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SIAM J. COMPUT c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 5, pp. 1310–1342, October 1997 003

Abstract. We present new algorithms for permutation group manipulation. Our methods result
in an improvement of nearly an order of magnitude in the worst-case analysis for the fundamental
problems of finding strong generating sets and testing membership. The normal structure of the
group is brought into play even for such elementary issues. An essential element is the recognition of
large alternating composition factors of the given group and subsequent extension of the permutation
domain to display the natural action of these alternating groups. Further new features include a novel
fast handling of alternating groups and the sifting of defining relations in order to link these and
other analyzed factors with the rest of the group. The analysis of the algorithm depends on the
classification of finite simple groups. In a sequel to this paper, using an enhancement of the present
method, we shall achieve a further order of magnitude improvement.
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1. Introduction. Since the size of a permutation group G on n letters can be
exponential in n, it is customary, for computational purposes, to specify G by a small
list of generators. However, the succinctness of such a representation raises the issue
of whether we can deal effectively with the groups that we can specify. Can one, for
example, find the order of G and test membership in G without enumerating all of
its elements?

In fact, in the late sixties, Sims developed efficient algorithms for permutation
group manipulation [Si70]. These included the key notion of a strong generating set
(SGS) which is the underlying concept in essentially all polynomial-time algorithms
in computational group theory. Given a chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 of
subgroups of G, an SGS with respect to this chain is a set T ⊂ G such that T ∩ Gi
generates Gi for each i. Sims’s algorithm uses the point stabilizer chain; that is, Gi
is the pointwise stabilizer of the first i points of the permutation domain.

While Sims’s methods for constructing an SGS have been widely used in compu-
tational group theory since their inception, the question of their asymptotic efficiency
was not resolved until 1980. Furst, Hopcroft, and Luks [FHL] observed that a version
of Sims’s algorithm runs in polynomial time, namely O(n6 + sn2) steps, where s is
the number of generators given for G. Subsequently, Knuth [Kn] and Jerrum [Je82],
[Je86] gave variants with running time O(n5 + sn2). All of these algorithms rest on
the most elementary group theory.
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Since Knuth’s note of 1981 (a preliminary version of [Kn]) and Jerrum’s 1982
paper, the O(n5) bound has achieved notoriety and is generally believed to be the
best that can be obtained via Sims’s approach alone (cf. Remark 2.13). The main
result of this paper is the improvement of the worst case bound by nearly one order
of magnitude.

Theorem 1.1. Given a permutation group G by a list S of generators, |S| = s,
the following problems can be solved in O(n4 logc1 n+ sn2) time.

(a) Find a set of strong generators.

(b) Find the order of G.

(c) Test membership of any permutation in G. Additional tests cost only O(n2)
each.

(d) Find the pointwise stabilizer of a subset of the permutation domain.

(e) Construct a generator-relation presentation 〈X|R〉 of G in which |X| =
O(n logc2 n) and |R| = O(n2 logc3 n).

In order to avoid long timing expressions as in Theorem 1.1 and concentrate
on the essential part of the improvements, we introduce a “soft version” of the big-
O notation. For two functions f(n), g(n), we write f(n) = O∼(g(n)) if f(n) ≤
Cg(n) logc n (c, C are positive constants). Thus the time bound for basic permutation
group manipulation in Theorem 1.1 is O∼(n4 + sn2). We do not try, at this time, to
minimize the exponent of log n. Straightforward estimates give c1 = 7, c2 = 2, and
c3 = 4.

The new algorithms are not merely improved versions of previous SGS construc-
tions. All of those predecessors construct an SGS with respect to the chain of point
stabilizer subgroups. A key departure from the traditional approach is the use of
another sort of subgroup tower, one which is not easily observable solely in terms
of the action on the original permutation domain. Its very specification subsumes
knowledge of the group structure. We construct an SGS with respect to a subgroup
chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 such that each Gi is normal in G and the factor
groups Gi/Gi+1 are either products of isomorphic alternating groups or subgroups of
products of small primitive groups (“small” in this context means of order nc log n).

Naive divide-and-conquer of the permutation domain provides some normal sub-
groups of G in the kernels of induced actions on orbits or blocks of imprimitivity; the
new machinery comes into play precisely when such decomposition bottoms out. The
structure of large primitive groups allows an augmentation of the domain that read-
mits naive decomposition. This idea is part of the NC-procedure developed for the
same problem [BLS87]. However, the sequential algorithm cannot be viewed as the
sequential implementation of the parallel one. Even a knowledgeable implementation
of the relevant part of parallel ideas would require O∼(n6) at best.

The timing analysis depends on the classification of finite simple groups via infor-
mation on the order of primitive permutation groups whose socle is not the product
of alternating groups. We remark, however, that there is an elementary version of
the algorithm breaking the O(n5) barrier. Instead of the classification, we may use
Babai’s bound [Ba] on the order of uniprimitive groups and Pyber’s recent bound [Py]
on the order of doubly transitive groups to obtain an O∼(n4.5) algorithm. In fact, the
elementary algorithm is simpler in the sense that we do not have to detect alternating
groups in socles of primitive groups involved in G (unless the primitive group itself is
alternating or symmetric in its natural action on blocks of imprimitivity of G). Both
Babai’s and Pyber’s results are within a logarithmic factor (in the exponent) from
optimal; the loss in running time is due to the fact that we do not have elementary
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estimates for the order of primitive groups with nonalternating-type socle. We sketch
the elementary version in section 9.

We mention two further aspects which are important differences from previous
methods. Exploiting the normality of subgroups in the new subgroup chain, we first
obtain only normal generators, i.e., generators whose normal closure is the given
subgroup. Another difference is the novel handling of full symmetric and alternating
groups. We formulate the latter result as a separate theorem.

Theorem 1.2. From a given list of generators of the symmetric or alternating
group, one can construct an SGS with respect to the chain of point stabilizer subgroups
in O∼(n3 + sn2) time. (The term “construct” refers to the operations of taking prod-
ucts and powers of permutations.) Moreover, there is a Las Vegas algorithm achieving
the same goal in O∼(n2 + sn) expected running time.

A random algorithm is Las Vegas if it never returns incorrect answers. We require
that the SGS is constructed from the given generators via permutation multiplications
since we apply this result when the symmetric group is involved in a larger permuta-
tion group G and acts on blocks of imprimitivity of G. We can guarantee that a given
permutation from the symmetric group belongs to G only if it is constructed by the
aforementioned operations.

We remark that the random subproduct method, originally developed to prove
the random part of Theorem 1.2, was substantially extended by Babai, Cooper-
man, Finkelstein, Luks, and Seress [BCFLS91], [BCFLS95] to yield an elementary
Monte Carlo algorithm for the basic tasks mentioned in Theorem 1.1 which runs in
O(n3 log4 n + sn logn) time. (A Monte Carlo algorithm may return a wrong answer
with a fixed but arbitrarily small probability.)

In a sequel to this paper, we shall extend our method to achieve a further order
of magnitude improvement in the running time.

Theorem 1.3 (see [BLS]). Given a permutation group G by a list S of generators,
|S| = s, the following problems can be solved in O∼(sn3) time:

(a) All items listed in Theorem 1.1.

(b) Finding a composition series of G.

Let us remark that the length of the input is Θ(sn) so this is an O∼(n3) algorithm
as a function of the input length. For the more complicated task of computing a
composition series, Theorem 1.3 gives an improvement of five orders of magnitude
from Luks’s original algorithm [Lu87]. This result requires a deeper probe into the
structure of primitive groups with different types of socle, in the spirit of the O’Nan–
Scott theorem [Sc], [Cam].

Like the method of this paper, the O∼(sn3) algorithm examines the primitive
groups involved in G and locates the large alternating composition factors. It differs
in its handling of the nonalternating part of G and a reduction of the number of
“normal generators” for consecutive groups in the normal series. Specifically, the
arguments in sections 6 and 7 are improved. A part of these results appeared in
[BLS93].

As presented in sections 3–8, our O∼(n4) algorithm requires O∼(n3 + sn2) mem-
ory. In section 9 we indicate how to decrease the memory requirement to O∼(n2+sn).
Also, without loss in time efficiency, the algorithm can output Jerrum’s compressed
data structure [Je86] for an SGS with respect to the point stabilizer subgroup chain;
this requires only O(n2) space and supports membership testing in O(n2) time per
test.

At this point, our emphasis is on the theoretical improvement realized by our
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algorithm. Practical computations often deal with so-called small-base groups, i.e.,
families of groups satisfying log |G| < logc n for some fixed constant c. For small-base
group inputs, the traditional algorithms run in O∼(n2) time and our method becomes
essentially a version of the traditional approach. The attention given to the small-
base case is, in part, due to the fact that interesting permutation representations of
the nonalternating simple groups tend to have a small base. However, it is also the
case that it has often been impractical to deal with large-base groups. Thus, aspects
of the new methods should be important in practice where there is a need to deal
with groups where log |G| is, say, proportional to n and when hardware is improved
to allow the usage of Θ(n2) memory for n in the tens of thousands.

2. Definitions and preliminaries. We refer to any standard text, e.g. [Ha],
for basic facts about groups. For permutation group concepts we refer to [Wi] and
[Cam]. We mention two sources of information on the classification of finite simple
groups [Go], [Car], but no knowledge of these works is required. Cameron [Cam] gives
a fine survey of all the consequences of the simple groups classification relevant to our
work.

2.1. Group theory. We write H ≤ G if H is a subgroup of G and H/G if H
is a normal subgroup of G.

Lemma 2.1 (see [Ha, p. 96]). Let H ≤ G and assume S is a set of generators of
G and R is a complete set of right coset representatives of G mod H. Then the set

{ρσρ−1
1 : ρ, ρ1 ∈ R, σ ∈ S, ρσρ−1

1 ∈ H}
generates H.

The generators described here are called Schreier generators of H; their number is
|S||G : H| (these are not necessarily distinct).

For Q ⊂ G, the normal closure 〈QG〉 of Q in G is the smallest normal subgroup
of G containing Q. More generally, for K ≤ G, 〈QK〉 is the smallest subgroup of
G containing Q and normalized by K. We say Q is a set of normal generators for
H if H = 〈QG〉. For τ, σ ∈ G, τσ denotes the conjugate σ−1τσ. A group G 6= 1
is called simple if it has no nontrivial normal subgroups. We call G semisimple
if it is the direct product of simple groups. If these simple groups are isomorphic
then G is characteristically simple. A composition series of G is any series 1 =
Gr/ · · · /G1/G0 = G where the quotients Gi−1/Gi are simple; these quotients are
the composition factors. The group G is solvable if all composition factors of G are
cyclic. We need the following well-known fact (see, e.g., [Sc]).

Proposition 2.2. Let H be a subgroup of the semisimple group G =
∏m
i=1 Ti

such that all Ti are simple nonabelian and H projects onto each factor. Then H is
direct product of “diagonal” subgroups; more precisely, the Ti can be arranged into
blocks of isomorphic groups so that, after a suitable renumbering of the factors,

H = Diag(T1 × · · · × Tk1)× · · · ×Diag(Tkr−1+1 × · · · × Tkr ).
In other words, having identified the groups in each block, H consists precisely of the
elements of the form

(α1, . . . , α1), . . . , (αr, . . . , αr).

The socle of G is the subgroup generated by all minimal normal subgroups and
is denoted by Soc(G). The socle is semisimple.
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The automorphism group of G is denoted by Aut(G). Every element g ∈ G
induces an inner automorphism x 7→ g−1xg. The group of inner automorphisms,
Inn(G), is normal in Aut(G). The factor group Out(G) = Aut(G)/Inn(G) is the
outer automorphism group. One of the classification-dependent results required by
our algorithm analysis is the so-called Schreier conjecture.

Theorem 2.3 (Schreier conjecture). The outer automorphism group of a finite
simple group is solvable.

2.2. Permutation groups. The group of all permutations of an n-element set
A is denoted Sym(A), or Sym(n) if the specific set is unessential. Subgroups of
Sym(n) are the permutation groups of degree n. The even permutations of A form
the alternating group Alt(A) (or Alt(n)). We refer to Sym(A) and Alt(A) as the
giants. These two families of groups require special treatment in most algorithms (see
sections 5 and 8).

The support supp(π) of π ∈ Sym(A) consists of those elements of A actually
displaced by π, i.e., {a ∈ A : aπ 6= a}. The degree of π is deg(π) = |supp(π)|.

We say that G acts on A if a homomorphism G→ Sym(A) is given. This action
is faithful if its kernel is the identity. The orbit of a ∈ A under G is the set of images
{aγ : γ ∈ G}. G is transitive on A if there is only one orbit. We say G is t-transitive
if the action of G induced on the set of ordered t-tuples of distinct elements of A is
transitive (t ≤ n). The maximum such t is the degree of transitivity of G. The degree
of transitivity of the giants is ≥ n− 2.

Theorem 2.4. If G is 2-transitive and |G| ≥ n2+log n then G is giant.

