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0. Introduction

The cyclotomic Hecke algebras Hn,r = Hn(u1, . . . , ur; q) were defined by Ariki
and Koike in [AK] as Iwahori-Hecke algebras of the complex reflection group Gn,r =
Sn o (Z/rZ)n where Sn is the symmetric group. If ζ is a primitive complex rth root
of unity, then when q → 1 and ui → ζi, the algebra Hn,r specializes to the group
algebra C[Gn,r]. The irreducible representations of Hn,r are constructed in [AK].
They are indexed by the set of all r-tuples of partitions with a total of n boxes,
called r-partitions.

For each r-partition µ, T. Shoji [Sho] defines a symmetric function qµ and proves
that

qµ =
∑
λ

χλ
q (aµ)sλ,

where sλ is the Schur function associated to the r-partition λ and χλ
q (aµ) is the

irreducible Hn,r-character associated to λ and evaluated at an element aµ. The
function qµ is a deformation of the power sum symmetric function, and Shoji’s
formula is analogous to the Frobenius formula for symmetric group characters.
Shoji proves it using the Schur-Weyl duality for Hn,r found in [SS].

In this paper we derive the formula

qµ =
∑
λ

( ∑
Qλ

wtµ(Qλ)
)

sλ,

where Qλ ranges over the set of “standard tableaux” of shape λ, and where wtµ is
a weight on standard tableaux that depends on the parameters q and ui and that
is computed combinatorially. By comparing coefficients of sλ in these two formulas
we obtain the expression

χλ
q (aµ) =

∑
Qλ

wtµ(Qλ)

which computes the irreducible Hn,r-characters as a sum over standard tableaux.
When q = 1 and ui = ζi our character formula specializes to a character formula
for the complex reflection group Gn,r.

In the special case where r = 1, the cyclotomic Hecke algebra Hn,1 is the Iwahori-
Hecke algebra Hn(q) of type An−1 associated with the symmetric group Sn. Shoji’s
Frobenius formula specializes, in this case, to the Frobenius formula of A. Ram [Ra1]
for Hn(q) and our character formula is a generalization of the Roichman formula
[Ro] for irreducible characters of Hn(q) and Sn.
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Our method is to follow the work of Ram [Ra2] who gives a new proof of the
Roichman formula for Hn(q) using Robinson-Schensted-Knuth insertion. We write
the function qµ as a sum over µ-weighted integer sequences. We then use RSK
insertion, modified for r-partitions, to turn this into a sum over pairs (P, Q) where
P is a column-strict tableau, Q is a standard tableau, and P and Q have the same
shape λ for some r-partition λ. As a special case of our insertion rule we obtain a
bijective proof of the formula

n!rn =
∑
λ

f2
λ

where n!rn = |Gn,r| and fλ is the number of standard tableau whose shape is the
r-partition λ. This fact can be proved algebraically by decomponsing the regular
representation of Gn,r into irreducibles and comparing dimensions.

A Murnaghan-Nakayama type rule for the characters of Hn,r is found in [HR].
It gives the irreducible characters of Hn,r as weighted sums over broken-border-
strip tableaux. The characters χλ

q (aµ) found in Shoji’s frobenius formula and in
this paper are evaluated on a set {aµ} of elements in Hn,r for which characters
are completely determined. The character values found in [HR] are evaluated on
different elements Tµ.

1. Cyclotomic Hecke Algebras

Let u1, . . . , ur and q be indeterminates. The cyclotomic Hecke algebra Hn,r =
Hn(u1, . . . , ur; q) is the algebra over C(q, u1, . . . , ur) defined by generators X1,
T1, . . . , Tn−1, and relations

(1) T 2
i = (q − q−1)Ti + 1, 1 ≤ i ≤ n− 1,

(2) TiTj = TjTi, |i− j| > 1,
(3) TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 2,
(4) X1T1X1T1 = T1X1T1X1,
(5) (X1 − u1)(X1 − u2) · · · (X1 − ur) = 0.

