ROBINSON-SCHENSTED-KNUTH INSERTION AND CHARACTERS OF CYCLOTOMIC HECKE ALGEBRAS

ANDY CANTRELL, TOM HALVERSON, AND BRIAN MILLER
Dedicated to Robert Gaines, 1941-2001.

0. Introduction

The cyclotomic Hecke algebras $H_{n, r}=H_{n}\left(u_{1}, \ldots, u_{r} ; q\right)$ were defined by Ariki and Koike in [AK] as Iwahori-Hecke algebras of the complex reflection group $G_{n, r}=$ $S_{n} 乙(\mathbb{Z} / r \mathbb{Z})^{n}$ where S_{n} is the symmetric group. If ζ is a primitive complex r th root of unity, then when $q \rightarrow 1$ and $u_{i} \rightarrow \zeta^{i}$, the algebra $H_{n, r}$ specializes to the group algebra $\mathbb{C}\left[G_{n, r}\right]$. The irreducible representations of $H_{n, r}$ are constructed in [AK]. They are indexed by the set of all r-tuples of partitions with a total of n boxes, called r-partitions.

For each r-partition $\boldsymbol{\mu}$, T. Shoji [Sho] defines a symmetric function $q_{\boldsymbol{\mu}}$ and proves that

$$
q_{\boldsymbol{\mu}}=\sum_{\boldsymbol{\lambda}} \chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right) s_{\boldsymbol{\lambda}}
$$

where $s_{\boldsymbol{\lambda}}$ is the Schur function associated to the r-partition $\boldsymbol{\lambda}$ and $\chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right)$ is the irreducible $H_{n, r}$-character associated to $\boldsymbol{\lambda}$ and evaluated at an element a_{μ}. The function q_{μ} is a deformation of the power sum symmetric function, and Shoji's formula is analogous to the Frobenius formula for symmetric group characters. Shoji proves it using the Schur-Weyl duality for $H_{n, r}$ found in [SS].

In this paper we derive the formula

$$
q_{\boldsymbol{\mu}}=\sum_{\boldsymbol{\lambda}}\left(\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)\right) s_{\boldsymbol{\lambda}}
$$

where $Q_{\boldsymbol{\lambda}}$ ranges over the set of "standard tableaux" of shape $\boldsymbol{\lambda}$, and where $\mathrm{w} t_{\boldsymbol{\mu}}$ is a weight on standard tableaux that depends on the parameters q and u_{i} and that is computed combinatorially. By comparing coefficients of $s_{\boldsymbol{\lambda}}$ in these two formulas we obtain the expression

$$
\chi_{q}^{\lambda}\left(a_{\mu}\right)=\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\mu}\left(Q_{\boldsymbol{\lambda}}\right)
$$

which computes the irreducible $H_{n, r}$-characters as a sum over standard tableaux. When $q=1$ and $u_{i}=\zeta^{i}$ our character formula specializes to a character formula for the complex reflection group $G_{n, r}$.

In the special case where $r=1$, the cyclotomic Hecke algebra $H_{n, 1}$ is the IwahoriHecke algebra $H_{n}(q)$ of type A_{n-1} associated with the symmetric group S_{n}. Shoji's Frobenius formula specializes, in this case, to the Frobenius formula of A. Ram [Ra1] for $H_{n}(q)$ and our character formula is a generalization of the Roichman formula [Ro] for irreducible characters of $H_{n}(q)$ and S_{n}.

[^0]Our method is to follow the work of Ram [Ra2] who gives a new proof of the Roichman formula for $H_{n}(q)$ using Robinson-Schensted-Knuth insertion. We write the function $q_{\boldsymbol{\mu}}$ as a sum over $\boldsymbol{\mu}$-weighted integer sequences. We then use RSK insertion, modified for r-partitions, to turn this into a sum over pairs (P, Q) where P is a column-strict tableau, Q is a standard tableau, and P and Q have the same shape $\boldsymbol{\lambda}$ for some r-partition $\boldsymbol{\lambda}$. As a special case of our insertion rule we obtain a bijective proof of the formula

$$
n!r^{n}=\sum_{\boldsymbol{\lambda}} f_{\boldsymbol{\lambda}}^{2}
$$

where $n!r^{n}=\left|G_{n, r}\right|$ and $f_{\boldsymbol{\lambda}}$ is the number of standard tableau whose shape is the r-partition $\boldsymbol{\lambda}$. This fact can be proved algebraically by decomponsing the regular representation of $G_{n, r}$ into irreducibles and comparing dimensions.

A Murnaghan-Nakayama type rule for the characters of $H_{n, r}$ is found in [HR]. It gives the irreducible characters of $H_{n, r}$ as weighted sums over broken-borderstrip tableaux. The characters $\chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right)$ found in Shoji's frobenius formula and in this paper are evaluated on a set $\left\{a_{\boldsymbol{\mu}}\right\}$ of elements in $H_{n, r}$ for which characters are completely determined. The character values found in $[\mathrm{HR}]$ are evaluated on different elements T_{μ}.

1. Cyclotomic Hecke Algebras

Let u_{1}, \ldots, u_{r} and q be indeterminates. The cyclotomic Hecke algebra $H_{n, r}=$ $H_{n}\left(u_{1}, \ldots, u_{r} ; q\right)$ is the algebra over $\mathbb{C}\left(q, u_{1}, \ldots, u_{r}\right)$ defined by generators X_{1}, T_{1}, \ldots, T_{n-1}, and relations
(1) $T_{i}^{2}=\left(q-q^{-1}\right) T_{i}+1, \quad 1 \leq i \leq n-1$,
(2) $T_{i} T_{j}=T_{j} T_{i}$,
$|i-j|>1$,
(3) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad 1 \leq i \leq n-2$,
(4) $X_{1} T_{1} X_{1} T_{1}=T_{1} X_{1} T_{1} X_{1}$,
(5) $\left(X_{1}-u_{1}\right)\left(X_{1}-u_{2}\right) \cdots\left(X_{1}-u_{r}\right)=0$.

These algebras were introduced by Ariki and Koike [AK], and they are semisimple over $\mathbb{C}\left(q, u_{1}, \ldots, u_{r}\right)$.

