of m variables. This
results in several convenient and powerful combinatorial in-
terpretations of invariants:

(i) A labelled multigraph g := (g{1,2}, . . . , g{n−1,n}) can

be identified with the monomial xg := x
g{1,2}
{1,2} . . . x

g{n−1,n}
{n−1,n} .

The exponential of g is the polynomial xg�∗ :=
∑

h xh, where

h belongs to the orbit of g. The polynomial xg�∗ is invariant,
and is well defined even if g is unlabelled. The exponential
therefore identifies unlabelled graphs with some particular
invariants. Moreover, the set of all invariants xg�∗, where g
is a multigraph, is a vector space basis of In. Note that the
exponential differs from the usual Reynolds operator ∗ by a
multiplicative factor: xg�∗ = |Aut(g)|(xg)∗, where |Aut(g)|
is the size of the automorphism group of g.

(ii) Let g1 and g2 be two multigraphs on n vertices. The
product xg1�∗xg2�∗ is a linear combination of all possible su-
perpositions of g1 and g2 (with, at times, counter-intuitive
coefficients). For instance:( )�∗

×
( )�∗

=

( )�∗
+

( )�∗
+

( )�∗
.

Let n′ > n, and consider the multigraphs g1 and g2 ob-
tained by adding n′−n isolated vertices to g1 and g2. New
superpositions, which fit in n′ vertices but not in n vertices,

may appear in the product xg1
�∗
xg2
�∗
. However, the use of

a modified Reynolds operator ensures that the coefficients
in the linear combination do not change. This makes the
product somewhat independent of n (see § 8).

(iii) If g and h are simple graphs, xg�∗(h) counts the
number s(g,h) of subgraphs of h isomorphic to g. The
following invariants can be used to count respectively the
number of edges, the number of pairs of adjacent edges and
the number of Hamiltonian cycles of h:( )�∗

(h),

( )�∗
(h),

( )�∗
(h).

Manipulations of the quantities s(g,h) are the cornerstone
of several results on reconstruction of graphs [2]; for the use
of these algebraic considerations see [23].

1.4 Grading, Hilbert series and degree bound

Powerful properties of an invariant ring are its grading and
the associated Hilbert series. As a K-vector space, I(G)
is not finite dimensional. However, since the action of G
preserves the degree of polynomials, I(G) decomposes into
the direct sum of its homogeneous components:

I(G) =

∞⊕
d=0

I(G)d,

where I(G)d is the finite dimensional vector space of all ho-
mogeneous invariants of degree d. The Hilbert series of I(G)
is the generating series of its dimensions:

H(I(G), z) :=

∞∑
d=0

zd dim I(G)d.

For general finite groups of matrices, this series can be
computed by averaging over the group, through Molien’s for-
mula. However, since Gn is a permutation group, the set of
all invariants xg�∗, where g is a multigraph with d edges is a
vector space basis of In,d. Therefore, computing H(In, z) re-
duces to a Pólya enumeration of multigraphs with respect to
the number of edges [27]. Recall that the conjugacy classes
Cλ of Sn are indexed by the partitions λ of n. Let σ be
a permutation of the vertices in Cλ. The cycle type of the
induced permutation of the edges is easily computed from
the cycle type of σ, i.e. from the partition λ [15]. We denote
by l1(λ), . . . , lm(λ) this cycle type. Then,

H(In, z) =
1

n!

∑
λ

|Cλ|
1∏

(1− zi)li(λ)
,

where the sum is over all partitions λ of n. This provides an
algorithm whose complexity is about O(n4 exp(n0.8)). Con-
cretely, we can compute H(In, z) for n ≤ 21. It is sometimes
useful to consider the multigraded Hilbert series, where each
grading corresponds to one of the three irreducible compo-
nents of the representation Gn. We can compute this multi-
graded Hilbert series for n ≤ 15.

Given an integer d ≥ 1, let K[I(G)<d] be the subalge-
bra of I(G) generated by invariants of degree < d, and
K[I(G)<d]d its homogeneous component of degree d. Set
s0(I(G)) := 0 and sd(I(G)) := dim I(G)d− dimK[I(G)<d]d.
The generating series s(I(G), z) :=

∑∞
d=0 z

d sd(I(G)) is a
polynomial of degree β(I(G)).

A set S is homogeneous if its elements are also homoge-
neous. The following lemma (valid for any graded algebra
A, where A0 is the ground field K) summarizes some general
properties of generating sets.

Lemma 1.1. Let S be a generating set of I(G).
(i) I(G) has a homogeneous minimal generating set com-

posed of at most |S|β(I(G)) invariants of degree at most
β(I(G)).

(ii) Assume S is homogeneous, and let Sd be the set of
all invariants of S having degree d. Then, S is a minimal
homogeneous generating set if and only if for all d, Sd is a
vector space basis of a direct factor of K[I(G)<d]d in I(G)d.
In particular, |Sd| = sd(I(G)).

Proof. (i) For each p ∈ S and d, let pd be the homogeneous
component of degree d of p. Since I(G) is graded, it is
generated by the set {pd | p ∈ S, 1 ≤ d ≤ β(I(G))}.

(ii) Use the grading and basic linear algebra.

From (i), it is not very restrictive to consider only homo-
geneous generating sets, since non-homogeneous generating
sets are not much smaller than homogeneous ones.

The Hilbert series provides a simple necessary condition
to test if a set S of homogeneous invariants is generating.
The following proposition is valid for any graded algebra A,
where A0 is the ground field K. We stress the importance of
the homogeneity of the invariants. A series s(z) is dominated
by a series t(z) if the coefficients of s(z) are upper-bounded
term by term by the coefficients of t(z).