This is an immediate consequence of the classification of doubly transitive groups,
which is essentially due to Curtis, Kantor, and Seitz [CKS]. Their work is based on
detailed knowledge of the finite simple group classification. For the list of doubly
transitive groups, see, e.g., [Cam].

Actually, we could use a weaker version of Theorem 2.4, with no loss in the
asymptotic analysis of running time. The following result has a strikingly simple,
elementary proof.

Theorem 2.5 (see [Py]). There exists an explicitly computable constant c such

that if G is 2-transitive and |G| ≥ nc log2 n then G is giant.

2.3. Orbits, orbitals, blocks, stabilizers. If G acts on A, the orbits of the
induced (componentwise) G-action on A×A are called orbitals [Si67]. The stabilizer
of x ∈ A is the subgroup Gx = {γ ∈ G : xγ = x}. If G is transitive on A then
there is a bijection between the orbitals of G and the orbits of Gx. For an orbital
Θ of G and x ∈ A, the (out)neighbors of x in the (di)graph (A,Θ) form the orbit
Θ(x) = {y|(x, y) ∈ Θ} of the stabilizer Gx. For B ⊂ A, we use GB for the pointwise
stabilizer

⋂
x∈B Gx of B, and G{B} for the setwise stabilizer {γ ∈ G : Bγ = B} of B.

If B ⊂ A is stabilized by G, then we denote by GB the restriction of G to B, so that
GB ≤ Sym(B). Then, G(B) = GB{B} denotes the image of the action of the setwise
stabilizer of B on B.

If G is transitive on A and Gx = 1 for some (any) x ∈ A, then G is said to be
regular. If G is transitive and D ⊆ A, D is called a block (for G) if for all γ ∈ G,
either Dγ = D or Dγ ∩D = ∅, and G is called primitive if no nontrivial blocks exist.
(Trivial blocks have 0, 1, or |A| elements.) If D is a block then the set of images of
D is called a block system and an action of G is induced on the block system. The
block system is minimal if that action is primitive.



FAST MANAGEMENT OF PERMUTATION GROUPS I 1315

For section 4, we need the following elementary results on the structure of prim-
itive groups. They all follow from the O’Nan–Scott theorem [Sc] (cf. [Cam], [Lu87]).

Theorem 2.6. Let G ≤ Sym(A) be primitive. If Soc(G) is abelian then n = pd

for some prime p, A can be identified with the d-space over GF (p) and (via this
identification) G ≤ AGL(d, p), the group of affine transformations of A, and Soc(G) ∼=
Zdp is the group of translations of A.

Theorem 2.7. Let G ≤ Sym(A) be primitive. Then

Soc(G) = T1 × · · · × Td
where the Ti are isomorphic simple groups. If Soc(G) is nonabelian then G contains
a normal subgroup N such that

(a) Soc(G) ≤ N ≤ Aut(T1)× · · · ×Aut(Td);
(b) G/N is a subgroup of Sd;
(c) n ≥ 5d.
In the particular case that the isomorphic Ti are alternating groups, we say that

G is of alternating type.
Theorem 2.8. Let G ≤ Sym(A) be primitive. If G has more than one minimal

normal subgroup then G has precisely two minimal normal subgroups, each of order
|A|.

2.4. Primitive groups of Cameron type. A remarkable class of primitive
groups of alternating type is obtained as follows.

First we define a class of imprimitive groups. Let B be a set of k elements, k ≥ 5,
and 1 ≤ s < k/2. Let C = rB = B1∪̇ · · · ∪̇Br denote the disjoint union of r copies of
B. An s-transversal of C is a subset X ⊂ C such that |X ∩ Bi| = s for i = 1, . . . , r.

Let A denote the set of s-transversals and let n = |A| =
(
k
s

)r
. The wreath product

W (B, r) = Sym(B) o Sr ≤ Sym(C) consists of all permutations of C that respect the
partition {Bi}. Clearly,

Soc(W (B, r)) = Alt(B1)× · · · ×Alt(Br).

Now let W (B, r) ≥ G ≥ Soc(W (B, r)) and assume G acts transitively on the set of
blocks {Bi}. Under these conditions, the action ofG on A is primitive (and alternating
type, since Soc(G) = Soc(W (B, r))). We say that the primitive groups obtained this
way are of Cameron type.

Theorem 2.9 (see [Li]). If G is a primitive group of degree n and order > n9 log n

then G is of Cameron type.
This is the third consequence of the simple groups classification that we require.

The name “Cameron type” acknowledges the first version of Theorem 2.9 by Cameron
[Cam], who formulated the lower bound as > nc log n, without explicit determination
of the constant c = 9. For large n, c approaches 1. We remark that the actual value
of c plays no role in the algorithms; their analysis depends only on the existence of c.

2.5. Cameron schemes. For application in section 4, we introduce a combi-
natorial structure associated with the action of W (B, r) on A. Let A, B, C be as
above. For an s-transversal X ∈ A, let Xi = X ∩Bi. For X,Y ∈ A, let di = |Xi ∩ Yi|
and let f1 ≤ f2 ≤ · · · ≤ fr be the sorted sequence {di}. We call (f1, . . . , fr) the
intersection pattern of X and Y . Let us partition A×A according to intersection pat-
terns: A×A = R0 ∪ · · · ∪RN . We call the system C(n, k, s, r) = (A;R0, . . . , RN ) the
Cameron scheme with parameters (n, k, s, r). This is a particular association scheme
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[Bos], [Del], [MS]; it includes the Hamming schemes (s = 1) and the Johnson schemes
(r = 1) as particular cases. The scheme can be thought of as a coloring of the edges
of the complete graph on n vertices (including self-loops); we refer to the Ri as color
classes.

It is clear that each group of Cameron type acts on a Cameron scheme. In
fact, the color classes are precisely the orbitals of the action of W (B, r) on A. It may,
however, happen that the color classes split under the action of a Cameron-type group
G ≤W (B, r). In a key subroutine, NATURAL ACTION, we recover the imprimitive
action of G on C = rB using the orbital structure of the primitive G-action on A,
thereby reducing the Cameron-type groups to imprimitive groups with a block system
of r ≤ logn/ log 5 blocks, with giants acting on each block.

Some elementary observations about the orbital structure will be useful in this
computation. Let Σi be the color class corresponding to the intersection pattern
(s− i, s, . . . , s) and Φ to (0, 0, . . . , 0).

Lemma 2.10. Let G be a Cameron-type group acting on the points A of a
Cameron scheme C(n, k, s, r) and suppose k ≥ 2rs2. Then the following hold.

(a) Σ1 is the second smallest orbital of G.

(b) Φ is the largest orbital of G.

Proof. We note first that Σi (0 ≤ i ≤ s) and Φ are orbitals of G; i.e., they do not
split. For Φ this follows from the fact that G ≥ Alt(k)r. For Σi we need in addition
that the stabilizer of any a ∈ A acts transitively on the set of blocks {Bi}.

Proof of (a): Fix x ∈ A and consider an orbital Θ.We have to prove that |Σ1(x)| <
|Θ(x)| for any Θ other than Σ1 and the diagonal Σ0 (the diagonal is the smallest
orbital). Observe, since k ≥ 2s2, that

(
k−s
s

) ≥ s(k − s) with strict inequality when
s > 1.

For s ≥ i > 1,

|Σi(x)| = r

(
s

s− i
)(

k − s
i

)
> rs(k − s) = |Σ1(x)|.

Assume now that Θ is contained in the color class with intersection pattern (i1, i2, . . .)
where i1 ≤ i2 < s; let (x, y) ∈ Θ. Just counting the images of y under the stabilizer
of x in Alt(k)r we obtain

|Θ(x)| ≥
(
s

i1

)(
k − s
s− i1

)(
s

i2

)(
k − s
s− i2

)

≥ s2(k − s)2 > rs(k − s),

the final inequality using k ≥ 2r.

Proof of (b): We have to prove that Φ is the largest color class in the Cameron
scheme. (Note that G plays no role here.)

We use the fact that, for 1 ≤ i ≤ s,

r

(
k − s
s− i

)(
s

i

)
<

(
k − s
s

)
.
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To see this, note that k ≥ max{2rs2, 2s+ 1} implies k − 2s+ 1 > rs2, so that(
k−s
s

)(
k−s
s−i
) =

i−1∏
j=0

k − 2s+ i− j
s− j

>
i−1∏
j=0

rs2

s− j ≥ rs
i ≥ r

(
s

i

)
.

Now let the color class Θ have intersection pattern (0r0 , . . . , srs). (The exponents
denote multiplicities.) Then

|Θ(x)| =
(

r

r0, r1, . . . , rs

) s∏
i=0

(
k − s
s− i

)ri(s
i

)ri

<

(
r

r0, r1, . . . , rs

)(
k − s
s

)r
1

rr−r0
<

(
k − s
s

)r
= |Φ(x)|.

2.6. Strong generators. In our algorithms, permutation groups are input and
output via sets of generators. A standard tool for permutation group computation is
an SGS [Si70]. An SGS with respect to the subgroup chain G = G0 ≥ G1 ≥ · · · ≥
Gm = 1 is a set T ⊂ G such that T ∩Gi generates Gi for all i.

Let Ci be a set of (right) coset representatives for Gi−1 mod Gi, i = 1, 2, . . . ,m.
Then any α ∈ G has a unique factorization α = ρm · · · ρ2ρ1 with ρi ∈ Ci. An SGS
T is computationally effective if, for any α ∈ Gi−1, there are fast procedures for
determining the coset of Gi to which α belongs and constructing a representative for
this coset from T .

We construct an SGS with respect to a subgroup chain G = G0 ≥ G1 ≥ · · · ≥
Gm = 1 such that each Gi is normal in G and the factor groups Gi−1/Gi are ei-
ther subgroups of direct products of small primitive groups (“small levels”) or di-
rect products of alternating groups (“alternating levels”). To achieve the effective-
ness mentioned above, we, in fact, construct an SGS with respect to a refinement
G = H0 ≥ H1 ≥ · · · ≥ Hm′ = 1 of the subgroup chain G = G0 ≥ G1 ≥ · · · ≥ Gm = 1.
Namely, we construct a permutation representation for each Gi−1 with kernel Gi. The
refinement between Gi−1 and Gi is a pointwise stabilizer chain in this representation.
The advantage of a pointwise stabilizer chain is that it is easy to recognize the coset
to which a given permutation belongs: given α ∈ H, its coset Hxα is determined by
xα.

If a pointwise stabilizer chain is long, it requires too much time and storage
to store all coset representatives at each level. Hence, in alternating groups, we
use the following Jerrum-style [Je86] compact SGS. Suppose that K ∼= Alt(m) and
K acts naturally on a set B = {x1, . . . , xm} with Ki the pointwise stabilizer of
{x1, . . . , xi}. Let the set T consist of the permutations π1, π2, . . . , πm−1 satisfying
the following properties. For all 1 ≤ k ≤ m − 2, πk fixes pointwise x1, . . . , xk−1 and
πm−1 fixes pointwise x1, . . . , xm−3. Moreover, xπkk = xk+1 for k = 1, 2, . . . ,m− 2 and
x
πm−1

m−2 = xm. Suppose we store just the products µi = π1π2 · · ·πi for i ≤ m − 2 and

µm−1 = π1π2 · · ·πm−3πm−1. Then {µ−1
i−1µj : i − 1 ≤ j ≤ m − 1} is a complete set

of coset representatives for Ki in Ki−1. Thus, any coset representative within the
chain can be obtained with one multiplication. (We use the term multiplication for
the evaluation of α−1β as well as αβ; clearly the timings are the same.)
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It is useful to observe that an SGS for a factor group G/N , lifted to G and
appended to an SGS for N , gives an SGS for G. With an abuse of language, we call a
subset C ⊂ G a set of strong generators of G/N if C is a lifting of such a set. Suppose
α ∈ G is factored according to a fixed SGS of G/N , that is, ᾱ = ρ̄l · · · ρ̄2ρ̄1, where the
bar signifies the image mod N . Then ν = α(ρl · · · ρ1)

−1 ∈ N and we call ν the siftee
of α into N . The following notion plays an important role in reducing the number
of generators we use for N . If C ⊂ G is an SGS for G/N and S∗ ⊂ G is a set of
generators for G/N such that C ⊂ 〈S∗〉 (in G, not only in G/N), then we say that
S∗ is compatible with C.

2.7. Sims’s algorithm. Sims’s algorithm for constructing strong generators has
been formulated for the case when Gi is the stabilizer of the first i points of the
permutation domain. An efficient version of Sims’s method has been analyzed by
Knuth [Kn]. In this subsection, we describe a slight extension of the latter version.

We consider the action of G = 〈Q〉 ≤ Sym(A) on the set C = {1, 2, . . . ,m}. Let
Gi be the pointwise stabilizer of {1, 2, . . . , i},

G = G0 ≥ G1 ≥ · · · ≥ Gm = N,

where N is the kernel of the G-action on C. Our objective is to find an SGS of G/N .
During the procedure, we maintain lists Ti, i = −1, 0, . . . ,m − 1 and Ri, i =

0, 1, . . . ,m, where Ri is a not-necessarily-complete list of right coset representatives
of Gi−1 mod Gi; and Ti ⊆ Gi such that 〈Ti〉 ⊇

⋃
j≥i+1Rj . The lists T−1 := Q

and R0 := {1} do not change during the procedure; all other lists may sometimes be
augmented. Each time Ti is augmented, the group 〈Ti〉C increases.