Let S_{n} be the symmetric group on n letters, and let $G_{n, r}=S_{n} 乙(\mathbb{Z} / r \mathbb{Z})^{n}$. The group $G_{n, r}$ has a presentation on generators $t_{1}, s_{1}, \ldots, s_{n-1}$ where $t_{1}^{r}=1$ and s_{1}, \ldots, s_{n-1} are the simple transpositions in S_{n}. If we let

$$
q \rightarrow 1, \quad u_{i} \rightarrow \zeta^{i}(1 \leq i \leq r), \quad T_{i} \rightarrow s_{i}(1 \leq i \leq n-1), \quad \text { and } \quad X_{1} \rightarrow t_{1}
$$

where

$$
\zeta=\text { a primitive } r \text { th root of unity in } \mathbb{C},
$$

then the presentation for $H_{n, r}$ above becomes a presentation for $\mathbb{C}\left[G_{n, r}\right]$.

1.1. r-partitions.

We use the usual notation for partitions found in [Mac]. We identify a a partition with its Young diagram, let $\ell(\lambda)$ denote the number of rows of λ, and $|\lambda|$ denote the number of boxes in λ. For example, $\lambda=(5,5,3,1,1)$ has $\ell(\lambda)=5$ and $|\lambda|=15$.

An r-tuple of partitions $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right)$ is called an r-partition. We refer to the $\lambda^{(k)}$ as the components of $\boldsymbol{\lambda}$. We let $|\boldsymbol{\lambda}|=\sum_{k=1}^{r}\left|\lambda^{(k)}\right|$ denote the total number
of boxes in $\boldsymbol{\lambda}$, and we let $\ell(\boldsymbol{\lambda})=\sum_{k=1}^{r} \ell\left(\lambda^{(k)}\right)$ denote the total number of rows in $\boldsymbol{\lambda}$. If $|\boldsymbol{\lambda}|=n$, then we say that $\boldsymbol{\lambda}$ is an r-partition of n. For example, if $r=5$, then

$$
\boldsymbol{\lambda}=(\square, \square, \square, \square, \square \square) \quad \text { has } \ell(\boldsymbol{\lambda})=11 \text { and }|\boldsymbol{\lambda}|=24
$$

and, for example, $\lambda^{(2)}=(3,3,1,1)$. We let $\mathcal{P}_{n, r}$ denote the set of all r-partitions of n.

1.2. Irreducible Representations and Characters.

It is known by [AK] that the irreducible representations of $H_{n, r}$ are indexed by $\mathcal{P}_{n, r}$. We let $V_{q}^{\boldsymbol{\lambda}}$ denote the irreducible $H_{n, r}$-module corresponding to $\boldsymbol{\lambda} \in \mathcal{P}_{n, r}$, and we let $\chi_{q}^{\boldsymbol{\lambda}}$ denote the corresponding irreducible character. The irreducible representations and characters of $G_{n, r}$ are also indexed by $\mathcal{P}_{n, r}$. We denote them by $V_{1}^{\boldsymbol{\lambda}}$ and $\chi_{1}^{\boldsymbol{\lambda}}$. The construction of $V_{q}^{\boldsymbol{\lambda}}$ in $[\mathrm{AK}]$ is such that when $q=1$ and $u_{i}=\xi^{i}$, $V_{q}^{\boldsymbol{\lambda}}$ becomes $V_{1}^{\boldsymbol{\lambda}}$ and $\chi_{q}^{\boldsymbol{\lambda}}$ becomes $\chi_{1}^{\boldsymbol{\lambda}}$.

1.3. Standard Elements.

The conjugacy classes of $G_{n, r}$ are also parameterized by $\mathcal{P}_{n, r}$. Define $t_{k}=$ $s_{k-1} \cdots s_{1} t_{1} s_{1} \cdots s_{k-1}$ for $2 \leq k \leq n$, and define

$$
w(1, i)=t_{1}^{i} \quad \text { and } \quad w(k, i)=t_{k}^{i} s_{k-1} \cdots s_{1}, \quad 2 \leq k \leq n
$$

For a partition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ with $|\mu|=n$, define

$$
w(\mu, i)=w\left(\mu_{1}, i\right) \times \cdots \times w\left(\mu_{\ell}, i\right)
$$

with respect to the embedding $G_{\mu_{1}, r} \times \cdots \times G_{\mu_{\ell}, r} \subseteq G_{n, r}$. For $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$, define

$$
\begin{equation*}
w_{\boldsymbol{\mu}}=w\left(\mu^{(1)}, 1\right) w\left(\mu^{(2)}, 2\right) \cdots w\left(\mu^{(r)}, r\right) \tag{1.1}
\end{equation*}
$$

Then $\left\{w_{\boldsymbol{\mu}} \mid \boldsymbol{\mu} \in \mathcal{P}_{n, r}\right\}$ is a set of conjugacy class representatives for $G_{n, r}$.
Shoji ([Sho], §3.6) defines elements $\xi_{1}, \ldots, \xi_{n} \in H_{n, r}$ and shows that $H_{n, r}$ is isomorphic to the algebra generated by $T_{1}, \ldots, T_{n-1}, \xi_{1}, \ldots, \xi_{n}$ subject to
(1) $T_{i}^{2}=\left(q-q^{-1}\right) T_{i}+1$,
$1 \leq i \leq n-1$,
(2) $T_{i} T_{j}=T_{j} T_{i}$,
(3) $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$,
(4) $\xi_{i} \xi_{j}=\xi_{j} \xi_{i}$, $|i-j|>1$,
(5) $\left(\xi_{i}-u_{1}\right)\left(\xi_{i}-u_{2}\right) \cdots\left(\xi_{i}-u_{r}\right)=0$,
-2
(6) $T_{j} \xi_{j}=\xi_{j-1} T_{j}+\Delta^{-2} \sum_{k<\ell}\left(u_{\ell}-u_{k}\right)\left(q-q^{-1}\right) F_{k}\left(\xi_{j-1}\right) F_{\ell}\left(\xi_{j}\right)$,

$$
\begin{equation*}
T_{j} \xi_{j-1}=\xi_{j} T_{j}-\Delta^{-2} \sum_{k<\ell}^{k<\ell}\left(u_{\ell}-u_{k}\right)\left(q-q^{-1}\right) F_{k}\left(\xi_{j-1}\right) F_{\ell}\left(\xi_{j}\right) \tag{7}
\end{equation*}
$$

(8) $T_{i} \xi_{j}=\xi_{j} T_{i}$,

$$
j \neq i-1, i,
$$

where $\Delta=\prod_{k<\ell}\left(u_{\ell}-u_{k}\right)$ is the determinant of the $r \times r$ Vandermonde matrix A, whose ℓ, k-entry is u_{k}^{ℓ} for $0 \leq \ell \leq r-1,1 \leq k \leq r$, and

$$
F_{k}\left(\xi_{j}\right)=\sum_{i=0}^{r-1} h_{k i}\left(u_{1}, \ldots, u_{r}\right) \xi_{j}^{i}
$$

where $h_{k i}\left(u_{1}, \ldots, u_{r}\right)$ is the k, i-entry of the matrix B determined by $A^{-1}=\Delta^{-1} B$. Unfortunately, it appears that the relation between the ξ_{i} and the X_{j} is complicated.