Condition 1.2. Let S := (p1, . . . , pt) be a homogeneous
generating set, with respective degrees (d1, . . . , dt). Then,
the Hilbert series H(I(G), z) is dominated by the series

F (d1, . . . , dt, z) :=
1

(1− zd1) . . . (1− zdt) .
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Proof. As a vector space, the homogeneous component
I(G)d is generated by the set of all the homogeneous prod-

ucts pλ1
1 . . . pλtt whose degree d1λ1 + · · · + dtλt is d; those

products are counted by the series F (d1, . . . , dt, z).

This apparently weak condition is in fact very powerful.
In particular, it leads to the proof of theorem 2.3, and to
the disproving of Grigoriev’s lemma 1 of [14] (see § 10).

2 Generating sets of In

For n = 1, 2, 3, the invariant ring is the ring of symmetric
polynomials; the elementary symmetric polynomials form
a minimal generating set. For n = 4, Aslaksen et al. [1]
constructed by hand the following minimal generating set:{( )�∗

,

( )�∗
,

( )�∗
,

( )�∗
,

( )�∗
,

( )�∗
,

( )�∗
,

( )�∗
,

( )�∗}
.

At about the same time, we had proven independently a
similar result through a Gröbner basis computation with
CoCoA [4], using theorem 2.7.9 of [29]. However, our set
was not minimal since we had not removed the invariant
xc�∗ where c is the complete graph. The set above can now
be computed in about one second with Kemper’s implemen-
tation of Invar in Magma [17].

We now provide a large, but reasonable, finite generat-
ing set of In. A multigraph is quasi-connected if it has, at
most, one non-trivial connected component. For example,
g1 below is quasi-connected, but not g2:

g1 := , g2 := .

Proposition 2.1. (i) The homogeneous component In,d has
for vector space basis the set of all invariants xc1�∗ · · ·xck�∗,
where each ci is a quasi-connected multigraph with ni non-
isolated vertices and di edges, and where n1 + · · ·+ nk ≤ n
and d1 + · · ·+ dk = d.

(ii) The invariant ring In is generated by the set of all
homogeneous invariants xg�∗, where g is a quasi-connected
multigraph with at most β(In) edges.

Proof. (i) Let g be a multigraph with n vertices and k > 1
non-trivial connected components c1, . . . , ck. Let c1, . . . , c1

be the quasi-connected multigraphs on n vertices obtained
by adding isolated vertices to the ci. Obviously, n1 + · · ·+
nk ≤ n, and d1 + · · ·+ dk = d. Then:

xg�∗ = xc1�∗ · · ·xck
�∗ −

∑
i

xhi�∗,

where the hi are multigraphs with strictly less than k non-
trivial connected components. For example:( )�∗

=

( )�∗
×
( )�∗

−
( )�∗

−
( )�∗

.

By induction on the number k of non-trivial connected com-

ponents, g is a linear combination of products xc1�∗ · · ·xck
�∗
.

In fact, we just inverted a triangular linear system with ones
on the diagonal, and uniqueness follows.

(ii) Use (i) and the definition of β(In).

Obviously, in order to get a usable generating set, it is
essential to have a good bound for β(In).

We tried to use the technique of SAGBI basis. This is
a powerful tool, which generalizes Gröbner basis techniques
for rings instead of ideals [24]. The main drawback is that
there exist invariant rings with no finite SAGBI basis; this
seems to be the case for In, at least for many common mono-
mial orders.

Theorem 2.2. There are no finite SAGBI basis for In if the
monomial order is either lexicographic, degree lexicographic,
or degree reverse lexicographic with the n− 1 smallest vari-
ables corresponding to adjacent edges.

Proof. We prove in each case that there is an infinite number
of irreducible initial monomials (an initial monomial is irre-
ducible if it cannot be written as product of two smaller ini-
tial monomials). For the lexicographic order, we can alter-
natively use Göbel’s characterization of permutation groups
with finite SAGBI basis [13].

The following theorem states that some sets are not gen-
erating. (i) disproves a tempting generalization of the fun-
damental theorem of symmetric functions, whereas (ii) dis-
proves Pouzet’s conjecture [21], which would have implied
Ulam’s reconstruction conjecture.

Theorem 2.3. (i) For n ≥ 5, the set of all invariants xg�∗,
where g is a simple graph, do not generate In.

(ii) For 11 ≤ n ≤ 18, the set of all invariants xg�∗, where
g is a multigraph with at least one isolated vertex, do not
generate In.

Proof. (i) For n = 5, 6, 7, 8, simple graphs can be counted
with respect to the number of edges using Pólya enumer-
ation [15]. The coefficient of degree d = 4 of the series
S(d1, . . . , dt) is strictly smaller than that of the Hilbert se-
ries. Therefore, condition 1.2 applies. For n ≥ 9, no new
isomorphism types of multigraphs with less than 4 edges ap-
pears, so the coefficient of degree 4 of both series is the same
as for n = 8. Condition 1.2 again applies.

(ii) By an argument similar to the proof of proposi-
tion 2.1, we have only to consider the set of all invariants
xg�∗, where g is a multigraph with a unique non-trivial con-
nected component, which is of size < n. Those multigraphs
can be counted from the total number of multigraphs by us-
ing a technique similar to that described in [15, § 4.2, p. 90].
For 11 ≤ n ≤ 18, computations of both series shows that
condition 1.2 fails.

