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Good Error-Correcting Codes
Based on Very Sparse Matrices

David J. C. MacKay

Abstract—We study two families of error-correcting codes
defined in terms of very sparse matrices. “MN” (MacKay–Neal)
codes are recently invented, and “Gallager codes” were first
investigated in 1962, but appear to have been largely forgotten,
in spite of their excellent properties. The decoding of both codes
can be tackled with a practical sum-product algorithm.

We prove that these codes are “very good,” in that sequences of
codes exist which, when optimally decoded, achieve information
rates up to the Shannon limit. This result holds not only for
the binary-symmetric channel but also for any channel with
symmetric stationary ergodic noise.

We give experimental results for binary-symmetric channels
and Gaussian channels demonstrating that practical performance
substantially better than that of standard convolutional and
concatenated codes can be achieved; indeed, the performance of
Gallager codes is almost as close to the Shannon limit as that of
turbo codes.

Index Terms—Error-correction codes, iterative probabilistic
decoding, low-complexity decoding, nonlinear codes, Shannon
limit.

I. INTRODUCTION

A. Background

I N 1948, Shannon [58] proved that for any channel there
exist families of block codes that achieve arbitrarily small

probability of error at any communication rate up to the
capacity of the channel. We will refer to such code families as
“very good” codes. By “good” codes we mean code families
that achieve arbitrarily small probability of error at nonzero
communication rates up to some maximum rate that may be
less thanthe capacity of the given channel. By “bad” codes
we mean code families that can only achieve arbitrarily small
probability of error by decreasing the information rate to zero.
(Bad codes are not necessarily useless for practical purposes.)
By “practical” codes we mean code families which can be
encoded and decoded in time and space polynomial in the
blocklength.

Shannon’s proof was nonconstructive and employed random
codes for which there is no practical encoding or decoding
algorithm. Since 1948, it has been proved that there exist
very good cyclic codes (nonconstructively) [45], and that very
good codes with a short description in terms of permutations
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can be produced [1]; and an explicit algebraic construction
of very good codes for certain channels was given in 1982
[19]. But no practical decoding algorithm is known for any of
these codes, and it is known that the general linear decoding
problem (find the maximum-likelihood source vectorin the
equation , where is a generator matrix,

is a noise vector, and is the received vector) is NP-
complete [10]. Convolutional codes (which can be viewed
as block codes with memory) can approach the Shannon
limit as their constraint length increases but the complexity
of their best known decoding algorithms grows exponentially
with the constraint length. For a long time a generally held
view was that for practical purposes a channel’s effective
capacity was a rate “ ” which is smaller than the Shannon
capacity, if convolutional codes were used; and many believed
this conjecture applied to all codes, speculating that practical
communication beyond was impossible. Forney proved
that there do exist very good “concatenated” codes that are
practical [23]; but the proof was also nonconstructive [45].

When it comes to practical,constructivecodes, construc-
tions have been demonstrated of codes based on concatenation
that are good, though not very good, but most known prac-
tical codes are asymptotically bad [45]. Goppa’s algebraic-
geometry codes, reviewed in [66], appear to be both practical
and good (with practical decoding proven possible up to the
Gilbert bound), but we believe that the literature has not
established whether they are very good. The best practical
decoding algorithm that is known for these codes [22] appears
to be prohibitively costly to implement, and algebraic-
geometry codes do not appear to be destined for practical
use.

Thus the conventional view is that there are few known
constructive codes that are good, fewer still that are practical,
and none at all that are both practical and very good. It seems
to be widely believed that while almost any random linear
code is good, codes with structure that allows practical coding
are likely to be bad [45], [15]. Battail expresses an alternative
view, however, that “we can think of good codes, and we can
decode them” [6]. This statement is supported by the results
of the present paper.

In this paper we study the theoretical and practical properties
of two code families. Gallager’s low-density parity-check
codes are defined in terms of a very sparse random parity-
check matrix [26], [27], [41]. “MN codes” are also defined
in terms of very sparse random matrices, and were first
presented in [40]. (MN stands for MacKay–Neal; MacKay and
Neal generalized MN codes to Gallager codes, then realized
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that they had rediscovered Gallager’s work.) MN codes are
unconventional in that redundancy can be incorporated in the
transmitted codewords not only by using a generator
matrix with transmitted blocklength greater than the source
blocklength , but also by using a source that is itself
redundant.