These algebras were introduced by Ariki and Koike [AK], and they are semisimple
over C(q, u1, . . . , ur).

Let Sn be the symmetric group on n letters, and let Gn,r = Sn o (Z/rZ)n. The
group Gn,r has a presentation on generators t1, s1, . . . , sn−1 where tr1 = 1 and
s1, . . . , sn−1 are the simple transpositions in Sn. If we let

q → 1, ui → ζi (1 ≤ i ≤ r), Ti → si (1 ≤ i ≤ n− 1), and X1 → t1,

where
ζ = a primitive rth root of unity in C,

then the presentation for Hn,r above becomes a presentation for C[Gn,r].

1.1. r-partitions.

We use the usual notation for partitions found in [Mac]. We identify a a partition
with its Young diagram, let `(λ) denote the number of rows of λ, and |λ| denote
the number of boxes in λ. For example, λ = (5, 5, 3, 1, 1) has `(λ) = 5 and |λ| = 15.

An r-tuple of partitions λ = (λ(1), . . . , λ(r)) is called an r-partition. We refer to
the λ(k) as the components of λ. We let |λ| =

∑r
k=1 |λ(k)| denote the total number
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of boxes in λ, and we let `(λ) =
∑r

k=1 `(λ(k)) denote the total number of rows in
λ. If |λ| = n, then we say that λ is an r-partition of n. For example, if r = 5, then

λ =

 , , ∅, ,

 has `(λ) = 11 and |λ| = 24,

and, for example, λ(2) = (3, 3, 1, 1). We let Pn,r denote the set of all r-partitions of
n.

1.2. Irreducible Representations and Characters.
It is known by [AK] that the irreducible representations of Hn,r are indexed by

Pn,r. We let V λ
q denote the irreducible Hn,r-module corresponding to λ ∈ Pn,r,

and we let χλ
q denote the corresponding irreducible character. The irreducible

representations and characters of Gn,r are also indexed by Pn,r. We denote them
by V λ

1 and χλ
1 . The construction of V λ

q in [AK] is such that when q = 1 and ui = ξi,
V λ

q becomes V λ
1 and χλ

q becomes χλ
1 .

1.3. Standard Elements.
The conjugacy classes of Gn,r are also parameterized by Pn,r. Define tk =

sk−1 · · · s1t1s1 · · · sk−1 for 2 ≤ k ≤ n, and define

w(1, i) = ti1 and w(k, i) = tiksk−1 · · · s1, 2 ≤ k ≤ n.

For a partition µ = (µ1, . . . , µ`) with |µ| = n, define

w(µ, i) = w(µ1, i)× · · · × w(µ`, i)

with respect to the embedding Gµ1,r × · · · ×Gµ`,r ⊆ Gn,r. For µ ∈ Pn,r, define

(1.1) wµ = w(µ(1), 1)w(µ(2), 2) · · ·w(µ(r), r).

Then {wµ|µ ∈ Pn,r} is a set of conjugacy class representatives for Gn,r.
Shoji ([Sho], §3.6) defines elements ξ1, . . . , ξn ∈ Hn,r and shows that Hn,r is

isomorphic to the algebra generated by T1, . . . , Tn−1, ξ1, . . . , ξn subject to

(1) T 2
i = (q − q−1)Ti + 1, 1 ≤ i ≤ n− 1,

(2) TiTj = TjTi, |i− j| > 1,
(3) TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 2,
(4) ξiξj = ξjξi, 1 ≤ i, j ≤ n,
(5) (ξi − u1)(ξi − u2) · · · (ξi − ur) = 0, 1 ≤ i ≤ n,