We could not check (ii) for n > 18 since the compu-
tation were intractable. However, the results for n ≤ 18
strongly suggest that, for d ≈ 4n−24, the ratio between the
coefficients of degree d of the two series is bounded by an
expression of the form exp(−an) + 0.17. This could proba-
bly be confirmed by an asymptotic study, and we conjecture
that (ii) is true for any n ≥ 11.

3 Decomposition of Hironaka

The smallest degree bound β(In) and furthermore the poly-
nomial s(In, z) contains important information about the
invariant ring, which would be very useful when the compu-
tation of a minimal generating set is intractable. But so far,
we don’t know how to calculate them except by explicitly
computing such a minimal generating set.

4
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Invariant theory provides only some bounds on β(In)
and s(In, z) [25, 6]. Noether’s theorem [29, p. 27]
yields: β(In) ≤ |Gn| = n!, which is not very informa-
tive. A much better bound exists for permutation groups:

β(In) ≤
(
m
2

)
=
((n2)

2

)
[11]. However, our computations for

small n shows that this is still a rather loose bound. This
section introduces the tools that produce this bound, and
possibly even better bounds.

A set of m homogeneous invariants (θ1, . . . , θm) of I(G)
is called a homogeneous system of parameters or, for short,
a system of parameters if the invariant ring I(G) is finitely
generated over its subring K[θ1, . . . , θm]. That is, if there
exist a finite number of invariants (η1, . . . , ηt) such that the
invariant ring is the sum of the subspaces ηi.K[θ1, . . . , θm].
By Noether’s normalization lemma, there always exists a
system of parameters for I(G). Moreover, I(G) is Cohen-
Macaulay, which means that I(G) is a free-module over any
system of parameters. So, if the set (η1, . . . , ηt) is minimal
for inclusion, I(G) decomposes into a direct sum:

I(G) =

t⊕
i=1

ηi.K[θ1, . . . , θm].

This decomposition is called a Hironaka decomposition of
the invariant ring. The θi are called primary invariants,
and the ηi secondary invariants (in algebraic combinatorics
literature, the θi are some times called quasi-generators and
the ηi separators [11]). It should be emphasized that pri-
mary and secondary invariants are not uniquely determined,
and that being a primary or secondary invariant is not an
intrinsic property of an invariant p, but rather express the
role of p in a particular generating set.

The primary and secondary invariants together form a
generating set. From the degrees (d1, . . . , dm) of the pri-
mary invariants (θ1, . . . , θm) and the Hilbert series we can
compute the number t and the degrees (e1, . . . , et) of the
secondary invariants (η1, . . . , ηt) by the formula:

ze1 + · · ·+ zet = (1− zd1) · · · (1− zdm)H(I(G), z). (1)

Assuming d1 ≤ · · · ≤ dm and e1 ≤ · · · ≤ et, it can be proved
that:

t =
d1 · · · dm
|G| ,

et = d1 + · · ·+ dm −m− µ,
β(I(G)) ≤ max(dm, et),

(2)

where µ is the smallest degree of a polynomial p such that
σ · p = det(σ)p for all σ ∈ G [27, Proposition 3.8].

For example, if G is the symmetric group Sm, the m
elementary symmetric polynomial (or the m first symmetric
power sums) form a system of parameters, t = 1, et = 0 and
η1 = 1. This is consistent with the fundamental theorem of
symmetric polynomials.

More generally, for Gn as well as for any permutation
group, the elementary symmetric polynomials still form a
system of parameters. This yields the following information
on In.

Proposition 3.1. For n ≥ 4, consider the system of pa-
rameters of In composed of the elementary symmetric poly-
nomials, and let (e1, . . . , et) be the degrees of secondary in-

variants. Then,

t =
m!

|Gn|
=

(
n
2

)
!

n!
,

et =

(
m

2

)
− µn =

((
n
2

)
2

)
− µn,

β(In) ≤

((
n
2

)
2

)
− µn,

where µn = 0 if n is even, and µn = d 3
4
(n− 1)e otherwise.

For example, β(I4) ≤ 15, β(I5) ≤ 42 and β(I6) ≤ 104.

Proof. We only have to check the value of µn. When n is
even, det(σ) = 1 for all σ ∈ Gn. Therefore, p := 1 verifies
the condition σ · p = det(σ)p for all σ ∈ Gn. We note that
this is generally true for any Gorenstein ring (see § 6 and [27,
§ 8]). When n is odd, the sign of a permutation of the edges
is the sign of the corresponding permutation of the vertices.
Then, the smallest degree µn of a polynomial p such that
σ ·p = signσp is the smallest number of edges of multigraph
with no odd automorphism. The following lemma completes
the proof.

Lemma 3.2. The smallest number of edges of a multigraph
gn on n ≥ 4 vertices without odd automorphism is d 3

4
(n −

1)e.

Proof. Such multigraphs can be constructed for any n as
follows:

• g4 := ; g5 := ; g6 := ; g7 := ;

• g4k is composed of k copies of g4 (3k edges);

• g4k+1 is composed of k copies of g4 and an isolated
vertex (3k edges);

• g4k+2 is composed of k − 1 copies of g4 and one copy
of g6 (3k + 1 edges);

• g4k+3 is composed of k − 1 copies of g4 and one copy
of g7 (3k + 2 edges).

The minimality of the number of edges of such multigraphs
can be proved by induction over n.