We employ the following SIFT routine which attempts to factor π ∈ Gk (k is part
of the input) over the current partial coset lists. If it does not succeed then it inserts
a new coset representative in the appropriate Rj+1, updates the Ti, k + 1 ≤ i ≤ j,
and sets k := j. In any case, at the conclusion of SIFT, π ∈ NRmRm−1 · · ·Rk+1.

procedure SIFT(π,C, k, {Ti}, {Ri})
Initialize: σ := π, j := k.

while j ≤ m− 1 and σ 6= 1 do
if σ ∈ Gj+1α for some α ∈ Rj+1

then set σ := σα−1 and j := j + 1
else

begin
add σ to Rj+1;
add σ to Tl, l = k + 1, . . . , j;
k := j;

end ;
end (SIFT).

The main procedure is the following.

procedure PERMREP(Q,C)
INPUT: (Q,C) as above.
OUTPUT: {Ti}, {Ri}.
Initialize: k := −1, T−1 := Q,

Ti := ∅ for 0 ≤ i ≤ m− 1, Ri := {1}, for 0 ≤ i ≤ m.
while k ≥ −1 do

begin
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while Rk+1 × Tk not exhausted do
begin

select next (ρ, τ) in Rk+1 × Tk;
SIFT(ρτ, C, k, {Ti}, {Ri});

end ;
k := k − 1
end

end (PERMREP).

Note that the intention is to put the elements of each Rk+1 × Tk in a queue as
such elements are created (by augmentation of Rk+1 and/or Tk), ensuring that each
(ρ, τ) ∈ Rk+1 × Tk is selected exactly once in the lifetime of the procedure.

The following proposition is just a reformulation of Sims’s basic observations.
Proposition 2.11. When procedure PERMREP(Q,C) terminates, Ri is a com-

plete set of coset representatives for Gi−1 mod Gi and 〈Ti〉C = GCi for 0 ≤ i ≤ m.
Proof. Recall that N denotes the kernel of the G-action on C. As a result of

having sifted RiTi−1, we know RiTi−1 ⊆ NRmRm−1 · · ·Ri for 0 ≤ i ≤ m. We have
also maintained the properties Ti ⊆ Gi,

⋃
j≥i+1Rj ⊆ 〈Ti〉, and the elements of Ri

represent distinct cosets mod Gi.
Since Q = R0T−1 ⊆ NRm · · ·R1 ⊆ N〈T0〉, G = N〈T0〉. Suppose, for any i

that Gi = N〈Ti〉; then Ri+1Ti ⊆ NRmRm−1 · · ·Ri+1 ⊆ N〈Ti+1〉Ri+1, whence Gi ⊆
NRi+1〈Ti〉 ⊆ N〈Ti+1〉Ri+1. It follows that Gi = N〈Ti〉 = NGi+1Ri+1 and Gi+1 =
N〈Ti+1〉.

We use the following easy facts about PERMREP(Q,C). We set n = |A| and
assume n ≥ m = |C|. Therefore, the cost of each group operation is O(n). Let
t =max{|GCi−1 : GCi | : 1 ≤ i ≤ m}; note that t ≤ m. Also, log |GC | is an upper bound
on the length of subgroup chains in GC so there are ≤ log |GC | indices i such that
Gi 6= Gi+1. In particular, the cost of each sift is O(n log |GC |) and each Ti is increased
≤ log |GC | times. From this, we obtain the following estimates.

Theorem 2.12. (a) Let |Q| = q. The running time of PERMREP(Q,C) is
O(n log |GC |(q+ t log2 |GC |)); in particular, if |GC | ≤ exp(logc n) = exp(O∼(1)) then
the running time is O∼(n(q + t)).

(b) At any moment during the execution of the algorithm, |Tk−1| ≤ 1 +
∑m
j=k

log |Rj |.
Remark 2.13. The O(n5) bottleneck that is inherent to all versions of Sims’s

method [Si70], [FHL], [Je86], [Kn] can be appreciated in the context of PERMREP
(take C = A and N = 1). These methods rely on the construction of generators for
the groups in the pointwise stabilizer chain, using Schreier’s construction of subgroup
generators. (In PERMREP, Schreier generators enter in the sifting of Rk+1Tk, since
the sift of ρτ begins with finding ρ1 ∈ Rk+1 such that ρτρ−1

1 ∈ Gk+1.) In general,
|Rk+1|, |Tk| and the number of groups in the chain can each be Ω(n) so there may be
Ω(n3) elements to sift and a sift may cost Ω(n2). In fact, Knuth discusses a class of
groups in which the average behavior of such methods is Θ(n5).

As in [FHL], a slight modification of PERMREP provides normal closures. The
addition to the previous procedure is that we have to add conjugates of generators
to the generating set until we get a group closed for conjugation. We again consider
group actions.

The situation is the following: G = 〈S〉 ≤ Sym(A) and 〈Q〉 ≤ Sym(A) act on C.
The output consists of sets of coset representatives {Ri} and sets of generators of the
stabilizer chain over C for H := 〈QG〉. For sets of permutations T and S, TS denotes
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the set of conjugates {τσ : τ ∈ T, σ ∈ S}.
procedure NORMCL(Q,C, S)
INPUT: (Q,C, S) as above.
OUTPUT: {Ti}, {Ri}.

PERMREP(Q,C);
T ∗ := ∅;
repeat

k := −1, T−1 := (T0 \ T ∗)S , T ∗ := T0;
while k ≥ −1 do

begin
while Rk+1 × Tk not exhausted do

begin
select next (ρ, τ) ∈ Rk+1 × Tk;
SIFT(ρτ, C, k, {Ti}, {Ri});

end ;
k := k − 1

end
until T0 = T ∗

end (NORMCL).

The proof of correctness and the timing of this algorithm is similar to that of
PERMREP (with H playing the role of G in the estimates). Let t =max{|HC

i−1 :
HC
i | : 1 ≤ i ≤ m}.

Proposition 2.14. When procedure NORMCL(Q,C, S) terminates, the Ri form
complete sets of coset representatives for H, and 〈Ti〉C = HC

i .
Theorem 2.15. Let s = |S|, q = |Q|. The running time of NORMCL(Q,C, S)

is O(n log |HC |(q + s log |HC | + t log2 |HC |)); in particular, if |HC | ≤ exp(logc n) =
exp(O∼(1)) then the running time is O∼(n(q + s+ t)).

2.8. Structure forest, structure domain. It is natural in dealing with per-
mutation groups, whether theoretically or in computational settings, to use the orbit
structure in a problem decomposition. Further combinatorial divide-and-conquer is
available in the imprimitivity structure of transitive groups. For computational pur-
poses, it is convenient to provide an extension of the permutation domain that both
reflects and guides the flow of control in such procedures. Specifically, a structure
forest (SF) for a permutation group G ≤ Sym(A) is a forest of rooted trees on which
G acts as automorphisms fixing the roots, such that the leaves form the permutation
domain A, and, denoting by G(v) the permutation group induced on the children of
node v by Gv (the stabilizer of v), each G(v) is primitive. Thus, in particular, there
is exactly one tree per orbit in A, and it is not possible to insert intermediate levels
in that tree, with nontrivial branching, and remain consistent with the G action on
the tree.

To reflect the flow of control in our procedure (e.g., treating orbits sequentially)
we suppose that the trees of the SF are stacked vertically and enumerate the resulting
“levels.” Hence, the root of the first tree comprises level 0, its leaves comprise level
h, where h is the height of this tree, the root of the second tree comprises level h+ 1,
etc.

The divide-and-conquer offered by the SF alone does not suffice for our methods.
To achieve a finer decomposition, we need to delve into the primitive groups them-
selves; specifically, for “large” groups, we use the forced relations between the nature
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of the socle and that of the permutation domain.
The first and principal stage creates an extended structure forest (ESF). For this,

the SF is augmented at nodes v where G(v) is a “large” group, i.e., of order >
exp(logc n). At such places, we are assured that G(v) is, in fact, a Cameron-type
group with Soc(G(v)) ∼= Alt(k)r. Such G(v) has a natural imprimitive representation
on a set B of size kr, and we can build a structure forest (in fact, a tree) T (v) on B for
G(v). Our algorithm constructs the trees T (v) so that the leaves of T (v) correspond
to certain subsets of the children of G(v). In particular, we need only do the work of
constructing T (v) at one node v at each level of the SF, using the action of G to copy
the trees to other nodes at the same level. As a result, the permutation action of each
element of G naturally extends to the ESF. We consider the trees T (v) appended to
the SF to be placed entirely between levels of the initial forest. Having so situated
the T (v), we delete the edges between v and its children in the original forest. Thus,
edges, where they exist, in the ESF only traverse consecutive levels. It is important
to note, however, that G(v) acts faithfully on the leaves of T (v), so that the subgroup
of G that fixes all the leaves at this level also fixes all the nodes at the level of the
children of v in the SF.

We now continue to use G(v) to denote the (primitive) permutation group induced
by Gv on the set of children of the node v of the ESF. (In context, it is clear which
G(v) is intended when we specify the ambient graph.) Thus, in the ESF, G(v) is
either a “small” group (of order < exp(logc n)) or a giant. Furthermore, the groups
at a given level are isomorphic, in fact, conjugate under the action of G; accordingly,
we can talk about small group levels and giant levels in the ESF.

A second refinement is used to restrict the giant levels to be alternating. Consider
a node v of the ESF where G(v) is a full symmetric group Sym(C(v)) on the children
C(v) of v. At each such node, we append a small tree consisting of the root v and
two leaves, say vL and vR (for “left” and “right”), which are inserted at a new level
between v and C(v). Again, we sever the links from v to C(v), but we now connect
both vL and vR to all points in C(v). We need to extend the action of G to the new
intermediate level. This may be done by fixing any orderings of the C(v), relative
to which the actions of γ ∈ G can be viewed as inducing even or odd permutations;
if γ induces an “even” mapping of C(v) to C(w) then vγL = wL and vγR = wR, else
vγL = wR and vγR = wL. We call the resulting structure D a structure domain (SD)
for G.

For a node v ∈ D, we continue to denote the children of v, that is, the neighbors
at next level by C(v) and the action of Gv on C(v) by G(v).

We summarize some important properties of this structure. A structure domain
for G ≤ Sym(A) is a graph D = (V,E) such that the following hold.

(i) A ⊆ V and |V | = O(n), where n = |A|.
(ii) The action of G extends to Aut(D).
(iii) The orbits of G in V , called “levels,” are ordered, L0, L1, . . . , Lm, and E ⊆⋃m−1

i=0 (Li × Li+1).
(iv) If E ∩ (Li × Li+1) = ∅, then GLi ≤ GLi+1 .
(v) If E ∩ (Li × Li+1) 6= ∅, then, letting G(v) denote the action of Gv on the

neighbors C(v) in Li+1 of v ∈ Li, it follows that G(v) is either a “small” group or
Alt(C(v)).

Let G0 = G and, for i ≥ 1, let Gi be the kernel of the action of Gi−1 on Li. Then
the normal series

G = G0 ≥ G1 ≥ · · · ≥ Gm = 1
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is the chain forecast in the introduction and in section 2.6. Instances of (iv) suggest
that the chain is not strictly decreasing (and one can have equality of successive
groups even when the induced bipartite graph is nontrivial), but it is convenient to
allow this occasional duplication. Note, however, that (v) implies, when Gi+1 < Gi,
that Gi/Gi+1 is either a product of isomorphic alternating groups or a subgroup
of the product of isomorphic small primitive groups. The fact that, in the former
case, Gi−1/Gi is actually isomorphic to a product of alternating groups (not only a
subgroup) follows from Proposition 2.2.

Informally, we say the SD consists of small group levels and alternating levels.

3. Organization of the algorithm. In this section, we outline our main al-
gorithm. Suppose that G = 〈S〉 ≤ Sym(A) is given, |A| = n. We construct a chain
of normal subgroups G = G0 ≥ G1 ≥ · · · ≥ Gm = 1 and, for each 1 ≤ i ≤ m, a
permutation representation of Gi−1 on a set Li such that

(i) Gi is the kernel of the action of Gi−1 on Li;
(ii) Gi−1/Gi is either a subgroup of a direct product of small primitive groups

(“small” in this context means of order< exp(9 log2 n log logn)) orGi−1/Gi ∼= Alt(k)r

for some k, r.
The normal subgroup Gi is defined to be the pointwise stabilizer of the first i levels

in a structure domain (see section 2.8). However, we have to construct generators for
the Gi. We do this successively for i = 0, 1, . . . ,m − 1. We construct an SGS Ti for
G/Gi and normal generators Ni for Gi, i.e., group elements whose normal closure (in
G) is Gi.