(6) Tjξj = ξj−1Tj + ∆−2
∑
k<`

(u` − uk)(q − q−1)Fk(ξj−1)F`(ξj),

(7) Tjξj−1 = ξjTj −∆−2
∑
k<`

(u` − uk)(q − q−1)Fk(ξj−1)F`(ξj),

(8) Tiξj = ξjTi, j 6= i− 1, i,

where ∆ =
∏

k<`(u` − uk) is the determinant of the r× r Vandermonde matrix A,
whose `, k-entry is u`

k for 0 ≤ ` ≤ r − 1, 1 ≤ k ≤ r, and

Fk(ξj) =
r−1∑
i=0

hki(u1, . . . , ur)ξi
j ,

where hki(u1, . . . , ur) is the k, i-entry of the matrix B determined by A−1 = ∆−1B.
Unfortunately, it appears that the relation between the ξi and the Xj is complicated.
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Define

a(1, i) = ξi
1 and a(k, i) = ξi

kTk−1 · · ·T1, 2 ≤ k ≤ n.

For a partition µ = (µ1, . . . , µ`) with |µ| = n, define

a(µ, i) = a(µ1, i)× · · · × a(µ`, i)

with respect to the embedding Hµ1,r ⊗ · · · ⊗Hµ`,r ⊆ Hn,r. For µ ∈ Pn,r, define

(1.2) aµ = a(µ(1), 1)a(µ(2), 2) · · · a(µ(r), r).

Shoji [Sho], Proposition 7.5, proves that any character of Hn,r is completely deter-
mined by its value on the set {aµ|µ ∈ Pn,r}.

2. Symmetric Functions

In this section, we follow [Mac], Appendix B, and [Sho] and define symmetric
functions indexed by r-partitions.

Let m1, . . . , mr be positive integers satisfying mk ≥ n for each 1 ≤ k ≤ r, and
let m =

∑r
k=1 mk. We define a set x of m indeterminates as follows

x(k) = {x(k)
1 , . . . , x(k)

mk
}, 1 ≤ k ≤ r,

x = x(1) ∪ · · · ∪ x(r).

We say that the indeterminates in x(k) are of color k, and we linearly order the
indeterminates x = x

(1)
1 , . . . , x

(r)
mr by the rule,

(2.1) x
(k)
i < x

(`)
j if and only if k < ` or k = ` and i < j.

It is sometimes notationally convenient to identify the variables x = x
(1)
1 , . . . , x

(r)
mr

with the variables x = x1, . . . , xm as follows,

(2.2)
x1, x2, . . . , xm1 , xm1+1, xm1+2, . . . . . . , xm,
l l l l l l

x
(1)
1 , x

(1)
2 , . . . , x

(1)
m1 , x

(2)
1 , x

(2)
2 , . . . . . . , x

(r)
mr .

To do this explicitly, set xj = x
(b(j))
j−dj

, with dj =
∑b(j)

i=1 mi, and we define a function

(2.3) b(j) = k, where m1 + . . . + mk < j ≤ m1 + . . . + mk+1,

so that b(j) gives the color of the indeterminate xj . We will use these two notations
interchangeably.

Recall from Section 1, that ζ is a primitive rth root of unity in C. For integers
t ≥ 1 and 1 ≤ i ≤ r, let

(2.4) p
(i)
t (x) =

r∑
j=1

ζijpt(x(j)),

where pt(x(j)) denotes the tth power sum symmetric function ([Mac], I§2) with
respect to the variables x(j). As a special case, we let p

(i)
0 (x) = 1 for each i. For

µ ∈ Pn,r with µ = (µ(1), . . . , µ(r)) and µ(k) = (µ(k)
1 , . . . , µ

(k)
`k

), define

(2.5) pµ(x) =
r∏

k=1

`k∏
j=1

p
(k)

µ
(k)
j

(x).
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Definition (2.5) is given in [Sho] and it is the complex conjugate of the definition
of pµ given in [Mac].

Now we define the Schur function associated to λ ∈ Pn,r by

(2.6) sλ(x) =
r∏

k=1

sλ(k)(x(k)),

where sλ(k)(x(k)) denotes the Schur function ([Mac], I§3) associated to the partition
λ(k) with respect to the variables x(k). If λ ∈ Pn,r, then a column-strict tableau of
shape λ is a filling of the boxes of λ with integers such that for each k

(1) λ(k) contains integers from the set {1, . . . , mk},
(2) the columns of λ(k) strictly increase from top to bottom, and
(3) the rows of λ(k) weakly increase (do not decrease) from left to right.