So, the knowledge of a system of parameters and of the
Hilbert series provides both an upper bound on β(In), as
well as bounds on the coefficients of s(In, z). Unfortunately,
our experience has shown that generating sets composed of
primary and secondary invariants are far from minimal (see
Figures 4 and 2), so those bounds are quite loose. Moreover,
to our knowledge, those bounds are the only obtainable in-
formation about a minimal generating set, without actually
computing it.
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4 Low degrees systems of parameters

We now search for a low degrees system of parameters for In,
in order to improve the bound on β(In). Equation (1) can
guide our quest by suggesting possible degrees. Indeed, there
can only exist a system of parameters of degrees (d1, . . . , dm)
if the expression (1− zd1) · · · (1− zdm)H(I(G), z) is a poly-
nomial with positive integer coefficients. It has even been
conjectured by Mallows and Sloane [20, 7] that the con-
verse is true: if (1 − zd1) · · · (1 − zdm)H(I(G), z) is a poly-
nomial with positive integer coefficient, then there exists a
system of parameters of degrees (d1, . . . , dm). A counter-
example has been found, but the conjecture still holds if the
representation of G over V is irreducible, or when using a
multigraded Hilbert series (one grading for each irreducible
component) [7, p. 5].

By tweaking the Hilbert series for n ≤ 21, and the multi-
graded Hilbert series for n ≤ 15, we find that the degree
sequence (1, . . . , n, 2, . . . ,

(
n−1

2

)
) always produces a polyno-

mial with positive integer coefficient. We also proved that,
for any n, this degree sequence produces a polynomial. We
are therefore somewhat confident with the following conjec-
ture:

Conjecture 4.1. For all n ≥ 3, there exists a system of
parameters for In of degrees (1, . . . , n, 2, . . . ,

(
n−1

2

)
). As a

direct consequence, β(In) ≤
(
n
2

)
+
((n−1

2 )
2

)
− µn.

For example, β(I4) ≤ 9, β(I5) ≤ 22 and β(I6) ≤ 60,
which are much smaller degree bounds than those provided
by proposition 3.1. Figure 1 displays the number of sec-
ondary invariants depending on the system of parameters.

Next, we construct a reasonable system of parameters
and check its validity for n = 3, 4, 5, which proves conjec-
ture 4.1 for those values. We note that Dixmier [7] con-
structed a system of parameters with degrees (2, 3, 4, 5, 6)
for the representation [3, 2] of S5, and proved its validity
by hand. By using the decomposition of the representation
G5 into [5] + [4, 1] + [3, 2], this also provides a system of
parameters with the expected degrees.

The form of the degree sequence suggests starting from
the

(
n
2

)
first symmetric power sums, and replacing the last

n − 1 degrees (
(
n−1

2

)
+ 1, . . .

(
n
2

)
) by some invariants of de-

gree 2, . . . , n. Moreover, since the representation splits into
[n] ⊕ [n − 1, 1] and [n − 2, 2] (see § 1.1), we get a system
of parameters for the invariant ring of the whole represen-
tation, by taking systems of parameters for the invariant
rings of each components and putting them together. Re-
call that the first component is the natural representation
of Sn by permutations of the stars (E1, . . . ,En). So, the
invariant ring over this component is the ring of symmetric
polynomials in the dual variables (X1, . . . , Xn), and the n
first symmetric power sums in the Xi form a system of pa-
rameters for this component. Note that, up to a constant
2, the first symmetric power sum in the Xi is equal to the
first symmetric power sum in the x{i,j}. All this leads to
the following conjecture:

Conjecture 4.2. If n ≥ 3, the following system of invari-
ants is a system of parameters for In.

x{1,2} + · · ·+ x{n−1,n}, . . . , x
(n−1

2 )
{1,2} + · · ·+ x

(n−1
2 )

{n−1,n},

X1 + · · ·+Xn, . . . , Xn
1 + · · ·+Xn

n .
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1e+01

1e+02
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(a) System of parameters: symmetric power
sums
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(b) Conjectured system of parameters

Figure 1: Number of secondaries per degree

Proposition 4.3. Conjecture 4.2 holds for 3 ≤ n ≤ 5.

This is immediate for n = 3, since the component
[n− 2, 2] is trivial. To test the conjecture for other small
cases, we used the following general characterization:

Caracterisation 4.4 ([29]). A set of m homogeneous in-
variants (θ1, . . . , θm) is a system of parameters if and only
if v = 0 is the only common zero of the θi:

θ1(v) = · · · = θm(v) = 0⇒ v = 0

For n = 4, this characterization is enough to prove con-
jecture 4.2 by hand.

For n ≥ 5, we can try to check conjecture 4.2 as follow:
compute a Gröbner basis for the θi, and verify that for each
variable x{i,j} there is a polynomial in the Gröbner basis

whose leading term is of the form xk{i,j} (see [29, Subrou-

tine 2.5.2]; this is both a necessary and sufficient condition
for the radical of the ideal generated by the θi to be the
irrelevant ideal).

For n = 3, 4, the direct computation of this Gröbner ba-
sis takes less than one second, but for n = 5 it seems to be
intractable and fails. However, some equivalent Gröbner ba-
sis can be computed in about one minute, by using a suitable
linear change of basis which respects the decomposition of
the representation. The verification of characterization 4.4
is then straightforward.

For n = 6, even with the same linear change of basis
and using FGb [9], the computation is intractable. In fact,
the growth of the Gröbner basis seems to follow nearly the
worst possible theoretical case [12].
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Finally, as a by-product of the computation of minimal
generating sets with PerMuVAR, we checked that for n ≤ 8
and for the low-degree homogeneous components, the ring of
invariants is indeed a free-module over K[θ1, . . . , θm]. This
gives some confidence in conjecture 4.2, but so far we are
unable to prove it.