Suppose we have constructed Ti−1 and Ni−1. We start to take the normal closure
of Ni−1 in G until the known part of the normal closure generates Gi−1/Gi. We
confirm this by examining the action of Gi−1 on Li. Then we obtain Ti by appending
an SGS for Gi−1/Gi to Ti−1. For this, if Gi−1/Gi corresponds to a small group level
then we add complete sets of coset representatives from the point stabilizer chain on
Li to Ti−1 (we do ensure that the total number of saved coset representatives in the
entire subgroup chain is only O(n log2 n)); if Gi−1/Gi is the product of alternating
groups then we add Jerrum-style compact SGS (cf. section 2.6) for each of these
alternating groups to Ti−1. We also obtain a presentation for Gi−1/Gi, which, along
with presentations for earlier quotients, facilitates a construction of normal generators
Ni for Gi. Thus we proceed to the next value of i.

We emphasize that generators for Gi (not only normal generators) are available
only when the entire algorithm is finished.

During the algorithm, we work with various permutation representations of sub-
groups of G. If a procedure performs group operations, we may either need the result
in the current representation only (local operation) or in the original representation
as well (global operation). An example of a purely local operation is the determina-
tion of whether the stabilizer of a node v in the SF acts as a Cameron-type group
on its children. To this end, it is enough to perform group operations in G(v) and
the action of Gv on other nodes of the SF is irrelevant. All operations not explicitly
labelled “local” are understood to be global. Since the sum of sizes of all the induced
permutation representations remains O(n), the cost of elementary group operations
remains O(n).

Main Algorithm.
INPUT: a set S of generators for G ≤ Sym(A), |S| = s.
Step 1. Construct a structure forest and choose a representative v in each orbit of the
SF. For all such v, construct Schreier generators for Gv.
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Step 2. For these representatives, use NATURAL ACTION to decide whether G(v)
is a “large group” and, if so, construct new action and corresponding structure tree
T (v).
Step 3. Append a copy of T (v) to all nodes in the orbit vG, deleting the connections
of v to its children in the SF, thus obtaining an ESF. Extend the G-action of gen-
erators to the ESF. Inserting new levels at giant symmetric nodes, obtain the SD.
Henceforth, compute the effect of any global operation on the entire SD. Compute
the node stabilizers Gw as in Step 1 for representatives of G-orbits of the SD.
Step 4. For each node v representing an alternating level in the SD, construct an SGS
for G(v).

Step 5. for i := 1 to m do
construct SGS for Gi−1/Gi
store a compatible generating set Si−1 of size O∼(|Li|) for Gi−1/Gi

(* cf. section 2.6 *)
construct normal generators for Gi

end (MAIN ALGORITHM).

Lemma 3.1. (a) A structure forest can be computed in O(sn2) time. (b) Gener-
ators of Gv for representatives of the G-orbits of the SF can be constructed in O(sn2)
time.

Proof. (a) According to Atkinson [At], a structure forest can be computed as
efficiently as orbits and minimal blocks of imprimitivity, i.e., in O(sn2) time.

(b) The action of the group generators on the orbit vG of a node v in the SF
naturally defines a graph on vG. Choosing a spanning tree in this graph and computing
the product of generators along the paths from v in this tree, group elements which
carry v to the other nodes of its orbit can be computed in O(|vG|n+ |vG|s) time. We
obtain generators for Gv (and, at the same time, for G(v)) via Lemma 2.1; thus Gv is
generated by O(|vG|s) elements and the cost of computing each is O(n). The result
follows since the sum of the |vG| over orbit representatives v is the number of nodes
in the SF.

Steps 2 and 3 will be analyzed in section 4. We present a novel method for
constructing an SGS for the giants in section 5. Section 6 relates group presentations
(in terms of generators and relations) to the construction of normal generators. By
the results of section 4, the factor groups Gi−1/Gi in Step 5 are either subgroups
of products of “small” groups or products of alternating groups. We handle the
first case in section 7, utilizing NORMCL (cf. section 2.7). For the second case, we
give an efficient implementation of Luks’s “noncommutative linear algebra” [Lu86] in
section 8. Finally, in section 9, we present a version of the algorithm with decreased
memory requirement and wrap up the proof of Theorem 1.1.

4. Reducing large to giant. The purpose of this section is to classify primitive
groups as “large” and “small.” Large groups turn out to be groups of Cameron type,
and we construct their “natural” (often imprimitive) action with giants acting on each
block and a small group permuting the blocks. Thereby most algorithmic problems
are reduced to consideration of giants and small groups.

Our objective is achieved by the subroutine NATURAL ACTION. This procedure
is a slight refinement of the one under the same name in [BLS87]. The procedure
involves a global variable n, the degree of the permutation group which is the input
of the full algorithm. However, we execute group multiplications only on the set
where the group under the current investigation acts primitively (local operations, cf.
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section 3).

First, we describe a simple procedure to test whether or not a permutation group
is a giant.

procedure TEST GIANT(G)
INPUT: a 2-transitive group G = 〈Q〉 ≤ Sym(C), |C| = m.
Begin executing PERMREP(Q,C)

if |{i : |Ri| 6= 1}| ≥ 2 logm+ log2m (∗ we use the notation of section 2.7. ∗)
then stop PERMREP(Q,C); output “giant” and halt
else output “small group” and halt

end (TEST GIANT).

When reading the following pseudocode, it is useful to review the notation of
sections 2.4 and 2.5 and keep in mind that NATURAL ACTION was designed to
handle Cameron-type groups, when m =

(
k
s

)r
and the underlying set A corresponds

to s-transversals in rB for some set B of size k. In that scenario, Γ and ∆ correspond
to the sets of pairs of s-transversals with intersection pattern (s − 1, s, . . . , s) and
(0, 0, . . . , 0), respectively. The primary aim of the procedure is to construct a subset
of A corresponding to the s-transversals containing a fixed point in rB. Such a set is
constructed as C(x, y) below, where x, y are s-transversals with intersection pattern
(s− 1, s, . . . , s) and C(x, y) consists of all s-transversals containing the unique point
in x that is not covered by y. The subset C(x, y) has kr distinct images under G,
corresponding to the points of rB. We compute this set D of images in two phases,
first constructing in D(x) only the rs images corresponding to the points of x. This
and other checks on the sizes of newly constructed objects allow early termination in
the case when G is not a large group.

procedure NATURAL ACTION(Q)
INPUT: a primitive group G = 〈Q〉 ≤ Sym(A), where m := |A| ≤ n.

Step 1. if m ≤ 3 log2 n
then output “small group” and halt

Step 2. if G is 2-transitive
then TEST GIANT(G); (∗ procedure will halt there ∗)

Step 3. Compute the orbitals (G-orbits on A×A);
Γ := the second smallest orbital;

(∗ The smallest orbital is the diagonal. ∗)
∆ : D the largest orbital.
Fix x ∈ A;
if |Γ(x)| > 2

√
m logm

then output “small group” and halt
For each w ∈ A construct α(w) ∈ G such that xα(w) = w.
Construct Schreier generators for Gx.

Fix y ∈ Γ(x). For each y′ ∈ Γ(x) compute some β(y′) ∈ Gx such that yβ(y′) = y′.
Compute the sets

B(x, y) = ∆(y)−∆(x);

C(x, y) = A−
⋃

z∈B(x,y)

∆(z).

Let D(x) = {C(x, y)β(y′) : y′ ∈ Γ(x)}.
if |D(x)| > logm

then output “small group” and halt
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Let D =
⋃
w∈AD(x)α(w).

if |D| > 2
√
m logm

then output “small group” and halt
Step 4. Consider G-action on D. (∗ This action exists and it is transitive. ∗ )

Select a system {E1, . . . , Et} of minimal-size (but nonsingleton) imprimitivity blocks
(∗ ⋃iEi = D ∗).

if q := |Ei| > 4 log n and G(E1) :=the stabilizer of E1 restricted to E1 is 2-transitive
and TEST GIANT(G(E1)) returns message “giant”

then output (“large group, faithfully acting on D”;
the G-action on D;
a structure tree for the G-action on D)

else output “small group”
halt

end (NATURAL ACTION).

We say that G fails the large groups test if output is “small group.” Otherwise G
is said to pass the large groups test.

4.1. Correctness of the subroutine NATURAL ACTION.
Lemma 4.1. If TEST GIANT(G) outputs “giant” then G is a giant. If the output

is “small group” then |G| < m2+logm.
Proof. It is proved by Theorem 2.4.
The following result justifies the term “small groups” and provides additional

information about large groups.
Theorem 4.2. (1) If NATURAL ACTION outputs “giant” then G is a giant.
(2) If NATURAL ACTION outputs “large group” then G acts faithfully on D and

the stabilizer of each block Ei restricted to Ei contains Alt(Ei).
(3) If NATURAL ACTION outputs “small group” then

|G| < exp(9 log2 n log logn).

Statement (1) is obviously correct. For (2) we need a lemma.
Lemma 4.3. For p 6= r primes, the order of a Sylow r-subgroup of the linear

group GL(d, p) is less than p2d.
Proof. This result is implicit in [Lu82, Lemma 3.6].
Corollary 4.4. For q ≥ 4d log p, the order of Alt(q) does not divide the order

of the affine linear group AGL(d, p).
Proof. Let r = 3 if p = 2 and let r = 2 otherwise. The result follows from Lemma

4.3 (except for the two easy cases p = 2, d ≤ 3).
Proof of Theorem 4.2, part (2). We show that the alternating groups constructed

by the procedure are in the socle of G and G has a unique minimal normal subgroup.
These facts imply that the G-action on D has a trivial kernel. We say that the group
H is involved in the group K if H ∼= L/M for some M/K,M ≤ L ≤ K. If a simple
group H is involved in K then clearly H is involved in a composition factor of K.

We may assume G is not a giant. Let K be the kernel of the G-action on D. The
stabilizer of E1 restricted to E1 passed TEST GIANT, whence it contains Alt(q),
q := |E1|. As the G-action on the set of blocks is transitive, the same holds for each
Ei. Also, it follows that Alt(q) is involved in G/K.

If Soc(G) is abelian then, by Theorem 2.6, m = pd for some prime p and G ≤
AGL(d, p). But, d log p = log m ≤ log n ≤ q/4 and therefore, by Corollary 4.4,
the order of Alt(q) does not divide |G|. Thus this case cannot occur. Hence Soc(G)
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is nonabelian and the results stated in Theorem 2.7 apply. We use the notation of
Theorem 2.7 and refer to N/G established there.

First we show that Alt(q) is not involved in G/Soc(G). Indeed, otherwise Alt(q)
must be involved either in G/N or in N/Soc(G). The first case is impossible because
G/N ≤ Sd (Theorem 2.7(b)) and d ≤ log m/ log 5 < q/8 (Theorem 2.7(c)). In
the second case, Alt(q) is involved in N/Soc(G) ≤ Out(T )d, a solvable group by the
Schreier conjecture (Theorem 2.3), again a contradiction.

It follows now that Alt(q) is involved in Soc(G) and K 6≥ Soc(G). Now Soc(G)
must be the unique minimal normal subgroup for otherwise, by Theorem 2.8, we have
a contradiction:

n2 ≥ m2 = |Soc(G)| ≥ |Alt(q)| = q!/2 > 2q ≥ n4.

It follows that K contains no minimal normal subgroup, whence K = 1.
Proof of Theorem 4.2, part (3). Assume the order of |G| exceeds the stated bound.

We must show that at no point will “small group” be falsely announced. This would
not happen in Step 1, for m ≤ 3 log2 n implies |G| ≤ m! < (3 log2 n)3 log2 n. If G
is 2-transitive then the Step 2 call to TEST GIANT will correctly halt with that
revelation (by Theorem 2.4).

By Theorem 2.9, G is of Cameron type and A can be identified with the set of
points of a Cameron scheme C(m, k, s, r), and we may assume that rs > 1; that is, G
is not a giant. Of course, the parameters and the identification are not known a priori.
We prove that Step 3 of NATURAL ACTION correctly recovers this structure with
D corresponding to rB, Ei to Bi (so q = k), and the parameter k satisfies k >
4 logn. (We use the letters r, k, Bi, C = rB = B1 ∪ · · · ∪ Br to mean what they
do in section 2.5. We call the action of G on C “natural.” Recall that each a ∈ A
corresponds to an s-transversal T (a) ⊂ rB.)

We take note of some inequalities satisfied by the parameters of this C(m, k, s, r).

Since m =
(
k
s

)r ≥ (k/s)rs ≥ 2rs,

(4.1) rs ≤ logm.

Since rs > 1, we have m ≥ (k2) which implies

(4.2) k < 2
√
m.

Also,

(4.3) k > 4 logn;

otherwise, |G| ≤ (k!)rr! ≤ kkrr! ≤ mkr! ≤ n4 log n(logn)! < exp(9 log2 n log log n).
Finally,

(4.4) k ≥ 2rs2;

otherwise, using (4.1), we have |G| ≤ (k!)rr! < (2rs2)2r
2s2r! < (2 log2 n)2 log2 n(log n)!