For example, 1 1 1
2 3
3

,
1 1 2
2 2 4
3
5

, ∅,
1 4
2 5
3 6

,
1 3 3 3

 is a column-strict tableau of shape λ.

For a column-strict tableau Pλ of shape λ we define

(2.7) xPλ =
r∏

k=1

mk∏
j=1

(x(k)
j )mjk(Pλ),

where mjk(Pλ) denotes the number of times that j appears in the kth component
(i.e., λ(k)) of Pλ. It follows from [Mac] I.5.12 that

(2.8) sλ(x) =
∑
Pλ

xPλ ,

where the sum is over all column-strict tableaux Pλ of shape λ.
We now define a deformation of pµ. Let u denote the parameters u1, . . . , ur.

For integers t ≥ 1 and 1 ≤ i ≤ r, let

q
(i)
t (x; q,u) =

∑
I=(i1,... ,it)

1≤i1≤...≤it≤m

ui
b(max(I))q

e(I)(q − q−1)`(I) xi1xi2 · · ·xit
,(2.9)

where e(I) is the number of ij ∈ I such that ij = ij+1, `(I) is the number of
ij ∈ I such that ij < ij+1, max(I) is the maximum element of I, and b is the
function defined in (2.3). This definition of q

(i)
t is given in [Sho]. For µ ∈ Pn,r with

µ = (µ(1), . . . , µ(r)) and µ(k) = (µ(k)
1 , . . . , µ

(k)
`k

), define

qµ(x; q,u) =
r∏

k=1

`k∏
j=1

q
(k)

µ
(k)
j

(x; q,u).(2.10)

Note that when q = 1 and ui = ζi, we have qµ = pµ.
In [Mac], Appendix B, (9.7), we find the following Frobenius formula for the

irreducible characters of Gn,r,

(2.11) pµ(x) =
∑

λ∈Pn,r

χλ
1 (wµ)sλ(x),
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for each µ ∈ Pn,r. Shoji [Sho] extends this formula to a Frobenius formula for the
irreducible characters of Hn,r,

(2.12) qµ(x; q,u) =
∑

λ∈Pn,r

χλ
q (aµ)sλ(x),

for each µ ∈ Pn,r.
We say that I = (i1, . . . , it) is an up-down sequence if there exists an s, with

0 ≤ s ≤ t, such that

i1 < · · · < is < is+1 ≥ · · · ≥ it, for some s, with 0 ≤ s < t,

and we say that is+1 is the peak of the up-down sequence I. Note that any of
i1, . . . , it can potentially be the peak of an up-down sequence I = (i1, . . . , it).
Following [Ra2], we define the weight

(2.13) wt(i1, . . . , it) =

{
0, if i1, . . . , it is not an up-down sequence
(−q)−sqt−1−s, if i1 < · · · < is < is+1 ≥ · · · ≥ it.

If t = 1 the weight is wt(i1) = 1.

Lemma 2.1. [Ra2] Let I = (i1, . . . , it) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ m, and let
SI denote the set of all distinct permutations of I. Then

qe(I)(q − q−1)`(I) =
∑

σ∈SI

wt(σI)

where e(I) is the number of ij ∈ I such that ij = ij+1 and `(I) is the number of
ij ∈ I such that ij < ij+1.

Proof. In [Ra2], Lemma 1.5, Ram proves the first equality below∑
I=(i1,... ,it)

1≤i1≤...≤it≤m

qe(I)(q − q−1)`(I) xi1 · · ·xit
=

∑
I=(i1,... ,ik)

1≤i1,... ,it≤m

wt(I)xi1 · · ·xit

=
∑

I=(i1,... ,ik)
1≤i1≤...≤it≤m

∑
σ∈SI

wt(σI) xi1 · · ·xit
.