If the above construction of a system of parameters is
correct, we believe it to be nearly optimal: there exist no
general construction of systems of parameters with lower
degrees. Indeed, we calculated, for small values of n, the
smallest degree sequence allowed by the multigraded Hilbert
series. For 3, 4, 5, the degrees conjectured above are optimal.
For n ≥ 6, it was usually possible to divide some of the de-
grees by 2 or 3. For example, for n = 6 and 7 the best degree
sequences are respectively (1, . . . , 6, 2, . . . , 7, 8

2
, 9

3
, 10

2
) and

(1, . . . , 7, 2, . . . , 7, 8
2
, 9, . . . , 13, 14

2
, 15). We have not noticed

any regularity in these case by case optimizations. There-
fore, we don’t think this technique can be refined much fur-
ther in order to get better degree bounds.

5 Computing minimal generating sets

Since we can not get more a priori information on homoge-
neous minimal generating sets of In, we proceed with explic-
itly computing them. The computations are very intensive
(even for n = 5) but give some feeling of the size and degree
of minimal generating sets. The bounds given by Hironaka
decompositions seem very loose.

The basic principle of the classical algorithms is to con-
struct generating sets degree by degree, from 1 up to the best
degree bound known. Since the complexity of the computa-
tions involved usually increases quickly with increasing de-
gree, the quality of the degree bound is crucial. One can take
advantage of the existence of a Hironaka decomposition by
computing secondary invariants and, while doing so, select-
ing the secondary invariants that are irreducible (i.e. that
cannot be expressed as products of lower degree secondary
invariants). The irreducible secondary invariants together
with the primary invariants form a minimal generating set
(some primary invariants may need to be removed).

Most software [16] relies on a precomputation of a
Gröbner basis of the system of parameters to greatly speed
up the rest of the computations. However, with In this pre-
computation is very hard, if not impossible (see § 4). Soft-
ware that do not rely on this precomputation uses linear
algebra on the homogeneous component of degree d of the
whole ring of polynomials, whose dimension grows quickly
with increasing d, and fail early.

Since our group is a permutation group, invariants can be
stored as linear combinations of invariants xg�∗. This saves
a lot of memory (up to a factor of 1/|Gn| for monomials
without symmetries, which happens to be the case for most
of them). This data structure also allows for the same lin-
ear algebra operations inside the homogeneous component of
degree d of the invariant ring which is considerably smaller.
We therefore implemented our own invariant theory software
PerMuVAR which takes advantage of the particular properties
of permutation groups [32]. We chose the computer algebra
system MuPAD, which is freely available (but alas not open
source software), and allows modularity through object ori-
ented programming. Moreover, MuPAD’s dynamic modules
will allow for rewriting critical sections in a very efficient
language like C++.

A sketch of the algorithm follows. We denote by

〈θ1, . . . , θm〉d the homogeneous component of degree d of
the ideal generated by (θ1, . . . , θm) in I(G).

Algorithm 5.1 (Computing secondary invariants)
Input: a system of parameters (θ1, . . . , θm) and a function
nextInvariant(d) which iterates through a set of invariants
of degree d spanning I(G)d as a vector space.
Output: (irreducible) secondary invariants.

for d from 1 to et do
// Compute secondary invariants for degree d
secondaries [d]:=[ ]; // Secondary invariants
irreducibles [d]:=[ ]; // Irreducible secondaries
// Compute a basis L of 〈θ1, . . . , θm〉d
L:=[ ];
for p product of a previous secondary and a non-trivial
product of the θi do

insert p into L;
end for
// Extend L to a basis of K[I(G)<d]d
for p product of previous secondaries do

if p is not in the vector space spanned by L then
insert p into secondaries [d];
insert p into L;

end if
end for
// Construct the irreducible secondaries
while p:=nextInvariant (d) do

if p is not in the vector space spanned by L then
insert p into secondaries [d]
insert p into irreducibles [d]
insert p into L

end if
end while

end for

Some comments about this algorithm are in order:
(i) In the last loop, the Hilbert series provides a stop-

ping condition, since the number of secondary invariants is
known. To maintain efficiency, the elements of L are mu-
tually reduced by Gauss elimination. Testing if p is in the
vector space generated by L amounts to reducing it modulo
L; inserting it into L amounts to further reducing the ele-
ments of L by p. Therefore, this algorithm is essentially a
step by step matrix inversion by Gauss elimination, and the
cost for each degree is about (dim I(G)3

d.
(ii) The main waste of memory and time in this algo-

rithm is the explicit computation of the vector space basis L
of 〈θ1, . . . , θm〉d. It would be nice to work directly in the quo-
tient of I(G) by the ideal 〈θ1, . . . , θm〉, as in the algorithm
based on a Gröbner basis precomputation. This approach is
further developed in [31].

(iii) By properly keeping track of the reductions in L, we
can determine which primary invariants should be removed
in order to obtain a minimal generating set. In addition,
by properly choosing the nextInvariant function, we can
check whether a given set of invariants is generating, and if
not construct counter-examples.

For n = 5, we could only compute a partial minimal
generating set S5 up to degree 10, whereas the best a priori
degree bound is β(In) ≤ 22. However, s10(In) = 0 (i.e. a
minimal generating set contains no invariant of degree 10),
and Figure 2 strongly suggested that sd(In) = 0 for any
d ≥ 10. This has been checked by Kemper [18], using ad hoc
computations, thus proving that S5 is a minimal generating
set (see § 9 for a possible alternative approach). Therefore,
β(I4) = 5, and β(I5) = 9.
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Figure 2: sd(In): number of invariants per degree d in a
minimal generating set of In

Conjecture 5.2. If n ≥ 4, β(In) =
(
n
2

)
− 1.