< exp(9 log2 n log log n).
We claim now that the G-action on D is similar to the natural G-action on C. For

b ∈ rB, let U(b) = {u ∈ A|b ∈ T (u)}. We need to show that that D = {U(b)|b ∈ rB}.
By (4.4) and Lemma 2.10, Γ = Σ1 and ∆ = Φ. Thus, for any y ∈ Γ(x), the set
T (x)−T (y) is a singleton {b(x, y)}. Now, a simple inspection of the Cameron scheme,
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using that k > 3s (by (4.4) since rs > 1), shows that C(x, y) = U(b(x, y)). The result
follows since G acts transitively on C.

The identification of the Ei with the Bi follows because the latter are the unique
minimal-size blocks in the natural action of G. Finally, (4.1), (4.2), and (4.3) ensure
that the cardinality tests on that Γ(x), D(x), D,Ei in Steps 3 and 4 do not cause
terminal output “small group.”

4.2. Time complexity of the subroutine NATURAL ACTION.
Lemma 4.5. Suppose G = 〈Q〉 acts on an m-set, and |Q| = q. Then TEST

GIANT(G) runs in O∼(m2 + qm) time.
Proof. We work with O∼(1) coset representative sets Ri each of size 2 ≤ |Ri| ≤ m,

and, by Theorem 2.12(b), O∼(1) sets of generators Ti of size O∼(1). Hence the sifting
of products of the form ρτ , ρ ∈ Ri, τ ∈ Ti−1 for some i costs O∼(m2); in addition, we
may have to sift the elements of Q.

Theorem 4.6. Suppose G = 〈Q〉 acts on an m-set, and |Q| = q. Then NATU-
RAL ACTION(Q) runs in O∼(qm2) time.

Proof. Testing 2-transitivity takes O(m2q) time. Hence, by Lemma 4.5, Step 2
can be executed in O∼(m2q). Finding the orbitals requires O(m2q) steps. The (local)
computation of {α(w) : w ∈ A} requires O∼(m2 + qm) time. The number of Schreier
generators is qm; they are found in O(m2q) time. O∼(qm3/2) steps suffice to find
the β(y′). C(x, y) can be determined in O(m2) time. We compute D(x) in O∼(m2).
Finally, D is also obtained in O∼(m2). Thus Step 3 requires O∼(m2q) total time.

The action of any φ ∈ Q on D can be found in O∼(m3/2). The structure tree is
computed in O∼(mq), and, since r = O∼(1), generators for the stabilizers of orbit-
representatives on the new tree can be computed in O∼(qm) time. Finally, we call
TEST GIANT on a set of size O∼(

√
m), with O∼(q) generators, requiring O∼(m +

q
√
m) time. Thus the time complexity of Step 4 is O∼(mq +m3/2).
Corollary 4.7. Step 2 of the main algorithm runs in O∼(sn2) time.
Proof. We apply NATURAL ACTION to the action G(v) of the point stabilizer

Gv on the children of v for certain nodes v of the structure forest (one node from each
level of each tree). Denoting by qv the number of (Schreier) generators for Gv and by
mv the number of children of v,

∑
v(qvmv) = O(sn).

4.3. Extending the structure forest.
Proposition 4.8. Step 3 of the main algorithm runs in O∼(sn2) time.
Proof. Suppose that a node v is the representative of an orbit in the original SF, v

has m children, and NATURAL ACTION appended a tree T (v) to v. The vertices of
T (v) are subsets of the children of v; hence the group elements carrying v to the other
nodes of its orbit vG, computed in Step 1, naturally define a copy of T (v) appended
to the other nodes in vG. These copies of T (v) can be obtained in O∼(m3/2|vG|)
and the action of any σ ∈ G can be extended to the appended trees within the same
time bound. Hence the action of σ on the entire ESF can be computed in O∼(n3/2).
The extension to the SD is straightforward and in time O(n). Finally, as in Lemma
3.1(b), generators of Gv for representatives of G-orbits of the SD can be constructed
in O(sn2) time.

5. Constructing strong generators for a giant. The purpose of this section
is to construct a Jerrum-style compact SGS for the giants. Recall that the “giants”
are the symmetric and alternating groups in their natural action. The Jerrum-style
compact SGS for G = Sym(C) acting on the set C = {x1, x2, . . . , xm} consists of m−1
permutations π1, π2, . . . , πm−1 such that for all 1 ≤ k ≤ m− 1, πk fixes x1, . . . , xk−1
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and xπkk = xk+1. For G = Alt(C), the SGS contains π1, π2, . . . , πm−2 as above while
πm−1 fixes x1, . . . , xm−3 and x

πm−1

m−2 = xm.

We require that the strong generators are constructed from the given generators
of the giant by the following legal operations: multiplication, inversion, and taking
powers of permutations. The reason for this constraint is that the procedure is applied
to the case when G(v), the action of the stabilizer of node v on the children in the
structure domain, is an alternating group. In this case, although we know a priori
that some σ ∈ G(v) acts on the children as, e.g., a given 3-cycle, no such permutation
can be guaranteed to belong to the input group unless it has been constructed, by
way of legal operations, from the generators of G(v). In this application, all group
operations are global; i.e., we perform them on all points in the SD.

5.1. Construction of a 3-cycle. The essence of the procedure is the construc-
tion of a 3-cycle. Once a 3-cycle ρ is constructed, an SGS can be obtained easily by
taking appropriate conjugates of ρ.

We note that a byproduct of the procedure yields a simple, elementary proof of
the old result, known to Jordan (1895) [Jo] (and vastly surpassed by Theorem 2.4)
that the only c log2 n/ log log n -fold transitive permutation groups are the giants
[BS87]. It also yields an exp(

√
n lnn(1 + o(1))) upper bound on the diameter of any

Cayley graph of the giants [BS88].

Our goal is achieved by the procedure THREE CYCLE. As a preprocessing phase,
we determine and store the first log n primes. (The global variable n is the degree
of the permutation group which is the input of the entire algorithm; we assume that
n is sufficiently large.) We denote the ith prime by pi and the product of the first i
primes by p(i).

Also, we need the following definitions. For π ∈ Sym(C), let us call a subset
B of supp(π) independent with respect to π if B ∩ Bπ = ∅. The commutator of
π, τ ∈ Sym(C) is [π, τ ] = πτπ−1τ−1.

The procedure THREE CYCLE uses the subroutine ORBITALS. Given gener-
ators for some G ≤ Sym(C), |C| = m, ORBITALS returns O(logm) generators for
a subgroup H ≤ G with the same orbitals as G. In particular, if G is a giant then
ORBITALS returns O(logm) generators for a 2-transitive subgroup. The idea is the
following. Suppose that generators for some H ≤ G are already defined but the or-
bital structures of the two groups are different. We fix an ordering of the generators
P = {τ1, . . . , τk} of G, and, for each H-orbital ∆ which is not an orbital of G, we find
the last element of P which moves ∆. Then we add a product of the form τ ε11 τε22 · · · τ εkk
to the generators of H where each εi ∈ {0, 1} and εj is chosen such that τε11 τε22 · · · τ εjj
moves at least half of the H-orbitals ∆ for which τj was the last generator moving ∆.
This is a deterministic version of the random subproduct method, which we describe
in section 5.4.

procedure ORBITALS(P,C,R)
INPUT:G = 〈P 〉 ≤ Sym(C), |C| = m, P = {τ1, . . . , τk}.
OUTPUT: Generators R for some H ≤ G with same orbitals as G, |R| = O(logm).
Initialize: compute orbitals O1, . . . , Op of G; R = ∅
repeat

compute orbitals {∆i : i ∈ I} of 〈R〉
for all ∆i 6∈ {O1, . . . , Op}, compute

last(∆i) := max{j : ∆
τj
i 6= ∆i}

σ := 1 (∗ start constructing new element of R ∗)
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for j := 1 to k do
if |{∆i : last(∆i) = j,∆σ

i = ∆i}| > |{∆i : last(∆i) = j,∆σ
i 6= ∆i}|

then σ := στj
R := R ∪ {σ}

until orbitals of G = orbitals of 〈R〉
end (ORBITALS).

Steps 1–3 in the next procedure can be viewed as a preprocessing phase in which
we construct the first log2 n coset representative sets in the stabilizer chain of a giant
G. With these coset representative sets in hand, it is easy matter to construct a
permutation τ ∈ G that has a prescribed effect on an arbitrary subset of size log2 n
(cf. Lemma 5.2). Such constructed elements are useful in a computation that replaces
a given element λ by one with significantly smaller support. For an appropriately
designed τ , λ1 = [λ, τ ] contains cycles of prime length for a lot of different primes.
An underlying idea then is that one of these primes does not divide most of the
cycle lengths in λ1. Taking an appropriate power of λ1, we can kill all cycles whose
length was not divisible by that prime and we get a permutation with smaller support.
Iterating the process, we obtain a 3-cycle.

procedure THREE CYCLE(Q)

INPUT: G = 〈Q〉 acting on C = {x1, x2, . . . , xm}; m > 3 log2 n, GC is a giant.
OUTPUT: An SGS, constructed from Q (using legal operations only).
Step 1. Begin PERMREP(Q,C);

stop PERMREP(Q,C) when |{i : i > log2 n, |Ri| 6= 1}| = 2 logn+ log2 n.
Let R be a collection of nontrivial coset representatives such that

|R ∩Ri| = 1 for all i > log2 n, |Ri| 6= 1.
Step 2. ORBITALS(Q,C,Q0).

Step 3. for i := 1 to log2 n do
Let G(i− 1) := 〈Qi−1 ∪R〉.
Construct coset representatives Di for G(i− 1)C mod G(i− 1)Cxi

(∗ G(i− 1)Cxi is the stabilizer of xi in G(i− 1)C . ∗)
Construct Schreier generators Q∗i for G(i− 1)Cxi .
ORBITALS(Q∗i , C,Qi).

Step 4. Compute f(m), g(m), where f(m) := min{{}r : p(r) > m4}, and g(m) :=∑f(m)
i=1 pi.

Step 5. Let λ be any 6= 1 element of G.

while deg(λ) > log2 n do
Choose B ⊂ supp(λ), |B| = g(m) such that B is independent.
Construct τ ∈ G such that τ fixes pointwise Bλ and

τ |B consists of cycles of length p1, p2, . . . , pf(m).
λ1 := [λ, τ ].
For all i ≤ f(m), compute m(i) := the product of all cycle lengths in λ1

which are not divisible by pi.

Choose i ≤ f(m) such that 2 ≤ deg(λ
m(i)
1 ) < deg(λ)/2.

Let λ := λ
m(i)
1 for this i.

end
Step 6. Construct ρ ∈ G such that ρ fixes exactly deg(λ)− 1 points in supp(λ).

Let σ = [λ, ρ]. (∗ σ is a 3-cycle ∗)
Step 7. Take conjugates of σ to obtain an SGS for Alt(C).

If GC = Sym(C) then sift an odd permutation to obtain an SGS for GC .
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output the SGS for GC .
end (THREE CYCLE).

5.2. Correctness of the subroutine THREE CYCLE.

Lemma 5.1. For each 1 ≤ i ≤ log2 n, 〈Q∗i 〉C\{x1,...,xi} contains Alt(C\{x1, . . . , xi}).
Proof. It is proved by Theorem 2.4.

Lemma 5.2. Given any D ⊂ C, |D| = d ≤ log2 n, and an injection f : D → C,
it is possible to construct τ ∈ G such that τ |D = f , and τ is a 2d-long product of

elements of
⋃log2 n
i=1 Di.

Proof. By Lemma 5.1, for all i ≤ log2 n Di = {α(i, j)|i ≤ j ≤ m}, where
α(i, j) fixes x1, x2, . . . , xi−1 and moves xi to xj . For any distinct a1, . . . , ad ∈ C,
let us define recursively π(a1, . . . , ad) = ρα(d, aρd)

−1, where ρ = π(a1, . . . , ad−1).

Then, for i ≤ d we have a
π(a1,...,ad)
i = i. Let now D = {l1, . . . , ld}. Then τ =

π(l1, . . . , ld)π(f(l1), . . . , f(ld))
−1 is appropriate.

Proposition 5.3. f(m) = O( log m
log log m ) and g(m) = O( log2m

log log m ).

Proof. It is proved by the prime number theorem [HW].

Corollary 5.4. f(m) = O(logn) and g(m) = O(log2n).

The following is easily verified.

Lemma 5.5. Let π, τ ∈ Sym(C). Assume that B is an independent set with
respect to π and τ |Bπ is the identity. Then [π, τ ]|B = τ−1|B .

Lemma 5.6. Let π ∈ Sym(m), k = deg(π). Suppose π contains cycles of each
prime length pi, i ≤ r = f(m). Let m(i) be the product of all cycle lengths occurring
in π which are not divisible by pi. Then 2 ≤ deg(πm(i)) < k/4 for some i ≤ r.

Proof. Let K = supp(π). For each x ∈ K, let us consider the set P (x) of those
primes pi dividing the length of the π-cycle through x. Clearly, the product of these
primes is ≤ k.