Define

$$
a(1, i)=\xi_{1}^{i} \quad \text { and } \quad a(k, i)=\xi_{k}^{i} T_{k-1} \cdots T_{1}, \quad 2 \leq k \leq n
$$

For a partition $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ with $|\mu|=n$, define

$$
a(\mu, i)=a\left(\mu_{1}, i\right) \times \cdots \times a\left(\mu_{\ell}, i\right)
$$

with respect to the embedding $H_{\mu_{1}, r} \otimes \cdots \otimes H_{\mu_{\ell}, r} \subseteq H_{n, r}$. For $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$, define

$$
\begin{equation*}
a_{\boldsymbol{\mu}}=a\left(\mu^{(1)}, 1\right) a\left(\mu^{(2)}, 2\right) \cdots a\left(\mu^{(r)}, r\right) \tag{1.2}
\end{equation*}
$$

Shoji [Sho], Proposition 7.5 , proves that any character of $H_{n, r}$ is completely determined by its value on the set $\left\{a_{\boldsymbol{\mu}} \mid \boldsymbol{\mu} \in \mathcal{P}_{n, r}\right\}$.

2. Symmetric Functions

In this section, we follow [Mac], Appendix B, and [Sho] and define symmetric functions indexed by r-partitions.

Let m_{1}, \ldots, m_{r} be positive integers satisfying $m_{k} \geq n$ for each $1 \leq k \leq r$, and let $m=\sum_{k=1}^{r} m_{k}$. We define a set \mathbf{x} of m indeterminates as follows

$$
\begin{aligned}
\mathbf{x}^{(k)} & =\left\{x_{1}^{(k)}, \ldots, x_{m_{k}}^{(k)}\right\}, \quad 1 \leq k \leq r \\
\mathbf{x} & =\mathbf{x}^{(1)} \cup \cdots \cup \mathbf{x}^{(r)}
\end{aligned}
$$

We say that the indeterminates in $\mathbf{x}^{(k)}$ are of color k, and we linearly order the indeterminates $\mathbf{x}=x_{1}^{(1)}, \ldots, x_{m_{r}}^{(r)}$ by the rule,

$$
\begin{equation*}
x_{i}^{(k)}<x_{j}^{(\ell)} \quad \text { if and only if } \quad k<\ell \quad \text { or } \quad k=\ell \text { and } i<j . \tag{2.1}
\end{equation*}
$$

It is sometimes notationally convenient to identify the variables $\mathbf{x}=x_{1}^{(1)}, \ldots, x_{m_{r}}^{(r)}$ with the variables $\mathbf{x}=x_{1}, \ldots, x_{m}$ as follows,

To do this explicitly, set $x_{j}=x_{j-d_{j}}^{(b(j))}$, with $d_{j}=\sum_{i=1}^{b(j)} m_{i}$, and we define a function

$$
\begin{equation*}
b(j)=k, \quad \text { where } \quad m_{1}+\ldots+m_{k}<j \leq m_{1}+\ldots+m_{k+1} \tag{2.3}
\end{equation*}
$$

so that $b(j)$ gives the color of the indeterminate x_{j}. We will use these two notations interchangeably.

Recall from Section 1, that ζ is a primitive r th root of unity in \mathbb{C}. For integers $t \geq 1$ and $1 \leq i \leq r$, let

$$
\begin{equation*}
p_{t}^{(i)}(\mathbf{x})=\sum_{j=1}^{r} \zeta^{i j} p_{t}\left(\mathbf{x}^{(j)}\right) \tag{2.4}
\end{equation*}
$$

where $p_{t}\left(\mathbf{x}^{(j)}\right)$ denotes the t th power sum symmetric function ([Mac], I $\S 2$) with respect to the variables $\mathbf{x}^{(j)}$. As a special case, we let $p_{0}^{(i)}(\mathbf{x})=1$ for each i. For $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$ with $\boldsymbol{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(r)}\right)$ and $\mu^{(k)}=\left(\mu_{1}^{(k)}, \ldots, \mu_{\ell_{k}}^{(k)}\right)$, define

$$
\begin{equation*}
p_{\boldsymbol{\mu}}(\mathbf{x})=\prod_{k=1}^{r} \prod_{j=1}^{\ell_{k}} p_{\mu_{j}^{(k)}}^{(k)}(\mathbf{x}) \tag{2.5}
\end{equation*}
$$

Definition (2.5) is given in [Sho] and it is the complex conjugate of the definition of $p_{\boldsymbol{\mu}}$ given in [Mac].

Now we define the Schur function associated to $\boldsymbol{\lambda} \in \mathcal{P}_{n, r}$ by

$$
\begin{equation*}
s_{\boldsymbol{\lambda}}(\mathbf{x})=\prod_{k=1}^{r} s_{\lambda^{(k)}}\left(\mathbf{x}^{(k)}\right) \tag{2.6}
\end{equation*}
$$

where $s_{\lambda^{(k)}}\left(\mathbf{x}^{(k)}\right)$ denotes the Schur function ([Mac], I $\left.\S 3\right)$ associated to the partition $\lambda^{(k)}$ with respect to the variables $\mathbf{x}^{(k)}$. If $\boldsymbol{\lambda} \in \mathcal{P}_{n, r}$, then a column-strict tableau of shape $\boldsymbol{\lambda}$ is a filling of the boxes of $\boldsymbol{\lambda}$ with integers such that for each k
(1) $\lambda^{(k)}$ contains integers from the set $\left\{1, \ldots, m_{k}\right\}$,
(2) the columns of $\lambda^{(k)}$ strictly increase from top to bottom, and
(3) the rows of $\lambda^{(k)}$ weakly increase (do not decrease) from left to right.