The second equality follows from the fact that xi1 · · ·xik
= xiσ(1) · · ·xiσ(t) for all

σ ∈ SI . The result is obtained by comparing coefficients of xi1 · · ·xit
. ¤

Proposition 2.2. For integers t ≥ 1 and 1 ≤ k ≤ r, we have

q
(k)
t (x; q,u) =

∑
i1,... ,it

wt(i1, . . . , it)uk
b(is+1)

xi1 · · ·xit
,

where the sum is over all sequences i1, . . . , it with 1 ≤ ij ≤ m and wt(i1, . . . , it) is
given in (2.13). Note that wt is zero unless i1, . . . , it is an up-down sequence.

Proof. As in Lemma 2.1, let SI denote the set of distinct permutations of I. For all
σ ∈ SI we have max(I) = max(σ(I)) and xi1 · · ·xit

= xiσ(1) · · ·xiσ(t) . Furthermore,
if I is an up-down sequence then its peak is max(I) = is+1.
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We use Lemma 2.1 to write the sum over non-decreasing sequences∑
I=(i1,... ,it)

wt(I)uk
b(max(I)) xi1 · · ·xit

=
∑

I=(i1,... ,it)
1≤i1≤...≤it≤m

∑
σ∈SI

wt(σI) uk
b(max(σI)) xiσ(1) · · ·xiσ(t)

=
∑

I=(i1,... ,it)
1≤i1≤...≤it≤m

uk
b(max(I)) xi1 · · ·xit

∑
σ∈SI

wt(σI)

=
∑

I=(i1,... ,it)
1≤i1≤...≤it≤m

qe(I)(q − q−1)`(I)uk
b(max(I)) xi1 · · ·xit

,

= q
(k)
t (x; q,u)

by the definition (2.9) of q
(k)
t . ¤

Let µ ∈ Pn,r. The row reading tableau Rµ of shape µ is the r-partition µ with
the boxes filled in with the numbers 1, . . . , n so that µ(1) contains the numbers
1, . . . , |µ(1)| in order from left-to-right and top-to-bottom, µ(2) contains the num-
bers |µ(1)|+ 1, . . . , |µ(1)|+ |µ(2)| in order from left-to-right and top-to-bottom, and
so on. For 1 ≤ i ≤ n we define the component function cRµ(i) by

(2.14) cRµ
(i) = k, if i is in the kth component of Rµ.

We say that I = (i1, . . . , in) is a µ-up-down sequence if it satisfies the following
property

(2.15)
if k, k + 1, . . . , k + t is a row of Rµ, then
the subsequence ik, ik+1, . . . , ik+t is an up-down sequence,
i.e, ik < ik+1 < · · · < ip ≥ · · · ≥ ik+t.

The index ip, shown above, is the peak of the row. When I is a µ-up-down sequence,
we let Pµ

I denote the set of peaks ip in I, one for each row of Rµ. We define the
µ-weight of a sequence I = (i1, . . . , in) by
(2.16)

wtµ(I) =


0, if I is not a µ-up-down sequence,

(−q−1)`(I)qγ(I)
∏

ip∈P µ
I

u
cRµ (p)

b(ip) , if I is a µ-up-down sequence,

where γ(I) is the number of ij ≥ ij+1 with j and j + 1 in the same row of Rµ

and `(I) is the number of ij < ij+1 with j and j + 1 in the same row of Rµ. The
functions cRµ

and b are defined in (2.15) and (2.3), respectively.

Example 2.3. Let n = 24, r = 5, m1 = m2 = m4 = m5 = 24, m = 120, and
µ = ((5, 1), (3, 3, 1, 1), ∅, (2, 2, 2), (4)). The row reading tableau of shape µ is

Rµ =

 1 2 3 4 5
6 ,

7 8 9
101112
13
14

, ∅,
1516
1718
1920

,
21222324

 .