6 The Gorenstein property

In this section, we show that the invariant ring In is Goren-
stein when n is even, which indicates several duality prop-
erties of In. In particular, et = d1 + · · ·+ dm −m and there
are as many secondary invariants of degree et−d and degree
d. Actually, this could be used to considerably speed up the
construction of secondary invariants [32].

Lemma 6.1. (i) Let σ be a permutation of the vertices, that
is an element of Sn, and σ be the corresponding permutation
of the edges in Gn. Then:

sign(σ) = sign(σ) if n is odd,

sign(σ) = 1 if n is even.

(ii) If n is even, Gn is a subgroup of the special linear
group SL(V ).

(iii) If n is odd, the representation of Sn on the irre-
ducible component [n− 2, 2] is a subgroup of SL(V ).

Proof. (i) If σ is a transposition of 2 vertices, then σ ex-
changes n− 2 pairs of edges, and sign(σ) = (−1)n−2.

(iii) Take σ ∈ Sn, and M the matrix of the represen-
tation of σ on the component [n − 2, 2]. The determinant
of the representation of σ on Vn is sign(σ), whereas the
sign of the representation of σ on the other component
[n] ⊕ [n − 1, 1] is sign(σ) (natural representation of Sn).
Therefore, det(M) = sign(σ)/ sign(σ) = 1, if n is odd.

Then, Watanabee’s theorem [27, § 8] applies.

Theorem 6.2. (i) When n is even, In is Gorenstein.
(ii) When n is odd, the invariant ring over the irreducible

component [n− 2, 2] is Gorenstein.

7 The chain product

We have discussed the power of the grading of the invariant
ring. We now define another product on the invariant ring
In, called the chain product, which preserves a finer grad-
ing and has a nice computational behavior. Most algebraic
properties of the invariant ring with respect to the chain
product transfer back to the usual product. We only con-
struct and use the chain product for In, but it generalizes
to any permutation group [32].

Let g be a multigraph. As in the following example,
it can be interpreted as a superposition of simple graphs
g1,g2, · · · ,gk, where g1 ⊇ g2 ⊇ · · · ⊇ gk:

1

2
3

4
5

←→ 1

2
3

4
5

⊇ 1

2
3

4
5

⊇ 1

2
3

4
5

Thus, g can be identified with the multichain (i.e. chain
with repetitions) C(g) := g1 ⊇ g2 ⊇ · · · ⊇ gk of simple
graphs. The shape λ(g) of g is the decreasing sequence of
the sizes of the simple graphs in C(g). Here, λ(g) = (5, 3, 3).
A polynomial is called finely-homogeneous if all its mono-
mials have the same shape. Since two monomials xg and

xg′ in the same Sn-orbit have the same shape, any invari-
ant decomposes into a sum of finely-homogeneous invariants.
Therefore, the shape defines a fine grading on the invariant
ring In, and we denote by In,(5,3,3) the finely homogeneous
component of In for the shape (5, 3, 3).

The usual product does not preserve this grading:(
1

2

3

4

)�∗(
1

2

3

4

)�∗
=

(
1

2

3

4

)�∗
+ 2

(
1

2

3

4

)�∗
+ 2

(
1

2

3

4

)�∗
.

The chain product xg ? xh of two monomials xg and xh is
the usual product of xg and xh if the two multichains C(g)
and C(h) can be merged into another multichain, and zero
otherwise. The chain product extends to invariants, and
yields for example:(

1

2

3

4

)�∗
?

(
1

2

3

4

)�∗
=

(
1

2

3

4

)�∗
The chain product preserves the fine grading of the invariant
ring, since the shape xg ? xh can be obtained by merging
the shapes of g and h.

The invariant ring In together with the chain product
is actually isomorphic to the Stanley-Reisner ring of the
poset of unlabelled graphs on n vertices ordered by sub-
graph. Stanley-Reisner rings of posets have been intensively
studied, in particular by Garsia and Stanton [11] to con-
struct Hironaka decompositions of invariant rings of certain
permutation groups. We did not succeed in using this the-
oretical framework to get a Hironaka decomposition of In.
The need of taking the elementary symmetric polynomials
as a system of parameters causes the main difficulty. Indeed,
this is not a low degree system of parameters and there are
too many secondary invariants. However, even our naive
point of view of the Stanley-Reisner ring as an alternative
product on In yields dramatic speed ups of the computa-
tions.

The following proposition is the heart of this technique.

Proposition 7.1 ([11]). A Hironaka decomposition of In
for the chain product, is also a Hironaka decomposition of
In for the usual product.
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The key of the proof is that, if p and q are finely ho-
mogeneous, the maximal finely homogeneous component of
pq is exactly p ? q. The result follows by induction over the
fine grading. We used the same principle to prove a similar
result on generating sets.

Proposition 7.2. A generating set of In for the chain prod-
uct is a generating set of In for the usual product.

In all our examples, however, minimal generating sets for
the chain product were far from being minimal for the usual
product.

The elementary symmetric polynomials form a system
of parameters for the chain product. We do not know if
there are other systems of parameters, since the usual char-
acterization from proposition 4.4 does not apply for the
chain product. In particular, the symmetric power sums
do not form a system of parameters for the chain prod-
uct. They are not even algebraically independent since∑
xk{i,j} = (

∑
x{i,j})

k. Given the size of the minimal gen-
erating sets we computed, there are no systems of parame-
ters for the chain product with degrees as low as in conjec-
ture 4.1.