Let n(i) denote the number of points x such that pi ∈ P (x). Let us estimate
the weighted average W of the n(i) with weights log pi. Recall that the sum of the
weights is

∑
log pi > log(m4) = 4 log m; therefore,

W <
∑
x∈K

∑
pi∈P (x)

log pi/(4 log m)

≤ (k log k)/(4 log m) ≤ k/4.

We thus infer that n(i) < k/4 for some i ≤ r. Clearly, πm(i) is not the identity
and it fixes all but n(i) points.

Theorem 5.7. The output of THREE CYCLE(Q) is an SGS for G.

Proof. By Lemma 5.1, Step 3 constructs the first log2 n coset-representative
sets for a giant. By Corollary 5.4, we can choose independent sets of size g(m)
from permutations of degree > log2 n. By Lemma 5.2, we are able to construct the
permutations τ, ρ required in Step 5 and 6. By Lemma 5.5, λ1|B has the same cycle
structure as τ |B ; moreover, deg(λ1) ≤ deg(λ) + deg(τλ−1τ−1) = 2 deg(λ). Hence, by

Lemma 5.6, we can choose i ≤ r such that 2 ≤ deg(λ
m(i)
1 ) < deg(λ)/2. In Step 6,

we compute the commutator of two permutations whose supports intersect in exactly
one point, whence the commutator is a 3-cycle. Finally, we can obtain permutations
which conjugate σ into elements of an SGS by Lemma 5.2.
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5.3. Time complexity of THREE CYCLE.

Lemma 5.8. ORBITALS(P,C,R) runs in O∼(|P ||C|2 + |P |n) time.

Proof. The orbitals of G can be computed in O(|P ||C|2) time. One execution
of the repeat loop costs O∼(|R||C|2) for the computation of the orbitals of 〈R〉, plus
O(|P ||C|2) for the computation of the function last(∆i), plus O(|C|2) for checking the
images ∆σ

i , plus O(|P |n) for group multiplications to compute σ. The key observation
is that we execute the repeat loop only O(log |C|) times since, at each execution, the
new σ increases at least half of the orbitals ∆i for which the function last(∆i) is
defined. Therefore, after l executions of the repeat loop, the number of “bad” ∆i’s is
≤ |C|2(3/4)l.

Lemma 5.9. Suppose that the sum of the different positive integers bi is ≤ m.
Then

∏
bi ≤ exp(O∼(

√
m)).

Proof. Choose b1 < b2 < · · · such that
∏
bi is maximal. Then b1 ≤ 4, for

otherwise substituting b1 by 2 and b1− 2 the product would increase. Also, for any i,
bi+1− bi ≤ 2; otherwise the product would increase by substituting bi+1 and bi+1−1
for bi and bi+1. Moreover, bi+1 = bi + 2 for at most one i: if bi+1 ≥ bi + 2 and
bj+1 ≥ bj + 2 for some i < j then by substituting bi by bi + 1 and bj+1 by bj+1 − 1
the product would increase. Thus the bi comprise an initial segment of the natural
numbers with the possible omission of 1, 2, 3 and one other number. If max{bi} = x,
then m ≥∑ bi ≥ x(x+1)− 1− 2− 3− (x− 1), which implies x ≤ 2+

√
2m. We have

then
∏
bi < x! = exp(O∼(

√
m)).

Theorem 5.10. Suppose that |Q| = q and 〈Q〉C is a giant. Then THREE CYCLE(Q)
constructs an SGS for 〈Q〉C in O∼(qn+mn+m2q +m3) time.

Proof. By the prime number theorem, the lognth prime is O(logn log logn);
hence the preprocessing phase requires O∼(1) time. By Theorem 2.12(b) and the
argument already used at the analysis of TEST GIANT (cf. Lemma 4.5), Step 1 runs
in O∼(qn+mn). By Lemma 5.8, Step 2 requires O∼(m2q+ qn) time and the output
Q0 satisfies |Q0| = O(logm). We execute the loop of Step 3 O∼(1) times. The coset
representative set Di is obtained in O(mn). The Schreier generators are constructed
in O∼(mn) time and their number is |Q∗i | ≤ m|Qi−1| = O∼(m). Using Lemma 5.8
again, Qi is computed in O∼(m3 +mn); hence the total time requirement of Step 3
is O∼(mn+m3). Step 4 runs in O∼(1). Since we decrease the degree of λ at least by
a factor 2, the loop of Step 5 is executed O∼(1) times. By Lemma 5.2, τ , whence λ1,
is obtained in O∼(n). By Lemma 5.9, m(i) is a ≤ O∼(

√
m)-digit number; thus, for

all i ≤ r, m(i) can be computed in O∼(m) time [SS], and λ
m(i)
1 can be constructed

in O∼(n
√
m). (For all x in the permutation domain, we have to divide m(i) by the

length of the cycle through x.) Hence Step 5 requires O∼(n
√
m) time. Step 6 runs in

O∼(n). Finally, by Lemma 5.2, Step 7 requires O∼(mn) time.

Corollary 5.11. Step 4 of the main algorithm runs in O∼(n3+sn2) total time.

Proof. We apply THREE CYCLE to the action of the stabilizer of some nodes
v on the children of v in the SD. As in the proof of Corollary 4.7, denoting by qv
the number of (Schreier) generators for Gv and by mv the number of children of v,∑
v(qvmv) = O(sn).

5.4. Las Vegas speedup of THREE CYCLE. In this section we present a
randomized version of THREE CYCLE withO∼((q+m)n) running time. As indicated
in the proof of Theorem 5.10, calls to the subroutine ORBITALS were the only parts
of the procedure THREE CYCLE not executable within this tighter time bound.
ORBITALS is accelerated by using random subproducts of generators.
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Definition 5.12. Let G = 〈τ1, τ2, . . . , τk〉. A random subproduct of the genera-
tors τ1, . . . , τk is an instance of the product τε11 τε22 · · · τ εkk where the εi are independent,
0-1 valued random variables with Prob(εi = 0) = Prob(εi = 1) = 1/2.

The key observation is that a random subproduct of the generators is just as
likely to increase an orbital of a subgroup H ≤ G as the deterministically constructed
element σ in ORBITALS. We make this observation more precise in the following
lemma.

Lemma 5.13. Let G = 〈τ1, τ2, . . . , τk〉 ≤ Sym(m). Then the expected number of
random subproducts of the generators τ1, . . . , τk which generate a subgroup H with the
same orbitals as G is c logm.

Proof. Let Ht be the subgroup generated by the first t random subproducts and
let σ = τε11 τε22 · · · τ εkk be the (t + 1)st random subproduct. Let {∆i : i ∈ I} be the
orbitals of Ht which are not orbitals in G. For an arbitrary ∆i, let l = last(∆i) =
max{j : ∆

τj
i 6= ∆i}. Then

Prob(∆σ
i 6= ∆i) = Prob(∆

τ
ε1
1 ···τ

εl
l

i 6= ∆i)

≥ Prob(εl = 1|∆τ
ε1
1 ···τ

εl−1
l

i = ∆i)Prob(∆
τ
ε1
1 ···τ

εl−1
l

i = ∆i)

+ Prob(εl = 0|∆τ
ε1
1 ···τ

εl−1
l

i 6= ∆i)Prob(∆
τ
ε1
1 ···τ

εl−1
l

i 6= ∆i)

= 1/2.

Hence, with probability ≥ 1/2, σ enlarges each “bad” orbital of Ht. A standard
argument shows that after taking t random subproducts the expected number of
“bad” orbitals is ≤ m2(3/4)t.

The speedup of THREE CYCLE is straightforward: instead of calling ORBITALS,
we take O(logm) random subproducts of generators. The procedure is Las Vegas
since we can check in O∼(m2) time whether these random subproducts generate a
2-transitive group.

Chronologically, the idea of random subproducts preceded the subroutine OR-
BITALS (cf. [BLS88]). Random subproducts are useful far beyond the scope of this
paper; for example, in [BCFLS91], [BCFLS95], augmented with other ideas, they
provide a O∼(n3) elementary Monte Carlo SGS construction.

6. Descending the structure domain: Traversing levels. In the previous
sections, we discussed the first four (preparatory) steps of the main algorithm. We
constructed an extension of the original permutation domain, called the SD, and an
ordered partition of the SD such that the pointwise stabilizer Gi of the first i sets
is normal in G. The algorithm proceeds by constructing an SGS for successive Gi
mod Gi+1 and finding normal generators for Gi+1 (that is, generators of subgroup
whose normal closure in G is Gi+1). We describe the construction of these elements
through a process of normal sifting, which relies on knowledge of presentations for
the quotients Gi/Gi+1. Our time bounds depend critically on the number of normal
generators obtained and, to that end, we indicate how we form concise presentations.

Recall that a presentation of a group G is a pair 〈X | R〉, in which X is a set and
R ⊆ F(X) (F(X) denotes the free group on X) such that there is an epimorphism
φ : F(X)→ G with kernel 〈RF(X)〉. We shall say that the presentation is induced by
φ; in the algorithmic application of presentations, it is typically necessary to specify
φ along with X and R. The elements of R are called relators.
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6.1. Normal sifting. Let

(6.1) G = G0 ≥ G1 ≥ · · · ≥ Gm = N

be a chain of normal subgroups of G. Let Si ⊂ Gi generate Gi mod Gi+1, i.e.,
Gi = 〈Si〉Gi+1 (i ≤ m − 1). We call the collection {Si : 0 ≤ i ≤ m − 1} a system of
chain generators of the series (6.1).

Suppose that

(6.2) Gi/Gi+1 = 〈Xi | Ri〉
is a presentation of Gi/Gi+1 induced by φ : Xi → Gi/Gi+1. We say that Si ⊆ Gi
corresponds to this presentation if the natural map Gi → Gi/Gi+1 yields a bijection
Si → φ(Xi). Then, for w(Xi) ∈ Ri, substitution of Si for Xi yields an element
w(Si) ∈ Gi+1.

Assume that the subgroup chain

(6.3) G = H0 ≥ H1 ≥ · · · ≥ Hf = N

is a refinement of (6.1): Gi = Hji (0 = j0 < j1 < · · · < jm = f). Assume further that
a set Cj of right coset representatives of Hj−1 mod Hj is given for each j, 1 ≤ j ≤ f
such that for ji + 1 ≤ j ≤ ji+1, we have Cj ⊂ 〈Si〉. Such a system will be called
compatible with the given system {Si} of chain generators of (6.1). Given an element
of g ∈ G, we can sift it down along the chain {Hj} to obtain a siftee, a member of N .
This defines the map sift: G→ N .

Theorem 6.1 (normal sift theorem). Assume a series of normal subgroups (6.1)
of the group G = 〈S〉 is given along with chain generators {Si | 0 ≤ i ≤ m− 1} which
correspond to presentations (6.2) of the factors. Assume a refinement (6.3) of (6.1)
is given along with coset representatives, compatible with the given chain generators.
Let Q denote the set of the following elements:

(a) S (the set of generators of G);
(b) g−1hg for g ∈ S and h ∈ Si, 1 ≤ i ≤ m− 1;
(c) wi(Si) for all wi ∈ Ri, 0 ≤ i ≤ m− 1.
Then N = 〈sift(Q)G〉.
Proof. Let H = 〈sift(Q)G〉. Set Ḡ = G/H and let φ : G → Ḡ be the natural

homomorphism. Clearly, H ≤ N , and therefore |Ḡ| ≥ |G/N |. We have to prove that
equality holds here. For any subset U ⊂ G, we use Ū to denote φ(U).

Let Hi = 〈Si, Si+1, . . . , Sm−1〉. (Hm = 1.)
1. H̄0 = Ḡ, because sift(S) ⊂ H by (a).
2. H̄i/ Ḡ, because sift(SSi ) ⊂ H by (b).
3. |H̄i/H̄i+1| ≤ |Gi/Gi+1|, because wi(S̄i) ∈ H̄i+1 for wi ∈ Ri by (c).
It follows that |Ḡ| = |H̄0/H̄1| · · · |H̄m−1/H̄m| ≤ |G0/G1| · · · |Gm−1/Gm| =

|G/N |.
6.2. Presentations. The normal sift theorem is applied each time our descent

of the structure domain finishes a level. There, we are dealing with quotients Gi/Gi+1

that act faithfully on Li+1, the (i+1)st level of the SD. For our time bounds, we need
to ensure that |Ri| = O∼(|Li+1|2).

For a full alternating group, Alt(q), there is a concise set of at most q relations
[Car], cf. [CM, p. 67]. We quote Carmichael’s presentation of Alt(q).

Theorem 6.2 (see [Car]). Fix q ≥ 4. Let X = {x, y}. Let

RCar = {yq−2, x3, (yx)q} ∪ {(xy−kxyk)2 | 1 ≤ k ≤ (q − 3)/2}
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if q is odd, and

RCar = {yq−2, x3, (yx)q−1} ∪ {(x(−1)ky−kxyk)2 | 1 ≤ k ≤ (q − 2)/2}
if q is even. Then 〈X | RCar〉 is a presentation of Alt(q).

This extends easily to a presentation of direct products of alternating groups, the
situation we uncover at alternating levels of the SD. We use a Carmichael presentation,
with a pair of generators, for each factor and enter the relators (commutators) that
ensure that the pairs of generators commute.