For example,

For a column-strict tableau $P_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$ we define

$$
\begin{equation*}
\mathbf{x}^{P_{\boldsymbol{\lambda}}}=\prod_{k=1}^{r} \prod_{j=1}^{m_{k}}\left(x_{j}^{(k)}\right)^{m_{j k}\left(P_{\boldsymbol{\lambda}}\right)} \tag{2.7}
\end{equation*}
$$

where $m_{j k}\left(P_{\boldsymbol{\lambda}}\right)$ denotes the number of times that j appears in the k th component (i.e., $\lambda^{(k)}$) of $P_{\boldsymbol{\lambda}}$. It follows from [Mac] I.5.12 that

$$
\begin{equation*}
s_{\boldsymbol{\lambda}}(\mathbf{x})=\sum_{P_{\boldsymbol{\lambda}}} \mathbf{x}^{P_{\boldsymbol{\lambda}}} \tag{2.8}
\end{equation*}
$$

where the sum is over all column-strict tableaux $P_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$.
We now define a deformation of $p_{\boldsymbol{\mu}}$. Let \mathbf{u} denote the parameters u_{1}, \ldots, u_{r}. For integers $t \geq 1$ and $1 \leq i \leq r$, let

$$
\begin{equation*}
q_{t}^{(i)}(\mathbf{x} ; q, \mathbf{u})=\sum_{\substack{I=\left(i_{1}, \ldots, i_{t}\right) \\ 1 \leq i_{1} \leq \cdots \leq i_{t} \leq m}} u_{b(\max (I))}^{i} e^{e(I)}\left(q-q^{-1}\right)^{\ell(I)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}} \tag{2.9}
\end{equation*}
$$

where $e(I)$ is the number of $i_{j} \in I$ such that $i_{j}=i_{j+1}, \ell(I)$ is the number of $i_{j} \in I$ such that $i_{j}<i_{j+1}, \max (I)$ is the maximum element of I, and b is the function defined in (2.3). This definition of $q_{t}^{(i)}$ is given in [Sho]. For $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$ with $\boldsymbol{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(r)}\right)$ and $\mu^{(k)}=\left(\mu_{1}^{(k)}, \ldots, \mu_{\ell_{k}}^{(k)}\right)$, define

$$
\begin{equation*}
q_{\mu}(\mathbf{x} ; q, \mathbf{u})=\prod_{k=1}^{r} \prod_{j=1}^{\ell_{k}} q_{\mu_{j}^{(k)}}^{(k)}(\mathbf{x} ; q, \mathbf{u}) \tag{2.10}
\end{equation*}
$$

Note that when $q=1$ and $u_{i}=\zeta^{i}$, we have $q_{\mu}=p_{\boldsymbol{\mu}}$.
In [Mac], Appendix B, (9.7), we find the following Frobenius formula for the irreducible characters of $G_{n, r}$,

$$
\begin{equation*}
p_{\boldsymbol{\mu}}(\mathbf{x})=\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} \chi_{1}^{\boldsymbol{\lambda}}\left(w_{\boldsymbol{\mu}}\right) s_{\boldsymbol{\lambda}}(\mathbf{x}) \tag{2.11}
\end{equation*}
$$

for each $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$. Shoji [Sho] extends this formula to a Frobenius formula for the irreducible characters of $H_{n, r}$,

$$
\begin{equation*}
q_{\boldsymbol{\mu}}(\mathbf{x} ; q, \mathbf{u})=\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} \chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right) s_{\boldsymbol{\lambda}}(\mathbf{x}) \tag{2.12}
\end{equation*}
$$

for each $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$.
We say that $I=\left(i_{1}, \ldots, i_{t}\right)$ is an up-down sequence if there exists an s, with $0 \leq s \leq t$, such that

$$
i_{1}<\cdots<i_{s}<i_{s+1} \geq \cdots \geq i_{t}, \quad \text { for some } s, \text { with } 0 \leq s<t
$$

and we say that i_{s+1} is the peak of the up-down sequence I. Note that any of i_{1}, \ldots, i_{t} can potentially be the peak of an up-down sequence $I=\left(i_{1}, \ldots, i_{t}\right)$. Following [Ra2], we define the weight
(2.13) $\mathrm{w} t\left(i_{1}, \ldots, i_{t}\right)= \begin{cases}0, & \text { if } i_{1}, \ldots, i_{t} \text { is not an up-down sequence } \\ (-q)^{-s} q^{t-1-s}, & \text { if } i_{1}<\cdots<i_{s}<i_{s+1} \geq \cdots \geq i_{t} .\end{cases}$

If $t=1$ the weight is $\mathrm{w} t\left(i_{1}\right)=1$.
Lemma 2.1. [Ra2] Let $I=\left(i_{1}, \ldots, i_{t}\right)$ with $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq m$, and let S_{I} denote the set of all distinct permutations of I. Then

$$
q^{e(I)}\left(q-q^{-1}\right)^{\ell(I)}=\sum_{\sigma \in S_{I}} \mathrm{w} t(\sigma I)
$$

where $e(I)$ is the number of $i_{j} \in I$ such that $i_{j}=i_{j+1}$ and $\ell(I)$ is the number of $i_{j} \in I$ such that $i_{j}<i_{j+1}$.
Proof. In [Ra2], Lemma 1.5, Ram proves the first equality below

$$
\begin{aligned}
\sum_{\substack{I=\left(i_{1}, \ldots, i_{t}\right) \\
1 \leq i_{1} \leq \ldots i_{t} \leq m}} q^{e(I)}\left(q-q^{-1}\right)^{\ell(I)} x_{i_{1}} \cdots x_{i_{t}} & =\sum_{\substack{I=\left(i_{1}, \ldots, i_{k}\right) \\
1 \leq i_{1}, \ldots, i_{t} \leq m}} \mathrm{w} t(I) x_{i_{1}} \cdots x_{i_{t}} \\
& =\sum_{\substack{I=\left(i_{1}, \ldots, i_{k}\right) \\
1 \leq i_{1} \leq \ldots \leq i_{t} \leq m}} \sum_{\sigma \in S_{I}} \mathrm{w} t(\sigma I) x_{i_{1}} \cdots x_{i_{t}} .
\end{aligned}
$$

The second equality follows from the fact that $x_{i_{1}} \cdots x_{i_{k}}=x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}}$ for all $\sigma \in S_{I}$. The result is obtained by comparing coefficients of $x_{i_{1}} \cdots x_{i_{t}}$.

Proposition 2.2. For integers $t \geq 1$ and $1 \leq k \leq r$, we have

$$
q_{t}^{(k)}(\mathbf{x} ; q, \mathbf{u})=\sum_{i_{1}, \ldots, i_{t}} \mathrm{w} t\left(i_{1}, \ldots, i_{t}\right) u_{b\left(i_{s+1}\right)}^{k} x_{i_{1}} \cdots x_{i_{t}}
$$

where the sum is over all sequences i_{1}, \ldots, i_{t} with $1 \leq i_{j} \leq m$ and $\mathrm{w} t\left(i_{1}, \ldots, i_{t}\right)$ is given in (2.13). Note that $\mathrm{w} t$ is zero unless i_{1}, \ldots, i_{t} is an up-down sequence.