These code families both have two important properties.
First, because the codes are constructed from sparse matrices,
they have simple and practical decoding algorithms which
work, empirically, at good communication rates. Second, we
prove that in spite of their simple construction these codes
arevery good—that is, sequences of codes exist which, when
optimally decoded, achieve information rates up to the Shan-
non limit of the binary-symmetric channel. We further prove
that the same codes are in fact good for any ergodic symmetric
channel. Our proof may be viewed as a semiconstructive proof
of Shannon’s noisy channel coding theorem (semiconstructive
in the sense that, while the proof still relies on an average over
a set of codes, the set of codes in question is unusually small).
It is indeed easy to think of good codes.

B. Definitions

For a glossary of symbols used in this paper, please see
Table III.

A binary variable will be termed abit. The unit of infor-
mation content of a random bit with will
be termed theshannon. The input and output alphabets of
the binary-symmetric channel (BSC) will be denoted .
We will denote the error probability of the binary-symmetric
channel by , where .

Definition 1: The binary entropy functions and
are

(1)

(2)

We will write natural logarithms as .

Definition 2: Theweightof a binary vector or matrix is the
number of ’s in it. The overlap between two vectors is the
number of ’s in common between them. Thedensityof a
source of random bits is the expected fraction ofbits. A
source issparseif its density is less than . A vector is
very sparseif its density vanishes as its length increases, for
example, if a constant numberof its bits are ’s.

Definition 3: A code with blocklength and rate sat-
isfies theGilbert–Varshamov minimum-distance boundif the
minimum distance between its codewords satisfies

(3)

Definition 4: The capacity of a binary-symmetric
channel with noise density is, in shannons per channel use,

(4)

The computational cutoff rate is

(5)

This is the rate beyond which the expected computational
cost of decoding a convolutional code with vanishing error
probability using sequential decoding becomes infinite.

The Gilbert bound is

(6)

This is the maximum rate at which one can communicate
with a code which satisfies the Gilbert–Varshamov minimum-
distance bound, assuming bounded distance decoding [43].

Definition 5: A model that defines a probability distribution
over strings of any length hasmean entropy

if for any and there exists an such that
for all

(7)

For example, a memoryless binary-symmetric channel’s noise
has mean entropy , where is the density of the
noise; the proof of this statement, by the law of large numbers,
is well known [16]. We will prove that the codes presented in
this paper are good codes not only for the binary-symmetric
channel but also for a wide class of channels with memory.

Definition 6: A binary channel with symmetric stationary
ergodic noiseis a binary-input, binary-output channel whose
output in response to a transmitted binary vectoris given by

, where , the noise vector, has a probability
distribution that is a) independent ofand b) stationary and
ergodic.

For example, burst noise might be modeled by a stationary
and ergodic Markov process. Such a process has a mean
entropy, though the evaluation of this quantity may be chal-
lenging. The standard Gaussian channel with binary inputs is
also equivalent to a binary channel with stationary ergodic
noise.

We will concentrate on the case of a binary channel with
symmetric noise (see Definition 6) in the body of this paper.
Channels like the Gaussian channel whose inputs are binary
and whose outputs are in some more general alphabet are
addressed in Appendix A.

1) Linear Codes:A linear error-correcting code can be
represented by an by binary matrix (the generator
matrix ), such that a -bit binary message is encoded as the

-bit vector . (Note that we have chosen to use
column vectors so the generator matrices act to the right rather
than the left.) The generator matrix is insystematic formif it
can be written as

(8)

where is the identity matrix, and is a binary
matrix. The channel adds noise to the vector with the
resulting received signal being given by

(9)
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The decoder’s task is to infergiven the received message,
and the assumed noise properties of the channel. Theoptimal
decoderreturns the message that maximizes the posterior
probability

(10)

It is often not practical to implement the optimal decoder;
indeed, the general decoding problem is known to be NP-
complete [10].

If the prior probability of is assumed uniform, and
the probability of is assumed to be independent of
(c.f. Definition 6), then it is convenient to introduce the

parity-check matrix , which in systematic
form is . The parity-check matrix has the property

, so that, applying to (9)

(11)

Any other matrix whose rows span the same
space as is a valid parity-check matrix.