The following squence is a µ-up-down sequence

I = [7, 11, 12, 12, 4][110]
∣∣∣∣[48, 70, 75][75, 75, 30][1][50]

∣∣∣∣ ∣∣∣∣[72, 25][16, 18][119, 97]
∣∣∣∣[5, 80, 79, 25].
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The braces group the components elements according to the rows of Rµ, the vertical
bars indicate the separation between the components of Rµ, and the peaks are
underlined. The µ-weight of I is

wtµ(I) = ((−q−1)2q2u1)u5((−q−1)2u2
4)(q

2u2
4)u

2
1u

2
3(qu

4
3)(−q−1u4

1)(qu
4
5)(−q−1q2u5

4).

¤

The definition (2.10) of qµ can be thought of as a product of q
(k)
t over the rows

of Rµ where t is the length of the row and k is the component of the row. Thus
the following collollary is immediate from Proposition 2.2.

Corollary 2.4. For µ ∈ Pn,r,

qµ(x; q,u) =
∑

i1,... ,in

wtµ(i1, . . . , in)xi1 · · ·xin
,

where the sum is over all µ-up-down sequences i1, . . . , in and wtµ is defined in
(2.16). Note that wt is zero unless i1, . . . , in is a µ-up-down sequence.

3. RSK Insertion and Roichman Weights

If λ ∈ Pn,r, then a standard tableau Qλ of shape λ is a filling of the boxes of λ
with integers from {1, 2, . . . , n} such that each integer from {1, 2, . . . , n} appears
in Qλ exactly once, and for each 1 ≤ k ≤ r

(1) the columns of λ(k) strictly increase from top to bottom, and
(2) the rows of λ(k) strictly increase from left to right.

The Robinson-Schensted-Knuth (RSK) insertion scheme (see [Sag]) is an algo-
rithm which gives a bijection between sequences xi1 , . . . , xin

, with 1 ≤ ij ≤ m,
and pairs (P, Q) where P is a column-strict tableaux, Q is a standard tableau, and
P and Q have shape λ for some partition λ with n boxes. The RSK insertion
algorithm constructs the pair of tableaux (P, Q) iteratively,

(∅, ∅) = (P0, Q0), (P1, Q1), . . . , (Pn, Qn) = (P, Q),

in such a way that
(1) Pj is a column strict tableau that contains j boxes, and Qj is a standard

tableau that has the same shape as Pj ,
(2) Pj is obtained from Pj−1 by column inserting ij into Pj−1, denoted Pj =

Pj−1 ← ij , as follows
(a) Insert ij into the first column of Pj−1 by displacing the smallest num-

ber ≥ i; if every number is < i, add i to the bottom of the first column.
(b) If i displaces x from the first column, insert x into the second column

using the rules of (a).
(c) Repeat for each subsequent column, until a number is added to the

bottom of some (possibly empty) column.
(3) Qj is obtained from Qj−1 by putting j in the newly added box (i.e., the

box created in going from Pj−1 to Pj).
The standard tableau Q is called the recording tableau.

We extend the RSK algorithm to work for tableaux whose shape are r-partitions.
Given a sequence x

(k1)
i1

, x
(k2)
i2

, . . . , x
(kn)
in

, with 1 ≤ kj ≤ r and 1 ≤ ij ≤ mkj
,

we construct a sequence (∅, ∅) = (P0, Q0), . . . , (Pn, Qn) = (P, Q), where Pi is a
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column-strict tableau, Qi is a standard tableau, and Pi and Qi have the same r-
partition shape. We insert x

(k)
i into a semistandard tableau Pj−1 having r-partition

shape as follows

(3.1) (P (1)
j−1, . . . , P

(r)
j−1)← x

(k)
i = (P (1)

j−1, . . . , P
(k)
j−1 ← x

(k)
i , . . . , P

(r)
j−1),

where we use usual column insertion to insert variables of type k into the kth
component of Pj−1.