Proof. As in Lemma 2.1, let S_{I} denote the set of distinct permutations of I. For all $\sigma \in S_{I}$ we have $\max (I)=\max (\sigma(I))$ and $x_{i_{1}} \cdots x_{i_{t}}=x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}}$. Furthermore, if I is an up-down sequence then its peak is $\max (I)=i_{s+1}$.

We use Lemma 2.1 to write the sum over non-decreasing sequences

$$
\begin{aligned}
\sum_{I=\left(i_{1}, \ldots, i_{t}\right)} \mathrm{w} t(I) & u_{b(\max (I))}^{k} x_{i_{1}} \cdots x_{i_{t}} \\
& =\sum_{\substack{I=\left(i_{1}, \ldots, i_{t}\right) \\
1 \leq i_{1} \leq \cdots \leq i_{t} \leq m}} \sum_{\sigma \in S_{I}} \mathrm{w} t(\sigma I) u_{b(\max (\sigma I))}^{k} x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(t)}} \\
& =\sum_{\substack{I=\left(i_{1}, \ldots, i_{t}\right) \\
1 \leq i_{1} \leq \cdots \leq i_{t} \leq m}}^{k} u_{b(\max (I))}^{k(I)} x_{i_{1}} \cdots x_{i_{t}} \sum_{\sigma \in S_{I}} \mathrm{w} t(\sigma I) \\
& =\sum_{\substack{I=\left(i_{1}, \ldots, i_{t}\right) \\
1 \leq i_{1} \leq \cdots \leq i_{t} \leq m}} q^{-1}\left(q-q^{\ell(I)} u_{b(\max (I))}^{k} x_{i_{1}} \cdots x_{i_{t}}\right. \\
& =q_{t}^{(k)}(\mathbf{x} ; q, \mathbf{u})
\end{aligned}
$$

by the definition (2.9) of $q_{t}^{(k)}$.
Let $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$. The row reading tableau $R_{\boldsymbol{\mu}}$ of shape $\boldsymbol{\mu}$ is the r-partition $\boldsymbol{\mu}$ with the boxes filled in with the numbers $1, \ldots, n$ so that $\mu^{(1)}$ contains the numbers $1, \ldots,\left|\mu^{(1)}\right|$ in order from left-to-right and top-to-bottom, $\mu^{(2)}$ contains the numbers $\left|\mu^{(1)}\right|+1, \ldots,\left|\mu^{(1)}\right|+\left|\mu^{(2)}\right|$ in order from left-to-right and top-to-bottom, and so on. For $1 \leq i \leq n$ we define the component function $c_{R_{\mu}}(i)$ by

$$
\begin{equation*}
c_{R_{\mu}}(i)=k, \quad \text { if } i \text { is in the } k \text { th component of } R_{\mu} . \tag{2.14}
\end{equation*}
$$

We say that $I=\left(i_{1}, \ldots, i_{n}\right)$ is a $\boldsymbol{\mu}$-up-down sequence if it satisfies the following property

$$
\begin{align*}
& \text { if } k, k+1, \ldots, k+t \text { is a row of } R_{\boldsymbol{\mu}} \text {, then } \\
& \text { the subsequence } i_{k}, i_{k+1}, \ldots, i_{k+t} \text { is an up-down sequence, } \tag{2.15}\\
& \text { i.e, } i_{k}<i_{k+1}<\cdots<i_{p} \geq \cdots \geq i_{k+t} \text {. }
\end{align*}
$$

The index i_{p}, shown above, is the peak of the row. When I is a $\boldsymbol{\mu}$-up-down sequence, we let $P_{I}^{\boldsymbol{\mu}}$ denote the set of peaks i_{p} in I, one for each row of $R_{\boldsymbol{\mu}}$. We define the $\boldsymbol{\mu}$-weight of a sequence $I=\left(i_{1}, \ldots, i_{n}\right)$ by

$$
\mathrm{w} t_{\boldsymbol{\mu}}(I)= \begin{cases}0, & \text { if } I \text { is not a } \boldsymbol{\mu} \text {-up-down sequence } \tag{2.16}\\ \left(-q^{-1}\right)^{\ell(I)} q^{\gamma(I)} \prod_{i_{p} \in P_{I}^{\mu}} u_{b\left(i_{p}\right)}^{c_{R \mu}(p)}, & \text { if } I \text { is a } \boldsymbol{\mu} \text {-up-down sequence }\end{cases}
$$

where $\gamma(I)$ is the number of $i_{j} \geq i_{j+1}$ with j and $j+1$ in the same row of R_{μ} and $\ell(I)$ is the number of $i_{j}<i_{j+1}$ with j and $j+1$ in the same row of $R_{\boldsymbol{\mu}}$. The functions $c_{R_{\mu}}$ and b are defined in (2.15) and (2.3), respectively.
Example 2.3. Let $n=24, r=5, m_{1}=m_{2}=m_{4}=m_{5}=24, m=120$, and $\boldsymbol{\mu}=((5,1),(3,3,1,1), \emptyset,(2,2,2),(4))$. The row reading tableau of shape $\boldsymbol{\mu}$ is

The following squence is a $\boldsymbol{\mu}$-up-down sequence
$I=[7,11, \underline{12}, 12,4][\underline{110}]|[48,70, \underline{75}][\underline{75}, 75,30][\underline{1}][\underline{50}]||[\underline{72}, 25][16, \underline{18}][\underline{119}, 97]|[5, \underline{80}, 79,25]$.

The braces group the components elements according to the rows of R_{μ}, the vertical bars indicate the separation between the components of $R_{\boldsymbol{\mu}}$, and the peaks are underlined. The $\boldsymbol{\mu}$-weight of I is

$$
\mathrm{w} t_{\boldsymbol{\mu}}(I)=\left(\left(-q^{-1}\right)^{2} q^{2} u_{1}\right) u_{5}\left(\left(-q^{-1}\right)^{2} u_{4}^{2}\right)\left(q^{2} u_{4}^{2}\right) u_{1}^{2} u_{3}^{2}\left(q u_{3}^{4}\right)\left(-q^{-1} u_{1}^{4}\right)\left(q u_{5}^{4}\right)\left(-q^{-1} q^{2} u_{4}^{5}\right)
$$

The definition (2.10) of $q_{\boldsymbol{\mu}}$ can be thought of as a product of $q_{t}^{(k)}$ over the rows of $R_{\boldsymbol{\mu}}$ where t is the length of the row and k is the component of the row. Thus the following collollary is immediate from Proposition 2.2.