In [32], we describe how to use this product for faster
computations. Practically, we could push the computation
of a partial minimal generating set S for I5 up to the degree
22 instead of only 10. This is a significant progress, con-
sidering that the dimension of I5,22 is 174403, whereas the
dimension of I5,10 is only 974. Unfortunately, we cannot use
a low-degrees system of parameters, so the degree bound is
42 instead of 22. This means that there is still a lot of work
to do to get a full minimal generating set for the chain prod-
uct. On the other hand, this partial computation yields a
generating set for the usual product, since β(I5) ≤ 22.

Proposition 7.3. The computed set S is a generating set
of I5 for the usual product. However, S has more than one
thousand invariants of degree up to 22.

To conclude, the usual product allowed us to compute a
small set, with is minimal, but not necessarily generating,
whereas the chain product allowed us to compute a set which
is generating, but far from being minimal.

8 The invariant ring for n =∞

In this section, we study the projective limit I∞ of the in-
variant ring, and get back some information on In.

A multigraph g on n′ ≤ n non-isolated vertices can be
identified with a multigraph on n vertices by adding n− n′
isolated vertices. This defines xg�∗ in In. The set Bn of
all invariants xg�∗, where g is a multigraph on less than n
non-isolated vertices, is obviously a vector space basis of In.
For n′ ≤ n, let Φn′ be the linear projection from In to In′
which maps xg�∗ (in In) to 0 if g has strictly more than n′

non-isolated vertices, and to xg�∗ (in In′) otherwise. Our
definition of the exponential (see § 1.3) makes it a surjective
morphism of graded algebra. The projective limit of In:

I1

Φ1
� I2

Φ2
� · · ·� In

Φn
� · · ·� I∞,

defines a graded algebra I∞, with a canonical vector space
basis B∞ := {xg�∗} indexed by the multigraphs g on a finite
number of non-isolated vertices.

Proposition 8.1. (i) I∞ is the free polynomial ring over
C := {xg�∗ | g is connected}.

(ii) The canonical morphism of graded algebra Φn :
I∞ � In is an isomorphism up to the degree bn

2
c.

Proof. (i) Following the proof of proposition 2.1 (ii), C gen-
erates I∞. Now, let g1, . . . , gk be k > 0 connected multi-

graphs. In the product xg1�∗ · · ·xgk�∗, there is a term xh�∗

with coefficient 1, where h is the disconnected multigraph
whose connected components are precisely the gi. This term
is a marker of the product xg1�∗ · · ·xgk�∗ in any non-trivial
polynomial combination of elements of S. The algebraic in-
dependence follows.

Any multigraph with d edges and no isolated vertices has
less than 2d vertices. (ii) follows.

Corollary 8.2. β(In) ≥ bn
2
c.

This lower bound is loose: for n ≤ 5, we know that
β(In) ≥

(
n
2

)
− 1 and for 11 ≤ n ≤ 18, it follows from theo-

rem 2.3 (ii) that β(In) ≥ n−2. We expect that refining this
technique will yield much better lower bounds.

By (ii), the Hilbert series H(I∞, z) is the limit of the
Hilbert series H(In, z) as n goes to infinity, and by (i)

H(I∞, z) =

∞∏
d=1

1

(1− zd)nd ,

where nd is the number of connected multigraphs with d
edges. We do not know how to directly compute H(In, z),
or whether there exists a closed form formula. The only
asymptotic studies we have seen in the literature deal with
n fixed and d going to infinity [15].

9 Unimodality

A startling fact revealed by our computations of minimal
generating sets (MGS) lies in Figure 2, which shows the
coefficients of s(In, z). For n ≤ 4 and most likely for n = 5,
this polynomial is unimodal : the coefficients first increase
with the degree, and then decrease down to 0.

Conjecture 9.1. The polynomial s(In, z) is unimodal.

This would prove that the partial minimal generating set
we computed for n = 5 is generating, and provide a very nice
stopping condition for algorithm 5.1.

To figure out which properties of Gn could be useful to
prove this conjecture, we extend it to general groups of ma-
trices. A finite subgroup G of GL(V ) is MGS-unimodal if
the polynomial s(I(G), z) is unimodal.

Problem 9.2. Characterize MGS-unimodal groups.

Not all groups are MGS-unimodal. Indeed, let G be the
subgroup of GL(C2) generated by the matrix

M :=

[
j 0
0 j

]
,

where j and j are the two non-trivial third roots of unity.
Obviously, (x1x2, x

3
1, x

3
2) is a minimal generating set of I(G),

and s(G, z) = z + 0z2 + 2z3, which is not unimodal.
Whereas the irreducible representations of the symmet-

ric group are thoroughly described, their invariants rings are
barely known. In an amazing but very technical paper [7],

9
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Dixmier has been able to construct by hand minimal gener-
ating sets for several irreducible representations of Sn, in-
cluding all the irreducible representations of S1, . . . ,S5, ex-
cept [3, 1, 1]. It follows that the representations [n],[n−1, 1],
[2, 2] and [3, 2] are MGS-unimodal, whereas the representa-
tions [2, 1n−2] for n ≥ 4 and [2, 2, 1] are not. This proves the
existence non-MGS-unimodal irreducible representations of
the symmetric group.

The trivial group, the full symmetric group and mul-
tisymmetric polynomials are MGS-unimodal. We checked
with PerMuVAR that several other small permutation groups
are MGS-unimodal. It’s tempting to conjecture that all per-
mutation groups are MGS-unimodal, since they give rise to
a lot of unimodality properties (see [28]; note that, as op-
posite to here, the corresponding series are always either
log-concave or symmetric). However, for n ≥ 4, the alter-
nating group An is not MGS-unimodal. Indeed, I(An) is
generated by the elementary symmetric polynomials of de-
grees 1, . . . , n together with the Van-der-Monde determinant∏
i<j(xi − xj) of degree

(
n
2

)
.