For example, if r = 3 the result of inserting x
(1)
2 , x

(2)
1 , x

(2)
4 , x

(2)
1 , x

(3)
1 is

Pi : (∅, ∅, ∅),
(

2 , ∅, ∅
)

,
(

2 , 1 , ∅
)

,

(
2 , 1

4
, ∅

)
,

(
2 , 1 1

4
, ∅

)
,

(
2 , 1 1

4
, 1

)
,

Qi : (∅, ∅, ∅),
(

1 , ∅, ∅
)

,
(

1 , 2 , ∅
)

,

(
1 , 2

3
, ∅

)
,

(
1 , 2 4

3
, ∅

)
,

(
1 , 2 4

3
, 5

)
.

To see that this insertion provides a bijection, we can construct the inverse algo-
rithm by using usual column uninsertion, in the reverse order of the entries of Q,
and using the component of P to tell us the type of the uninserted variable. We
denote this bijection by

(P, Q) RSK←→ x
(k1)
i1

, . . . , x
(kn)
in

Let λ = (λ(1), . . . , λ(r)) ∈ Pn,r, and let Qλ be a standard tableau of shape
λ ∈ Pn,r. If a and b are entries of Qλ, define

a SW−→b if

{ b ∈ λ(k), a ∈ λ(`), and k > `,
or
b is south (below) and/or west (left) of a in λ(k),

a NE−→b if

{ b ∈ λ(k), a ∈ λ(`), and k < `,
or
b is north (above) and/or east (right) of a in λ(k).

In the ordering on our indeterminates, we have x
(k)
i < x

(`)
j if k < ` or k = ` and

i < j. The following proposition is an immediate consequence of this fact and
well-known facts about RSK insertion (see [Ra2], Proposition 2.1).

Proposition 3.1. Let Pj+1 = (Pj−1 ← x
(kj)
ij

)← x
(kj+1)
ij+1

, where Pj−1 is a column-
strict tableau, and let Qj+1 be the associated recording tableau.

(1) If x
(kj)
ij

< x
(kj+1)
ij+1

then j SW−→ (j + 1) in Qj+1.

(2) If x
(kj)
ij
≥ x

(kj+1)
ij+1

then j NE−→ (j + 1) in Qj+1.

Let µ,λ ∈ Pn,r. We say that a standard tableau Qλ of shape λ is a µ-SW-NE
tableau if it satisfies the following property

(3.2)
if k, k + 1, . . . , k + t is a row of Rµ, then
k SW−→ (k + 1) SW−→ · · · SW−→ p NE−→ · · · NE−→ (k + t) in Qλ

The number p, shown above, is called the peak of the row. When Qλ is a µ-SW-NE
tableau, we let Pµ

Qλ
denote the set of peaks p in Qλ, one for each row of Rµ.
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We define the µ-weight of a standard tableau Qλ by
(3.3)

wtµ(Qλ) =


0, if Qλ is not a µ-SW-NE tableau,

(−q−1)`(Qλ)qγ(Qλ)
∏

ip∈PQλ

u
cRµ (p)

b(ip) , if Qλ is a µ-SW-NE tableau,

where γ(Qλ) is the number of j NE−→(j + 1) in Qλ with j and j + 1 in the same row
of Rµ and `(Qλ) is the number of j SW−→(j + 1) In Qλ with j and j + 1 in the same
row of Rµ. The functions cRµ and b are defined in (2.15) and (2.3), respectively.

Example 3.2. Let n = 24, r = 5, m1 = m2 = m4 = m5 = 24, m = 120, and µ =
((5, 1), (3, 3, 1, 1), ∅, (2, 2, 2), (4)). We will insert the up-down sequence of Example
2.3. First we apply the bijection (2.2) to give the variables their color superscript
thereby converting

I = [7, 11, 12, 12, 4][110]
∣∣∣∣[48, 70, 75][75, 75, 30][1][50]

∣∣∣∣ ∣∣∣∣[72, 25][16, 18][119, 97]
∣∣∣∣[5, 80, 79, 25].

to

[7(1), 11(1), 12(1), 12(1), 4(1)][14(5)]
∣∣∣∣[24(2), 22(3), 3(4)][3(4), 3(4), 6(2)][1(1)][2(3)]