Corollary 2.4. For $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$,

$$
q_{\boldsymbol{\mu}}(\mathbf{x} ; q, \mathbf{u})=\sum_{i_{1}, \ldots, i_{n}} \mathrm{w} t_{\boldsymbol{\mu}}\left(i_{1}, \ldots, i_{n}\right) x_{i_{1}} \cdots x_{i_{n}}
$$

where the sum is over all $\boldsymbol{\mu}$-up-down sequences i_{1}, \ldots, i_{n} and $\mathrm{w} \boldsymbol{t}_{\boldsymbol{\mu}}$ is defined in (2.16). Note that $\mathrm{w} t$ is zero unless i_{1}, \ldots, i_{n} is a $\boldsymbol{\mu}$-up-down sequence.

3. RSK Insertion and Roichman Weights

If $\boldsymbol{\lambda} \in \mathcal{P}_{n, r}$, then a standard tableau $Q_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$ is a filling of the boxes of $\boldsymbol{\lambda}$ with integers from $\{1,2, \ldots, n\}$ such that each integer from $\{1,2, \ldots, n\}$ appears in $Q_{\boldsymbol{\lambda}}$ exactly once, and for each $1 \leq k \leq r$
(1) the columns of $\lambda^{(k)}$ strictly increase from top to bottom, and
(2) the rows of $\lambda^{(k)}$ strictly increase from left to right.

The Robinson-Schensted-Knuth (RSK) insertion scheme (see [Sag]) is an algorithm which gives a bijection between sequences $x_{i_{1}}, \ldots, x_{i_{n}}$, with $1 \leq i_{j} \leq m$, and pairs (P, Q) where P is a column-strict tableaux, Q is a standard tableau, and P and Q have shape λ for some partition λ with n boxes. The RSK insertion algorithm constructs the pair of tableaux (P, Q) iteratively,

$$
(\emptyset, \emptyset)=\left(P_{0}, Q_{0}\right),\left(P_{1}, Q_{1}\right), \ldots,\left(P_{n}, Q_{n}\right)=(P, Q)
$$

in such a way that
(1) P_{j} is a column strict tableau that contains j boxes, and Q_{j} is a standard tableau that has the same shape as P_{j},
(2) P_{j} is obtained from P_{j-1} by column inserting i_{j} into P_{j-1}, denoted $P_{j}=$ $P_{j-1} \leftarrow i_{j}$, as follows
(a) Insert i_{j} into the first column of P_{j-1} by displacing the smallest number $\geq i$; if every number is $<i$, add i to the bottom of the first column.
(b) If i displaces x from the first column, insert x into the second column using the rules of (a).
(c) Repeat for each subsequent column, until a number is added to the bottom of some (possibly empty) column.
(3) Q_{j} is obtained from Q_{j-1} by putting j in the newly added box (i.e., the box created in going from P_{j-1} to P_{j}).
The standard tableau Q is called the recording tableau.
We extend the RSK algorithm to work for tableaux whose shape are r-partitions. Given a sequence $x_{i_{1}}^{\left(k_{1}\right)}, x_{i_{2}}^{\left(k_{2}\right)}, \ldots, x_{i_{n}}^{\left(k_{n}\right)}$, with $1 \leq k_{j} \leq r$ and $1 \leq i_{j} \leq m_{k_{j}}$, we construct a sequence $(\emptyset, \emptyset)=\left(P_{0}, Q_{0}\right), \ldots,\left(P_{n}, Q_{n}\right)=(P, Q)$, where P_{i} is a
column-strict tableau, Q_{i} is a standard tableau, and P_{i} and Q_{i} have the same r partition shape. We insert $x_{i}^{(k)}$ into a semistandard tableau P_{j-1} having r-partition shape as follows

$$
\begin{equation*}
\left(P_{j-1}^{(1)}, \ldots, P_{j-1}^{(r)}\right) \leftarrow x_{i}^{(k)}=\left(P_{j-1}^{(1)}, \ldots, P_{j-1}^{(k)} \leftarrow x_{i}^{(k)}, \ldots, P_{j-1}^{(r)}\right), \tag{3.1}
\end{equation*}
$$

where we use usual column insertion to insert variables of type k into the k th component of P_{j-1}.

For example, if $r=3$ the result of inserting $x_{2}^{(1)}, x_{1}^{(2)}, x_{4}^{(2)}, x_{1}^{(2)}, x_{1}^{(3)}$ is

$$
\begin{aligned}
& P_{i}:(\emptyset, \emptyset, \emptyset),(\boxed{2}, \emptyset, \emptyset),(\boxed{2}, \boxed{1}, \emptyset),(\boxed{2}, \boxed{1}, \emptyset),\left(\boxed{2}, \frac{1}{4} 1, \emptyset\right),\left(\boxed{2}, \frac{1}{4} 1, \sqrt{4}\right), \\
& Q_{i}:(\emptyset, \emptyset, \emptyset),(\boxed{1}, \emptyset, \emptyset),(\boxed{1}, \boxed{2}, \emptyset),\left(\boxed{1}, \sqrt[2]{\frac{2}{3}}, \emptyset\right),\left(\boxed{1}, \sqrt{\frac{2}{3}} 4, \emptyset\right),\left(\begin{array}{|c|c|}
\hline 1 & 4 \\
3 & \boxed{5}
\end{array}\right) .
\end{aligned}
$$

To see that this insertion provides a bijection, we can construct the inverse algorithm by using usual column uninsertion, in the reverse order of the entries of Q, and using the component of P to tell us the type of the uninserted variable. We denote this bijection by

$$
(P, Q) \stackrel{\mathrm{RSK}}{\longleftrightarrow} x_{i_{1}}^{\left(k_{1}\right)}, \ldots, x_{i_{n}}^{\left(k_{n}\right)}
$$

Let $\boldsymbol{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \in \mathcal{P}_{n, r}$, and let $Q_{\boldsymbol{\lambda}}$ be a standard tableau of shape $\boldsymbol{\lambda} \in \mathcal{P}_{n, r}$. If a and b are entries of $Q_{\boldsymbol{\lambda}}$, define

$$
\begin{gathered}
a \stackrel{\mathrm{SW}}{\mathrm{~L}} b \text { if }\left\{\begin{array}{l}
b \in \lambda^{(k)}, a \in \lambda^{(\ell)}, \text { and } k>\ell, \\
o r \\
b \text { is south (below) and/or west (left) of } a \text { in } \lambda^{(k)},
\end{array}\right. \\
a \xrightarrow{\mathrm{NE}} b \text { if }\left\{\begin{array}{l}
b \in \lambda^{(k)}, a \in \lambda^{(\ell)}, \text { and } k<\ell, \\
o r \\
b \text { is north (above) and/or east (right) of } a \text { in } \lambda^{(k)} .
\end{array}\right.
\end{gathered}
$$

In the ordering on our indeterminates, we have $x_{i}^{(k)}<x_{j}^{(\ell)}$ if $k<\ell$ or $k=\ell$ and $i<j$. The following proposition is an immediate consequence of this fact and well-known facts about RSK insertion (see [Ra2], Proposition 2.1).