Figure 1 also shows that, up to n = 21, the generating
series of the secondary invariants is unimodal (except at
d = 0 and possibly d = et), and very smooth.

Conjecture 9.3. Let G be a permutation group, and
(θ1, . . . , θm) be a system of parameters of I(G). Then, the
generating series of the secondary invariants is unimodal,
except for d = 0 and possibly d = et.

We recall that this series can be computed directly from
the Hilbert series. Therefore a careful study of the Hilbert
series might yield a simple proof of this conjecture.

10 The invariant ring over digraphs

In [14], Grigoriev introduced a related invariant ring, the
invariant ring over digraphs (digraphs are directed graphs,
with loops). The definition is similar to the one for
the invariant ring over graphs, but there are n2 variables
(x1,1, x1,2, . . . , xn,n), indexed by the pairs (i, j) of {1, . . . , n}.
The action of Sn is then defined by σ · xi,j := xσ(i),σ(j). In

this section, we denote by
−→
In the invariant ring over digraphs.

More generally, Grigoriev defined the invariant ring over ori-
ented k-hypergraphs, with nk variables indexed by k-uples
of {1, . . . , n}.

Lemma 1 of [14] states that
−→
In is generated by the invari-

ants xg�∗, where g is a simple digraph. The proof is said to
be an easy generalization of the usual proof of the fundamen-
tal theorem of symmetric functions. This surprised us, since
we proved this was false in In (theorem 2.3 (ii)). Therefore,
we checked the condition 1.2, which failed even for n = 3
and degree 5. We then ran PerMuVAR to try to compute a
minimal generating set using only simple digraphs. It failed
as expected, and produced the two following very small in-
variants, which are not generated by simple digraphs:( )�∗

,

( )�∗
.

These counter-examples to lemma 1 of [14] can also easily
be checked by hand.

This was disappointing. Indeed, the invariant ring In is

the quotient ring of
−→
In by the ideal generated by xi,i = 0 and

xi,j = xj,i. Therefore, we could have used lemma 1 to prove

that In is generated by the invariants where each variable
appears with degree at most 2. This would provide a pretty
good degree bound β(In) ≤ 2

(
n
2

)
. Moreover, we could use

this together with computations of partial minimal generat-
ing sets to prove that I5 is generated by the invariants xg�∗,
where g is a multigraph with at least one isolated vertex,
result of interest for the reconstruction problem.

Most of the results on In apply as well for
−→
In, but since

the number of variables is greater, the computations are even
harder than for In, even if we ignore loops.

11 The field of invariant fractions

The field of invariants K(x{i,j})
Sn is the subfield of all ra-

tional fractions of K(x{i,j}) which remain invariant under
the action of the group. The following classical lemma is
valid for any finite group of matrices.

Lemma 11.1. The field of invariant is exactly the field of
fractions of the invariant ring.

Proof. By averaging over the group, write any invariant frac-
tion as p

q
where p and q are invariant polynomials.

In [14], Grigoriev used basic Galois theory to prove the
existence of a generating set of the field of invariants com-
posed of m+ 1 invariants of degree less than m. The princi-
ple is to first take the m elementary symmetric polynomials,
and to consider the subfield of symmetric fractions. Since
the ground field K has characteristic zero (this would be also
the case for any normal ground field, like a finite field), the
primitive element theorem applies: there exist a primitive
element p which generates the field of invariants over the
field of symmetric fractions. Therefore, the m elementary
symmetric polynomials together with p generates the field
of invariants.

However, Grigoriev did not provide a way to construct
such an element. Moreover, the proof that it could be cho-
sen of degree less than m was incorrect, since it relied on
lemma 1 of [14] which we disproved in § 10.

Theorem 11.2. Let n ≥ 4. The field of invariants over
graphs (respectively over digraphs) is generated by the ele-
mentary symmetric polynomials together with:

p :=

( )�∗
, respectively p :=

( )�∗
.

Proof. Key fact: in both cases a permutation of the edges
belongs to the group if and only if it leaves p invariant.

Grigoriev also stated that such a generating set would
be a complete system of invariants. This is incorrect since,
unlike a generating set of the invariant ring, a generating set
of the field of fraction is not necessarily a complete system of
invariants. For example, our generating sets do not separate
the following pairs of non-isomorphic graphs:{

,

}
;

{
,

}
.

In some cases, the field of invariants can be used to in-
directly apply Galois theory on the invariant ring.

10
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Theorem 11.3. If n 6= 4, 5, 6, 8, there is no intermediate
invariant ring of matrix group between the ring of symmetric
polynomials (respectively the ring of alternate polynomials
for n even) and the ring of invariants In.

Proof. For n 6= 4, 5, 6, 8, the group Gn is a maximal proper
subgroup of the symmetric group Sm (respectively the al-
ternate group Am for n even) [8]. Basic Galois theory
then proves the theorem for the field of invariants, and
lemma 11.1 transfers it back to the invariant ring.

12 Conclusion

Invariant theory provides both very general tools and algo-
rithms to study the invariant ring In over graphs. Unfortu-
nately, the computer exploration of small cases appears to be
very hard and shows that those tools and algorithms lack ac-
curacy and efficiency for our particular invariant ring. How-
ever, we could still obtain a few results, formulate conjec-
tures related to In, and solve a problem arising from graph
theory.
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