The decoding problem thus reduces, given the above as-
sumptions, to the task of finding the most probable noise vector

such that

(12)

where the syndrome vector .

C. Description of the Two Code Families

We define two code families. We explain the more conven-
tional Gallager codes first.

1) Construction of Gallager Codes:A Gallager code is a
code which has a very sparse random parity-check matrix.
(Very sparse, butnot systematic.) The parity-check matrix
can be constructed as follows. We will describe variations on
this construction later.

A transmitted blocklength and a source blocklength
are selected. We define to be the number of parity
checks. We select acolumn weight , which will initially be
an integer greater than or equal to. We create a rectangular

matrix ( rows and columns) at random with
exactly weight per column and a weight per row as uniform
as possible. If is chosen to be an appropriate ratio
of integers then the number per row can be constrained to
be exactly ; in this case, we call the resulting code a
regular Gallager code because the bipartite graph defined by
the parity-check matrix is regular.

We then use Gaussian elimination and reordering of columns
to derive an equivalent parity-check matrix in systematic form

. There is a possibility that the rows of the original
matrix are not independent (though for odd, this has small
probability); in this case, is a parity-check matrix for a
code with the same and with smaller , that is, a code with
greaterrate than assumed in the following sections. Redefining

to be the original matrix with its columns reordered as in
the Gaussian elimination, we have the following situation.

The matrix is composed of two very sparse
matrices and as follows.

The matrix is a square matrix that is very sparse
and invertible. The inverse of this matrix in modulo
arithmetic has been computed during the Gaussian elimination
which produced the matrix . (The expression

is the product (modulo ) of the two matrices
and .) The inversion takes order time and is

performed once only.
The matrix is a rectangular matrix that is very

sparse.
Encoding.We define the generator matrix of the Gallager code
to be

(13)

where is the identity matrix.
2) Variations:

a) When generating the matrix , one can constrain all
pairs of columns in the matrix to have an overlap

. This is expected to improve the properties of the
ensemble of codes, for reasons that will become apparent
in Section II-C.

b) One can further constrain the matrix so that the
topology of the corresponding bipartite graph does not
contain short cycles. This is discussed further in Sec-
tion IV-C.

3) The Decoding Problem for Gallager Codes:A source
vector of length is encoded into a transmitted vector

defined by . If a systematic generator
matrix has been computed explicitly (which takes
time) then the transmitted vector can be computed by explicit
multiplication in time. However, encoding might be
possible in less time using sparse matrix methods.

The received vector is , where the noise is
. In the case of a binary-symmetric channel,is assumed

to be a sparse random vector with independent and identically
distributed bits of density . We will discuss more general
channels later.

By construction, is a parity-check matrix for —that is,
—so the decoding problem is to recoverby

finding the most probable that satisfies the equation

(14)

where is the syndrome vector , computation
of which takes time of order , if the sparseness of is
exploited.

The optimal decoder, in the case of a binary-symmetric
channel, is an algorithm that finds the sparsest vectorthat
satisfies . From we obtain our guess for the
transmitted signal , the first bits of which
are the optimal guess for the original message.

Both the matrix and the unknown vector are sparse. One
might therefore hope that it is practical to solve this decoding
problem (though perhaps not right up to the theoretical limits
of the optimal decoder). We will demonstrate a practical
decoder later.
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4) Construction of MN Codes:Having created the matri-
ces and , we can define the generator matrix of
an MN code by the nonsystematic matrix .
The novel idea behind MN codes is that we canconstrain
the source vectors to be sparseand exploit this unconventional
form of redundancy in the decoder [40]. We will discuss prop-
erties and possible applications of MN codes in Section VI. As
explained in that section, the decoding of these codes involves
a problem similar to the Gallager codes’ decoding problem
(14).

5) Overview: The theoreticaleffectiveness of Gallager and
MN codes as error-correcting codes depends on the properties
of very sparse matrices in relation to the solvability of the
decoding problem (14). We address the question, “how well
would these codes work if we had the best possible algorithm
for solving the decoding problem?”

The practical effectiveness of Gallager and MN codes
depends on our finding a practical algorithm for solving (14)
that is close enough to the optimal decoder that the desirable
theoretical properties are not lost.