Proposition 3.1. Let $P_{j+1}=\left(P_{j-1} \leftarrow x_{i_{j}}^{\left(k_{j}\right)}\right) \leftarrow x_{i_{j+1}}^{\left(k_{j+1}\right)}$, where P_{j-1} is a columnstrict tableau, and let Q_{j+1} be the associated recording tableau.
(1) If $x_{i_{j}}^{\left(k_{j}\right)}<x_{i_{j+1}}^{\left(k_{j+1}\right)}$ then $j \xrightarrow{\mathrm{SW}}(j+1)$ in Q_{j+1}.
(2) If $x_{i_{j}}^{\left(k_{j}\right)} \geq x_{i_{j+1}}^{\left(k_{j+1}\right)}$ then $j \xrightarrow{\mathrm{NE}}(j+1)$ in Q_{j+1}.

Let $\boldsymbol{\mu}, \boldsymbol{\lambda} \in \mathcal{P}_{n, r}$. We say that a standard tableau $Q_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$ is a $\boldsymbol{\mu}-S W-N E$ tableau if it satisfies the following property

$$
\begin{align*}
& \text { if } k, k+1, \ldots, k+t \text { is a row of } R_{\boldsymbol{\mu}} \text {, then } \\
& k \xrightarrow{\mathrm{SW}}(k+1) \xrightarrow{\mathrm{SW}} \cdots \xrightarrow{\mathrm{SW}} p \xrightarrow{\mathrm{NE}} \cdots \xrightarrow{\mathrm{NE}}(k+t) \text { in } Q_{\boldsymbol{\lambda}} \tag{3.2}
\end{align*}
$$

The number p, shown above, is called the peak of the row. When $Q_{\boldsymbol{\lambda}}$ is a $\boldsymbol{\mu}$-SW-NE tableau, we let $P_{Q_{\boldsymbol{\lambda}}}^{\mu}$ denote the set of peaks p in $Q_{\boldsymbol{\lambda}}$, one for each row of $R_{\boldsymbol{\mu}}$.

We define the $\boldsymbol{\mu}$-weight of a standard tableau Q_{λ} by
$\mathrm{w} t_{\mu}\left(Q_{\boldsymbol{\lambda}}\right)= \begin{cases}0, & \text { if } Q_{\boldsymbol{\lambda}} \text { is not a } \boldsymbol{\mu} \text {-SW-NE tableau, } \\ \left(-q^{-1}\right)^{\ell\left(Q_{\lambda}\right)} q^{\gamma\left(Q_{\boldsymbol{\lambda}}\right)} \prod_{i_{p} \in P_{Q_{\boldsymbol{\lambda}}}} u_{b\left(i_{p}\right)}^{c_{R_{\mu}}(p)}, & \text { if } Q_{\boldsymbol{\lambda}} \text { is a } \boldsymbol{\mu} \text {-SW-NE tableau, }\end{cases}$
where $\gamma\left(Q_{\boldsymbol{\lambda}}\right)$ is the number of $j \xrightarrow{\mathrm{NE}}(j+1)$ in $Q_{\boldsymbol{\lambda}}$ with j and $j+1$ in the same row of $R_{\boldsymbol{\mu}}$ and $\ell\left(Q_{\boldsymbol{\lambda}}\right)$ is the number of $j \xrightarrow{\mathrm{SW}}(j+1)$ In $Q_{\boldsymbol{\lambda}}$ with j and $j+1$ in the same row of $R_{\boldsymbol{\mu}}$. The functions $c_{R_{\mu}}$ and b are defined in (2.15) and (2.3), respectively.
Example 3.2. Let $n=24, r=5, m_{1}=m_{2}=m_{4}=m_{5}=24, m=120$, and $\boldsymbol{\mu}=$ $((5,1),(3,3,1,1), \emptyset,(2,2,2),(4))$. We will insert the up-down sequence of Example 2.3. First we apply the bijection (2.2) to give the variables their color superscript thereby converting
$I=[7,11,12,12,4][110]|[48,70,75][75,75,30][1][50]||[72,25][16,18][119,97]|[5,80,79,25]$.
to

$$
\begin{gathered}
{\left[7^{(1)}, 11^{(1)}, 12^{(1)}, 12^{(1)}, 4^{(1)}\right]\left[14^{(5)}\right]\left|\left[24^{(2)}, 22^{(3)}, 3^{(4)}\right]\left[3^{(4)}, 3^{(4)}, 6^{(2)}\right]\left[1^{(1)}\right]\left[2^{(3)}\right]\right| \mid} \\
{\left[24^{(3)}, 1^{(2)}\right]\left[16^{(1)}, 18^{(1)}\right]\left[23^{(5)}, 1^{(5)}\right] \mid\left[5^{(1)}, 8^{(4)}, 7^{(4)}, 1^{(2)}\right]}
\end{gathered}
$$

Upon inserting these variables we get
and

The weight $\mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)$ is computed using the row reading tableaux $R_{\boldsymbol{\mu}}$ in Example 2.3 and is the same as the $\boldsymbol{\mu}$-weight of the sequence I,
$\mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)=\left(\left(-q^{-1}\right)^{2} q^{2} u_{1}\right) u_{5}\left(\left(-q^{-1}\right)^{2} u_{4}^{2}\right)\left(q^{2} u_{4}^{2}\right) u_{1}^{2} u_{3}^{2}\left(q u_{3}^{4}\right)\left(-q^{-1} u_{1}^{4}\right)\left(q u_{5}^{4}\right)\left(-q^{-1} q^{2} u_{4}^{5}\right)$.