∣∣∣∣ ∣∣∣∣
[24(3), 1(2)][16(1), 18(1)][23(5), 1(5)]

∣∣∣∣[5(1), 8(4), 7(4), 1(2)]

Upon inserting these variables we get

Qλ =


1 4 5 13
2 21
3
17
18

,
7 121624

,
8 14
15 ,

9 1011
2223 ,

6 20
19

 ,

and

Pλ =


1 4 7 12
5 11
12
16
18

,
1 1 6 24

,
2 22
24 ,

3 3 3
7 8 ,

1 14
23

 .

The weight wtµ(Qλ) is computed using the row reading tableaux Rµ in Example
2.3 and is the same as the µ-weight of the sequence I,

wtµ(Qλ) = ((−q−1)2q2u1)u5((−q−1)2u2
4)(q

2u2
4)u

2
1u

2
3(qu

4
3)(−q−1u4

1)(qu
4
5)(−q−1q2u5

4).

¤

Theorem 3.3. Let µ ∈ Pn,r, then

qµ(x; q,u) =
∑

λ∈Pn,r

( ∑
Qλ

wtµ(Qλ)
)

sλ(x),

where the inner sum is over all standard tableaux Qλ of shape λ.

Proof. Comparing (2.15) and (2.16) with (3.2) and (3.3), we see that our insertion
satisfies

if (Pλ, Qλ) RSK←→ xi1 , . . . , xin
, then wtµ(i1, . . . , in) = wtµ(Qλ).
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We now apply RSK insertion to the formula for qµ found in Corollary 2.4:

qµ(x; q,u) =
∑

i1,... ,in

wtµ(i1, . . . , in)xi1 · · ·xin

=
∑

λ∈Pn,r

∑
(Pλ,Qλ)

wtµ(Qλ)xPλ

=
∑

λ∈Pn,r

∑
Qλ

wtµ(Qλ)
∑
Pλ

xPλ

=
∑

λ∈Pn,r

∑
Qλ

wtµ(Qλ)sλ(x),

where Pλ varies over all column-strict tableaux of shape λ and Qλ varies over all
standard tableaux of shape λ. ¤

The Schur functions sλ are linearly independent [Mac], Appendix B (7.4), so
comparing coefficients of sλ in (2.12) and Theorem 3.3 gives

Corollary 3.4. For λ,µ ∈ Pn,r, we have

χλ
q (aµ) =

∑
Qλ

wtµ(Qλ),

where χλ
q (aµ) is the irreducible character of Hn,r indexed by λ and evaluated at aµ

and the sum is over all standard tableaux Qλ of shape λ.

Remark 3.5. Upon setting q = 1 and ui = ζi, the formulas in Theorem 3.3 and
Corollary 3.4 become a symmetric function identity

(3.4) pµ(x) =
∑

λ∈Pn,r

( ∑
Qλ

wtµ(Qλ)
∣∣∣

q=1
ui=ζi

)
sλ(x),

and a character formula

(3.5) χλ
1 (wµ) =

∑
Qλ

wtµ(Qλ)
∣∣∣

q=1
ui=ζi

,

for the complex reflection group Gn,r.

Remark 3.6. Let fλ = dim(V λ
1 ) = χλ

1 (1). This dimension is equal to the number
of standard tableaux of shape λ. As a special case of our insertion, we can restrict
to sequences x

(k1)
i1

, . . . , x
(kn)
in

where i1, . . . , in is a permutation of 1, . . . , n and 1 ≤
ki ≤ r. There are n!rn such sequences. Furthermore, when we insert these special
sequences, we get a pair (P, Q) of standard tableaux (the column-strict tableau P is
standard because all the subscripts are unique). Thus, our modified RSK insertion
gives a bijective proof of the identity

(3.6) n!rn =
∑

λ∈Pn,r

f2
λ,

which also follows by decomposing the regular representation of Gn,r into irre-
ducibles and comparing dimensions.
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