For the small-group levels, we recall an elementary construction of presentations.
Suppose that, for 1 ≤ j ≤ f , Cj is a complete set of right coset representatives for
Hj−1 mod Hj , where

G = H0 ≥ H1 ≥ · · · ≥ Hf = 1.

For each γ ∈ ⋃fj=1 Cj , associate a symbol xγ and let X be the collection of these
symbols. For any j ≥ k and 1 6= σ ∈ Cj , 1 6= τ ∈ Ck,

στ = γf · · · γj+1γj , for unique γp ∈ Cp, j ≤ p ≤ f.
Let wσ,τ be the word x−1

τ x−1
σ xγf · · ·xγj+1

xγj and let R be the collection of all such
words. Then 〈X | R〉 is a presentation of H.

Let H = Gi/Gi+1 be a small-level group acting on Li+1, |Li+1| = m. Coset repre-
sentatives in the point stabilizer chain forH are available via PERMREP (Proposition
2.11). We know, however, that H is contained in a direct product of isomorphic prim-
itive groups, this direct product acting as a “small” group on each of its, say r, orbits
each of size m/r. Any such orbit includes at most O∼(1) points where the point
stabilizer chain for H decreases, i.e., where |Ci| 6= 1. Furthermore |Ci| ≤ m/r for all
i. It follows that |X| = O∼(m) and |R| = O∼(m2).

7. Descending the structure domain: Small group levels. By the results
of section 4, the group G(w) (the action of the stabilizer of the node w in the structure
domain on the children of w), is either an alternating or a small group. (A small
group is of order < exp(9 log2 n log logn).) Moreover, for w,w′ ∈ Li these groups
are isomorphic. We call Li an alternating level if G(w) is alternating for w ∈ Li, and
a small group level in the other case. Our objective in this section is to get past a
small group level Li−1. Suppose that we have constructed an SGS for G/Gi−1 and
normal generators Qi−1 for Gi−1. We proceed to constructing an SGS for Gi−1/Gi
and normal generators Qi for Gi.

The routine NORMCL(Qi−1, Li, S) gives us the SGS. A presentation for Gi−1/Gi
is obtained according to section 6.2, and then normal generators for Gi are constructed
according to Theorem 6.1.

Timing analysis for NORMCL. Let Li−1 := {w1, w2, . . . , wr}, and denote
by Bj the children of wj . Then Li =

⋃
1≤j≤r Bj and |(Gi−1)

Li | = exp(O∼(|Li−1|)).
Moreover, since Gi−1 stabilizes Li−1 pointwise, t :=max(|(Gi−1)

Li
j : (Gi−1)

Li
j+1|) ≤

|Li|/r. (Recall that (Gi−1)
Li
j denotes the jth subgroup in the pointwise stabilizer

chain in the group Gi−1 acting on the set Li.) Therefore, by Theorem 2.15, the
running time of NORMCL(Qi−1, Li, S) is O∼

(|Li−1|n(|Qi−1|+ s|Li−1|+ |Li||Li−1|)
)
.

Number of normal generators obtained. There are O∼(|Li|) coset represen-
tatives, so |Qi| ≤ |Qi−1|+O∼(s|Li|+ |Li|2).

Finally we observe that the time to sift each normal generator intoGi isO∼(n|Li−1|).
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Remark 7.1. If s > n then we may apply NORMCL(Qi−1, Li, S
∗) with S∗ :=⋃

j<i−1 S
j . Since S∗ is a set of compatible generators for G/Gi−1 and Qi−1 contains

the siftees of S into Gi−1, 〈S〉 = 〈S∗, Qi−1〉 and 〈Qi−1〉〈S
∗〉

= 〈Qi−1〉G. This change
improves the timing and the bound on the number of generators, replacing s by n in
both expressions.

8. Descending the structure domain: Alternating levels. Suppose that
we have constructed an SGS for G/Gi−1 in Step 5 of the main algorithm and Li−1

is an alternating level. In this section, we describe a method to obtain an SGS for
Gi−1/Gi and normal generators for Gi.

First, we introduce some notation. Let v be a representative node at level Li−1.
Level Li can be partitioned into Li = B1∪̇B2∪̇ · · · ∪̇Br, |Bj | = m > 3 log2 n for all
j such that for each w ∈ Li−1 the children of w comprise one of the Bj and the
point stabilizer Gw acts as Alt(Bj) on this Bj . We may suppose that B1 contains the
children of v. While computing Schreier generators for Gv, the algorithm constructed
α2, . . . , αr ∈ G such that B

αj
1 = Bj . We denote by Qi−1 the set of normal generators

for Gi−1 constructed by the algorithm and by S the generators of G. Finally, for
π ∈ Gi−1, length(π) := |{j : π|Bj 6= 1}|.

If all elements of Qi−1 act trivially on Li, then Gi = Gi−1 and there is nothing
to do. If there exists ρ ∈ Qi−1 acting nontrivially on Bj′ for some j′ ≤ r, then, since
Gi−1 contains all conjugates of ρ, Gi−1 acts as Alt(Bj′) on Bj′ ; moreover, conjugating

by α2, . . . , αr we see that G
Bj
i−1 = Alt(Bj) for all j ≤ r. Hence, by Proposition 2.2,

Gi−1/Gi is isomorphic to Alt(m)k for some k. We give an efficient version of Luks’s
“noncommutative linear algebra” to determine which coordinates of

∏
j≤r Alt(Bj) are

linked in the diagonal subgroups. We note that because of the transitive G-action on
{B1, . . . , Br}, the number of Alt(Bj)’s is the same in each linked collection.

8.1. The procedure GIANT CLOSURE. In Step 4 of the main algorithm,
we computed an SGS Pv ⊆ G for G(v), the action of Gv on B1. However, the elements
of Pv are not necessarily in Gi−1 (that is, they do not necessarily fix all nodes at level
i− 1). Here we describe a subroutine which computes an SGS R ⊆ Gi−1 for Alt(B1)
given Pv and given an element of Gi−1 acting nontrivially on B1.

More precisely, with additional applications in mind, we consider the following
situation. The setwise stabilizer G{C} of a group G acts on a set C, |C| ≥ 8, as
Alt(C). The input to GIANT CLOSURE is P ⊆ G{C} such that P is an SGS in this

action, and ρ ∈ G{C}. The output is R, an SGS for Alt(C), such that R ⊆ 〈ρ〈P 〉〉;
i.e., R is generated by conjugates of ρ by the elements of 〈P 〉. Moreover, we require
that there are τ, σ ∈ 〈ρ〈P 〉〉 such that w(τ, σ) = 1 for w(x, y) ∈ RCar (see Theorem
6.2), and R ⊆ 〈τ, σ〉.

If C = {1, 2, . . . ,m}, m even then τ = (1 2 3), σ = (1 2)(3 4 . . . m − 1 m)
satisfy the relations in Theorem 6.2. If m is odd then we can choose τ = (1 2 3),
σ = (3 4 . . . m− 1 m).

procedure GIANT CLOSURE(G,C, ρ, P,R, τ, σ)
INPUT:C,P, ρ as specified above.
OUTPUT: R, τ, σ.
Step 1. Let γ1 ∈ 〈P 〉 such that γ1|C is a 3-cycle not commuting with ρ|C . Compute
ρ1 = [ρ, γ1]. (∗ deg(ρ1|C) ≤ 6 ∗) Take γ2 ∈ 〈P 〉 such that |supp(ρ1|C)∩ supp(γ2|C)| =
1. Compute ρ2 = [ρ1, γ2]. (∗ ρ2|C is a 3-cycle ∗)
Step 2. Conjugating ρ2 with appropriate elements of 〈P 〉, obtain permutations



1336 LÁSZLÓ BABAI, EUGENE M. LUKS, AND ÁKOS SERESS

π1, π2, . . . , πm−2 such that πi|C = (i i + 1 i + 2). (∗ π1, π2, . . . , πm−2, π
2
m−2 is an

SGS for Alt(C) ∗).
Step 3. Compute τ, σ as specified before the procedure as a product of the πi’s.
Step 4. If m is odd then compute στ . (∗ στ |C = (1 2 . . . m− 1 m) ∗) R consists of
τ and its conjugates by the powers of στ .

If m is even then compute στ2 and τσ−1τσ. (∗ στ2|C = (2 3 . . . m− 1 m) and
τσ−1τσ|C = (2 3 4) ∗) R consists of τ , τσ−1τσ, and the conjugates of τσ−1τσ by the
powers of στ2.
end (GIANT CLOSURE).

Proposition 8.1. If group operations in G require O(n) time then
GIANT CLOSURE(G,C, ρ, P,R, τ, σ) computes an SGS for Alt(C) in O(mn).

Proof. The correctness of the procedure is obvious. Given an SGS for Alt(C),
any element of Alt(C) can be constructed from it by O(m) group multiplications.
Therefore, Steps 1 and 3 require O(mn) time. By Lemma 5.2, a permutation with
three prescribed positions can be constructed in O(n) time so Step 2 also runs in
O(mn). Finally, we notice that using the result of the conjugation by the previous
power of στ (or στ2), all conjugates in Step 4 can be computed with O(m) group
operations.

8.2. The procedure GIANT LINK. We obtain an SGS for Gi−1/Gi by ap-
plying the procedure GIANT LINK. We use the notation introduced at the beginning
of section 8 for the input; the output will be an SGS T and a set Si−1 of compatible
generators for Gi−1/Gi and a set Qi of normal generators for Gi.

If two coordinates j, j′ ≤ r are not linked in a diagonal action then there exists
π ∈ Gi−1 such that π|Bj 6= 1 and π|Bj′ = 1. In this case, we say that π witnesses the
separation of j from j′. Note that possession of a witness to the separation of j from
j′ does not imply possession of a witness to the reverse separation, even though we
know that one exists.

GIANT LINK uses the subroutine GIANT SEPARATE. The input is an SGS

Rj ⊂ Gi−1 for G
Bj
i−1
∼= Alt(Bj) and π1, π2 ∈ Gi−1 such that πl|Bj 6= 1 for l = 1, 2.

The output is a single π ∈ Gi−1 such that, for any coordinate j′, if either π1 or π2

witnesses the separation of j from j′, then π also witnesses this separation.

procedure GIANT SEPARATE(Rj , π1, π2, π)
INPUT:Rj , π1, π2 as specified above.
OUTPUT: π.

if π1|Bj , π2|Bj do not commute
then π := [π1, π2]
else take ρ ∈ 〈Rj〉 such that π1|Bj , ρ−1π2ρ|Bj do not commute

π := [π1, ρ
−1π2ρ]

end (GIANT SEPARATE).

Proposition 8.2. GIANT SEPARATE computes the witness π in O(n) time.
Proof. The only nontrivial point is that an appropriate ρ ∈ 〈Rj〉 can be con-

structed in O(n) time. If π1|Bj has a fixed point, say xπ1 = x, then conjugate π2 such

that xρ
−1π2ρ = y for some y with yπ1 6= y. If π1|Bj does not have a fixed point then

choose four different points x, y, z, u ∈ Bj such that xπ1 = y and zπ1 = u. Conjugate

π2 such that yρ
−1π2ρ = u and xρ

−1π2ρ 6= z. Since we described the value of ρ at ≤ 4
points, such ρ can be obtained in O(n) time by Lemma 5.2. Note that π2|Bj′ = 1

implies ρ−1π2ρ|Bj′ = 1.
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In the first three steps of GIANT LINK, we compute a subgroup of Gi−1 which
acts as the full alternating group on each Bj . In Step 4, we obtain witnesses for all
pairs not linked by this subgroup and then compute a single witness for each Bj . In
the loop described in Steps 5–7, we obtain additional elements of the subgroup Gi−1

(until we have a collection that fully generates Gi−1/Gi). First, in Step 5, until the
linked collections have the same length, we conjugate the shortest collection into all
positions, necessarily breaking up some links in the longer collections. Step 7 ensures
that we have done all the link breaking that is implied by the subgroup at hand and,
if so, that the subgroup is normalized (mod Gi) by G; failure of either test produces a
new witness to separation in Step 7, and the loop is repeated. If the tests are passed,
we can specify Qi (Step 8).

procedure GIANT LINK(Li, Q
i−1, S, Pv, {α2, . . . , αr}, Qi, Si−1, T )

INPUT: Li = B1∪̇ · · · ∪̇Br, Qi−1, S, Pv, {α2, . . . , αr} as specified above.
OUTPUT: Qi, Si−1, T .
Step 1. take ρ ∈ Qi−1, ρ|Bj 6= 1 for some j; Compute ρ1 := αjρα

−1
j .

Step 2. GIANT CLOSURE(G,B1, ρ1, Pv, R1, τ1, σ1).
Step 3. for j := 2 to r do

compute Rj := α−1
j R1αj , σj := α−1

j σ1αj , τj := α−1
j τ1αj , and

ρj := α−1
j ρ1αj .