We show theoretically in Section II that there exist Gallager
and MN codes for which the optimal decoder would achieve
information rates arbitrarily close to the Shannon limit for a
wide variety of channels. In Section III we present a “sum-
product” decoding algorithm for Gallager codes and MN
codes, first used by Gallager [26]. We give an analysis of the
decoding algorithm in Section III-C. These results lead us to
conjecture that there exist Gallager and MN codes which are
not only good but which also achieve error rates approaching
zero at a nonzero information rate when decoded using a prac-
tical algorithm. In Section IV we describe empirical results
of computer experiments using the sum-product algorithm to
decode Gallager codes. Our experiments show that practical
performance significantly superior to that of textbook codes
can be achieved by these codes on both binary-symmetric
channels and Gaussian channels. In Section V we give a
pictorial demonstration of the iterative decoding algorithm for
a couple of Gallager codes. In Section VI we present MN
codes and give theoretical and experimental results for them.

II. L IMITS OF OPTIMAL DECODING

We prove properties of Gallager and MN codes by studying
properties of the decoding problem where the
unknown vector is sparse and is very sparse. We make
use of two standard tools: we prove properties of the optimal
decoder by proving properties of a slightly suboptimal “typical
set decoder” which is easier to analyze; and we average the
performance of this decoder over an ensemble of very sparse
matrices . A “good” average performance proves that there
exist “good” matrices —indeed, that any random matrix
from the ensemble is likely to be “good.” As in all proofs
of goodness of coding systems, we employ a blocklength that
can be increased to a sufficiently large value that an error
probability smaller than a desiredis achieved. To prove that
Gallager and MN codes arevery good we will also increase
the weight per column,, of the matrix , but only in such a
way as to keep the matrix very sparse, i.e., .

Previous work on low-density parity-check codes has al-
ready established some good properties of Gallager codes.
Gallager [26], [27] proved that his codes have good distance
properties. Zyablov and Pinsker [73] proved that Gallager
codes are good and gave a practical decoder, but only for
communication rates substantially below the Gilbert bound.
Our approach in terms of an ideal decoder allows us to prove
that the codes are good not only for the binary-symmetric
channel but also for arbitrary ergodic symmetric channel
models; we also prove that Gallager codes arevery good, a
result not explicitly proven in [26], [27], and [73].

A. Ensembles of Very Sparse Matrices

The properties that we prove depend on the ensemble of
matrices that is averaged over. We find it easiest to prove
the desired properties by weakening the ensemble of matrices
from that described in Section I-C. We introduce the following
ensembles which we believe are ordered such that the later
ensembles define Gallager and MN codes that have smaller
average probability of error, though we do not have a proof
of this statement.

1) Matrix generated by starting from an all-zero matrix
and randomly flipping not necessarily distinct bits in
each column.

2) Matrix generated by randomly creating weight
columns.

3) Matrix generated with weight per column and (as
near as possible) uniform weight per row.

4) Matrix generated with weight per column and
uniform weight per row, and no two columns having
overlap greater than 1.

5) Matrix further constrained so that its bipartite graph
has large girth.

6) Matrix further constrained or slightly
modified so that is an invertible matrix.

Our proofs use the first ensemble. Our demonstrations use
matrices from ensembles 4), 5), and 6).

The properties of the decoding problem also
depend on the assumed noise model. We will give theoretical
results for three cases. First, we give a general theorem
for a broad class of symmetric noise models with memory
(Definition 6). Second, we discuss a popular special case, the
memoryless binary-symmetric channel, corresponding, in the
case of Gallager codes, to a vectorof uniform density .
Third, the generalization to channels with continuous outputs
is discussed in Appendix A.

B. Decodability for Arbitrary

To avoid confusion between Gallager and MN codes when
discussing their common decoding problem , we
refer to the number of columns in as and the number of
rows as . (For a glossary of all symbols used in this paper,
see Table III.) In the case of Gallager codes,is a sample
from the noise model, . In the case of MN codes, is
the concatenation of the vectorsand , and the probability
of is separable into .
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Let the ratio of the length of to the length of be
. The decoding problem is equivalent to playing

a game in which a vector is drawn from a probability
distribution , and the vector is revealed;
the player’s task is then to identify the original vector, given
the “encoding” , the matrix , and the known distribution .
The optimal decoder is an algorithm that identifies the vector
that maximizes subject to the constraint .