Theorem 3.3. Let $\boldsymbol{\mu} \in \mathcal{P}_{n, r}$, then

$$
q_{\boldsymbol{\mu}}(\mathbf{x} ; q, \mathbf{u})=\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}}\left(\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)\right) s_{\boldsymbol{\lambda}}(\mathbf{x})
$$

where the inner sum is over all standard tableaux $Q_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$.
Proof. Comparing (2.15) and (2.16) with (3.2) and (3.3), we see that our insertion satisfies

$$
\text { if } \quad\left(P_{\boldsymbol{\lambda}}, Q_{\boldsymbol{\lambda}}\right) \stackrel{\mathrm{RSK}}{\longleftrightarrow} x_{i_{1}}, \ldots, x_{i_{n}}, \quad \text { then } \quad \mathrm{w} t_{\boldsymbol{\mu}}\left(i_{1}, \ldots, i_{n}\right)=\mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right) .
$$

We now apply RSK insertion to the formula for $q_{\boldsymbol{\mu}}$ found in Corollary 2.4:

$$
\begin{aligned}
q_{\boldsymbol{\mu}}(\mathbf{x} ; q, \mathbf{u}) & =\sum_{i_{1}, \ldots, i_{n}} \mathrm{w} t_{\boldsymbol{\mu}}\left(i_{1}, \ldots, i_{n}\right) x_{i_{1}} \cdots x_{i_{n}} \\
& =\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} \sum_{\left(P_{\boldsymbol{\lambda}}, Q_{\boldsymbol{\lambda}}\right)} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right) \mathbf{x}^{P_{\boldsymbol{\lambda}}} \\
& =\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} \sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right) \sum_{P_{\boldsymbol{\lambda}}} \mathbf{x}^{P_{\boldsymbol{\lambda}}} \\
& =\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} \sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right) s_{\boldsymbol{\lambda}}(\mathbf{x})
\end{aligned}
$$

where $P_{\boldsymbol{\lambda}}$ varies over all column-strict tableaux of shape $\boldsymbol{\lambda}$ and $Q_{\boldsymbol{\lambda}}$ varies over all standard tableaux of shape $\boldsymbol{\lambda}$.

The Schur functions $s_{\boldsymbol{\lambda}}$ are linearly independent [Mac], Appendix B (7.4), so comparing coefficients of $s_{\boldsymbol{\lambda}}$ in (2.12) and Theorem 3.3 gives

Corollary 3.4. For $\boldsymbol{\lambda}, \boldsymbol{\mu} \in \mathcal{P}_{n, r}$, we have

$$
\chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right)=\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)
$$

where $\chi_{q}^{\boldsymbol{\lambda}}\left(a_{\boldsymbol{\mu}}\right)$ is the irreducible character of $H_{n, r}$ indexed by $\boldsymbol{\lambda}$ and evaluated at $a_{\boldsymbol{\mu}}$ and the sum is over all standard tableaux $Q_{\boldsymbol{\lambda}}$ of shape $\boldsymbol{\lambda}$.

Remark 3.5. Upon setting $q=1$ and $u_{i}=\zeta^{i}$, the formulas in Theorem 3.3 and Corollary 3.4 become a symmetric function identity

$$
\begin{equation*}
p_{\boldsymbol{\mu}}(\mathbf{x})=\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}}\left(\left.\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)\right|_{\substack{q=1 \\ u_{i}=\zeta^{i}}}\right) s_{\boldsymbol{\lambda}}(\mathbf{x}) \tag{3.4}
\end{equation*}
$$

and a character formula

$$
\begin{equation*}
\chi_{1}^{\boldsymbol{\lambda}}\left(w_{\boldsymbol{\mu}}\right)=\left.\sum_{Q_{\boldsymbol{\lambda}}} \mathrm{w} t_{\boldsymbol{\mu}}\left(Q_{\boldsymbol{\lambda}}\right)\right|_{\substack{q=1 \\ u_{i}=\zeta^{i}}} \tag{3.5}
\end{equation*}
$$

for the complex reflection group $G_{n, r}$.
Remark 3.6. Let $f_{\boldsymbol{\lambda}}=\operatorname{dim}\left(V_{1}^{\boldsymbol{\lambda}}\right)=\chi_{1}^{\boldsymbol{\lambda}}(1)$. This dimension is equal to the number of standard tableaux of shape $\boldsymbol{\lambda}$. As a special case of our insertion, we can restrict to sequences $x_{i_{1}}^{\left(k_{1}\right)}, \ldots, x_{i_{n}}^{\left(k_{n}\right)}$ where i_{1}, \ldots, i_{n} is a permutation of $1, \ldots, n$ and $1 \leq$ $k_{i} \leq r$. There are $n!r^{n}$ such sequences. Furthermore, when we insert these special sequences, we get a pair (P, Q) of standard tableaux (the column-strict tableau P is standard because all the subscripts are unique). Thus, our modified RSK insertion gives a bijective proof of the identity

$$
\begin{equation*}
n!r^{n}=\sum_{\boldsymbol{\lambda} \in \mathcal{P}_{n, r}} f_{\boldsymbol{\lambda}}^{2} \tag{3.6}
\end{equation*}
$$

which also follows by decomposing the regular representation of $G_{n, r}$ into irreducibles and comparing dimensions.

References

[AK] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})$ 亿 S_{n} and construction of its irreducible representations, Adv. Math, 106 (1994), 216-243.
[HR] T. Halverson and A. Ram, Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection groups $G(r, p, n)$, Canad. J. Math. 50 (1997), 167-192.
[SS] M. Sakamoto and T. Shoji, Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra, 221 (1999), 293-314.
[Sho] T. Shoji, A Frobenius formula for the characters of Ariki-Koike algebras, J. Algebra 226 (2000), 818-856.
[Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Clarendon press, Oxford, 1995.
[Ra1] A. Ram, A Frobenius formula for the characters of the Hecke Algebras, Invent. Math. 106 (1991), 461-488.
[Ra2] A. Ram, An elementary proof of Roichman's rule for irreducible characters of IwahoriHecke algebras of type A. Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), 335-342, Progr. Math., 161, Birkhuser Boston, Boston, MA, 1998.
[Ro] Y. Roichman, Roichman,A recursive rule for Kazhdan-Lusztig characters, Adv. Math. 129 (1997), 25-45.
[Sag] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric functions, Wadsworth, Belmont, CA, 1991.

Department of Mathematics and Computer Science, Macalester College, Saint Paul, Minnesota 55105

E-mail address: acantrell@macalester.edu
Department of Mathematics and Computer Science, Macalester College, Saint Paul, Minnesota 55105

E-mail address: halverson@macalester.edu
Department of Mathematics and Computer Science, Macalester College, Saint Paul, Minnesota 55105

E-mail address: btmiller@macalester.edu

[^0]: Research supported in part by National Science Foundation grant DMS-0100975.