Step 4. for j := 1 to r do
Collect the following elements of Gi−1 in a set Σ:

the siftees of Qi−1 ∪ {σj′ , τj′ : 1 ≤ j′ ≤ r} through Rj
w(τj , σj) for all w(x, y) ∈ RCar (∗ see Theorem 6.2 ∗)

for σ ∈ Σ do
for all coordinates j′ for which σ witnesses the separation of j′

from j but this separation is not witnessed by the current ρj′ do
GIANT SEPARATE(Rj′ , ρj′ , σ, ρj′).

Step 5. while there exist j, j′ with length(ρj) 6= length(ρj′) do
take ρj with minimal length
for j′ := 1 to r do

GIANT SEPARATE(Rj′ , ρj′ , α
−1
j′ αjρjα

−1
j αj′ , ρj′)

if the lengths of all ρj′ , 1 ≤ j′ ≤ r, are equal and
there exist j′, j′′ such that ρj′′ witnesses a separation of j′

(from some j′′′) that is not witnessed by ρj′
then for one such pair j′, j′′

GIANT SEPARATE(Rj′ , ρj′ , ρj′′ , ρj′).
Step 6. for j := 1 to r do

GIANT CLOSURE(G,Bj , ρj , Rj , Rj , τj , σj).
Step 7. for j := 1 to r do

Collect the following elements of Gi−1 in a set Σ:
the siftees of Qi−1 ∪ {σj′ , τj′ : 1 ≤ j′ ≤ r} through Rj
w(τj , σj) for all w(x, y) ∈ RCar

the siftees of {σαj′ , ταj′ : α ∈ S, 1 ≤ j′ ≤ r} through Rj
for σ ∈ Σ do

for all coordinates j′ for which σ witnesses the separation of j′

from j but this separation is not witnessed by the current ρj′ do
GIANT SEPARATE(Rj′ , ρj′ , σ, ρj′)

if any of the ρj were changed in this step then goto Step 5.
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Step 8. Let J ⊆ {1, 2, . . . , r} consist of a representative j from each linked collection
of coordinates.

output Si−1 := {τj , σj : j ∈ J};
output T :=

⋃{Rj : j ∈ J} ;
collect in Qi the following elements of Gi:

the siftees of Qi−1 through the SGS T
for all distinct j, j′ ∈ J , the commutators [σj , τj′ ], [σj , σj′ ], [τj , τj′ ],
[τj , σj′ ]
for all j ∈ J , w(τj , σj) for all w(x, y) ∈ RCar

the siftees of {α−1τjα, α
−1σjα : τj , σj ∈ Si−1, α ∈ S} through the

SGS T ;
output Qi.

end (GIANT LINK).

8.3. Correctness and time requirement of GIANT LINK.
Theorem 8.3. The outputs T , Si−1 of GIANT LINK are, respectively, an SGS

and a set of compatible generators for Gi−1/Gi. The collection Qi is a set of normal
generators for Gi.

Proof. We first claim that after the execution of Step 4, for all 1 ≤ j ≤ r,
ρj witnesses the separation of j form any j′ that is implied by the group H =
〈Qi−1 ∪ {τj , σj : 1 ≤ j ≤ r}〉. The claim follows from Theorem 6.1 with G := H,N :=
HBj and m := 1 (because normal generators for the kernel of the action on Bj suffice
to witness possible separations of any j′ from j). Thus, in particular, the distinct
classes Cj = {j′ | ρj |Bj′ 6= 1}, 1 ≤ j ≤ r partition {1, . . . , r}.

When we emerge from Step 5, the distinct classes among the Cj are again disjoint
(a nontrivial intersection would be picked up by the last if statement, which would
reduce the length of ρj′ for some j′ in the intersection) and they now have the same
size.

In Step 7, if the sifting of Qi−1, σj′ , τj′ and the elements w(τj , σj) witness no new
separations, then we know that the ρj , 1 ≤ j ≤ r, witness all separations implied
by elements of the group H = 〈Qi−1 ∪ {τj , σj : 1 ≤ j ≤ r}〉 (by the argument for
Step 4). Furthermore, we know that H acts on Li as a direct product of alternating
groups, exactly one alternating group in each still-linked class of coordinates. If so,
the successful sifting of the collection of σαj′ , τ

α
j′ guarantees that H is invariant (mod

Gi) under the action of G.
The claims about T and Si−1 are now clear. The fact that Qi is a set of normal

generators of Gi then follows from Theorem 6.1 (with the chain of normal subgroups
G = G0 ≥ G1 ≥ · · · ≥ Gi−1 ≥ Gi = N).

Theorem 8.4. Let s = |S|. Then GIANT LINK(Li, Q
i−1, S, Pv, {α2, . . . , αr},

Qi, Si−1, T ) runs in time O∼(|Qi−1||Li|n + s|Li|2n) and |Qi| ≤ |Qi−1| + O(s|Li| +
|Li|2).

Proof. In Step 1, we can pick an appropriate ρ in O(|Qi−1|rm) and ρ1 is computed
in O(n) time. By Proposition 8.1, Step 2 requires O(mn) time and Step 3 can be
executed in O(rmn).

In Step 4, we sift |Qi−1|+2r elements through r SGS’s, requiring O(|Qr−1|rmn+
r2mn) total time; moreover, we compute O(rm) defining relations, in O(rmn) total
time. Altogether for all 1 ≤ j ≤ r we place O(|Qi−1|r+ r2) elements into Σ; for each
of these, O(mr) time suffices to check whether it breaks some new links. The total
cost of calls of the subroutine GIANT SEPARATE in Step 4 is at most O(r2n) since
for each pair j, j′ we call GIANT SEPARATE at most once. Hence the total cost of
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Step 4 (using that r ≤ n) is O(|Qr−1|rmn+ r2mn).

We enter the while loop of Step 5 at most r times since the minimum length of
ρj decreases at each call. (Within the while loop, the length of each ρj′ decreases at
least to the previous minimum.) Hence calls of GIANT SEPARATE in Step 5 cost
O(r2n). The if statement can also be executed within this time bound, since all we
have to check is whether the sets Cj (see the proof of Theorem 8.3) define a partition
of {1, 2, . . . , r}.

Each time Step 6 is executed, all the ρj are of the same length. The length in
any round is necessarily a divisor of the length in the previous round, so Step 6 is
executed ≤ log r times. By Proposition 8.1, one execution costs O(mrn).

Step 7 is executed always after Step 6, i.e., ≤ log r times, and one execution is
similar to Step 4 with the additional sifting of O(sr) conjugates (by S) through the r
SGS’s for a total timing of O(|Qr−1|rmn+ sr2mn).

Finally, Step 8 runs in O(|Qi−1|mrn + r2n + srmn). Only the term O(srmn)
(instead of O(sr2mn)) requires additional explanation: each conjugate α−1τjα, α ∈ S
acts nontrivially in only one of the linked collections of alternating groups so sifting
costs only O(mn). Noting that |Li| = mr, the proof is complete.

Remark 8.5. If s > n then we may use the set S∗ =
⋃
j<i−1 S

j instead of S
as input of GIANT LINK, replacing the term s by n in both the running time and
number of generators created. Correctness is proved by the argument in Remark 7.1.

9. Proof of the main results. In this section, we finish the proof of Theorem
1.1 and sketch two other versions of the algorithm: one with reduced memory re-
quirement (and same time efficiency as the original) and an elementary version with
O∼(n4.5) running time.

9.1. Proof of Theorem 1.1. The algorithm described in sections 3–8 computed
an SGS for the input group G = 〈S〉 ≤ Sym(n), |S| = s; we have to analyze the
running time.

By Lemma 3.1, Corollary 4.7, Proposition 4.8, and Corollary 5.11, the first four
steps of the main algorithm run within O∼(n3+sn2). By the analysis in section 7 and
Theorem 8.4, the number of normal generators created while processing level Li−1

is O∼(s|Li| + |Li|2) (in addition to the |Qi−1| normal generators for Gi−1). Hence
|Qi| = O∼(n2 + sn) for all i and, by section 7 and Theorem 8.4, Step 5 runs in
O∼(n4 + sn3).

If the O∼(sn3) term becomes dominant, i.e., s > n, then we modify the procedure
according to Remarks 7.1, 8.5, and the running time drops down to O∼(n4 + sn2).
Finally, if sn2 dominates n4, i.e., s > n2, then we begin the algorithm by reducing the
number of generators to O(n2) in O(sn2) time. This can be achieved by sifting the
elements of S into (the originally empty) coset representative table with respect to the
point stabilizer chain of the permutation domain (cf. procedure SIFT in section 2.7).
In any case, we can achieve the claimed O(n4 logc n + sn2) running time with no
logarithmic factors multiplying sn2.

We turn to the proof of claims (b)–(e) in Theorem 1.1. The order of G is easily
computed as the product of sizes of coset representative sets. Although the SGS
constructed by the algorithm can be used directly for membership testing by extending
the action of a candidate permutation to the SD and there is a method to compute
pointwise set stabilizers from it (developed for the parallel procedure in [BLS87]),
it is easier to use a result of Brown, Finkelstein, and Purdom [BFP]. They provide
an O(n3) base-change algorithm for converting strong generating sets with respect
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to point stabilizer chains along different orderings of the permutation domain. The
base-change algorithm outputs the SGS in Jerrum’s compact format.

Finally, we observe that the normal sift theorem (Theorem 6.1) essentially pro-
vides the scheme for proving (e). Note that, with the descent of the SD complete, the
chain generators generate G, so we may assume S =

⋃
i Si. We associate a symbol xπ

to every element π of S and let X denote the collection of these. Each coset represen-
tative ρ ∈ Rj (see notation and discussion preceding the theorem) is representable as
a word in S and there is a corresponding word w(ρ) in X. The elements to be sifted in
Theorem 6.1 (a),(b),(c) are given as words in S, and so each τ corresponds naturally
to a word w′(τ) in X. Sifting τ can be interpreted as expressing τ canonically as a
word ρ1 · · · ρl. From each such sift we derive a relation w′(τ)−1w(ρ1) · · ·w(ρl) and
denote the collection of these by R. Then 〈X | R〉 is a presentation of G.

9.2. Reducing the memory requirement. The algorithm, as presented in
sections 3–8, requires O∼(n3+sn2) space. Here we indicate how to reduce the memory
requirement to O∼(n2 + sn).

The first four steps of the main algorithm run within this tighter bound. The
problem arises because of the top-down approach in Step 5 since, eventually, we
accumulate O∼(n2 + sn) normal generators. On the other hand, the SGS we build
occupies only O∼(n2) space. The solution is to build the output SGS T simultaneously
on all levels. We call T up-to-date on level i if 〈T ∩ Gj〉 is a normal subgroup of G
for all j ≥ i. We work always at the lowest level (i.e., greatest index i) which is not
up-to-date.

We start executing Step 5 at level 0 as before. The difference is that working on
level i, whenever the algorithm produces a normal generator ψ for Gi+1, we sift ψ
immediately into the SGS already constructed. If ψ factors completely then it can
be discarded; if it has a nontrivial siftee on some lower level j then we suspend the
execution on level i and jump down to level j.

On small levels, we execute exactly the same steps as in the original algorithm
(possibly interrupted by some computations on lower levels). On alternating levels,
we may execute GIANT LINK O(logn) times, discovering smaller and smaller linked
collections of subgroups. There are no more than O(logn) executions since the lengths
of linked collections are divisors of each other. This extra work may add a logn factor
to a lower-order term in the running time.

9.3. An elementary version. Two elementary estimates on the order of prim-
itive groups enable us to break the O(n5) barrier by an elementary, O∼(n4.5) algo-
rithm. One of them is Pyber’s estimate (cf. Theorem 2.5) on the order of nongiant
2-transitive groups and the other one is due to Babai.

Theorem 9.1 (see [Ba]). Let G ≤ Sym(n) be primitive; G is not a giant. Then
|G| ≤ exp(O∼(

√
n)).

Elementary algorithm.
INPUT: a set S of generators for G ≤ Sym(A), |S| = s.
Step 1. Construct an SF and choose a representative v in each orbit of the SF. For
all such v, construct Schreier generators for Gv.
Step 2. For these representatives, use TEST GIANT to decide whether G(v) is a
giant.
By inserting new levels after symmetric levels, obtain the SD. Compute the node sta-
bilizers Gw as in Step 1 for representatives of G-orbits of the SD. Let (L0, L1, . . . , Lm)
be the levels of the SD.
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Step 3. For each node v representing an alternating level in the SD, construct an SGS
for G(v).

Step 4. for i := 1 to m do
if Li−1 is an alternating level

then construct SGS for Gi−1/Gi, normal generators for Gi as in
section 8
else construct SGS for Gi−1/Gi, normal generators for Gi as in
section 7

end (ELEMENTARY ALGORITHM).

We have to modify the stopping condition in TEST GIANT and in the first
step of THREE CYCLE to accommodate the weaker bound in Theorem 2.5. This
change adds only a logarithmic factor to a low-order term in the running time. Since
NATURAL ACTION is eliminated from this algorithm, correctness is elementary.
However, primitive groups on small levels may be of the size allowed in Theorem 9.1,
adding a factor

√
n in the analysis of section 7.
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