There is a Shannon limit for this game beyond which we
cannot hope to recover from reliably. The maximum
information content of is clearly shannons. We assume
that the probability distribution of the noise is stationary
and ergodic so that a mean entropy can be defined for
the distribution . Then the Shannon limit says reliable
recovery of from is only possible if , i.e.,

(15)

If there are matrices for which we can play the decoding
game well at a value of close to this limit, then there
exist Gallager codes which can communicate correspondingly
close to the Shannon limit of a noisy channel whose noise
distribution is given by .

For brevity we introduce the following definition.

Definition 7: A satisfactory matrix for the
distribution is a matrix having rows and
columns with weight or less per column, with the following
property: if is generated from , the optimal decoder
from back to achieves a probability of block
error less than .

The following theorems will be proved.

Theorem 1—Good Codes:Given an integer and a
ratio , there exists an entropy such that,
for any of mean entropy , and a desired
block error probability , there exists an integer and a
satisfactory matrix for the distribution .

Theorem 2—Very Good Codes:Given a distribution
of mean entropy and a desired , there
exists an integer such that for any desired block
error probability , there is an integer such that
for any , there is a satisfactory
matrix for the distribution .

Implications of Theorems 1 and 2 for Gallager codes.The
first theorem effectively states that Gallager codes with any
value of aregood, i.e., for any channel with appropriate
entropy, there are Gallager codes which can achieve virtually
error-free transmission at rates up to some nonzero rate

, if the blocklength is made sufficiently large.
The second theorem effectively states that Gallager codes

arevery good—if we are allowed to choose, then we can get
arbitrarily close to capacity, still using very sparse matrices
with arbitrarily small.

In Section II-C we prove these theorems, that is, we derive
expressions for a function satisfying Theorem 1,
and a function satisfying Theorem 2. We also give
numerical results relating to these theorems. Let the largest
function for which the first theorem is true be .

In Section II-D we evaluate a tighter numerical lower bound
for . These are worst case results, true forany
source of mean entropy . In Section II-E we give numerical
results for the case of the binary-symmetric channel, where
considerably more optimistic bounds can be derived.

We also prove the following minimum distance theorem for
Gallager codes which uses the function of Theorem 1.

Theorem 3—Good Distance Properties:Given an integer
, a fraction , and a such that ,

there exist integers and and a matrix having
rows and columns with weight or less per column,

such that the Gallager code with parity-check matrixhas
minimum distance at least .

We can also prove that the Gilbert minimum-distance bound
can be attained as , still with very sparse.

Theorem 4—Gilbert Minimum Distance Bound Attainable:
Given a fraction , and a such that ,
there exists a and an such that for any
there is a matrix having rows and columns
with weight or less per column, such that the Gallager code
with parity-check matrix has minimum distance at least .

Implication of Theorem 3 contrasted with Theorem 1.If
one only aims to decode noise patterns of weight up to half
of the minimum distance (as is conventional in much
of coding theory), then one can only handle noise levels up
to . But in fact the optimal decoder can decode (with
vanishing probability of error) at noise levels up to .
Thus Gallager codes can serve as good codes at noise levels
twice as greatas the maximum noise level that is attainable
if one restricts attention to bounded distance decoding. The
intuition for this result is that in a very-high-dimensional
binary space, while two spheres of radiuswhose centres are
a distance apart have anonzerovolume of intersection for
any greater than , the fractional volume of intersection
is vanishingly smallas long as is less than .

Gallager codes, as Gallager showed [26] and we will show
later, can in practice be decoded beyond their minimum
distance.

C. Proof of Theorem 1

Consider the problem, given and , of inferring , where
, and has probability distribution with

mean entropy . We consider the probability of error of
a typical set decoder[16], averaging it over all very sparse
random matrices . We establish the existence of a function

such that the probability of error can be bounded
by a sum of terms which decrease as inverse powers of, if

.
Typical set decoder.We consider the typical set

(16)

where is a small constant to be fixed later. Since
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the number of elements in this typical set, , satisfies

(17)

We now consider decoding by the following
procedure:

if there is a unique such that then
produce as the decoding of ;
else report decoding failure.

There are two failure modes for this decoder, with proba-
bilities and such that

Block error (18)

I. Original vector not typical.This failure occurs with pro-
bability . Because is assumed to have
a mean entropy , this probability vanishes as
(see Definition 5, Section I-B).

II. is typical but at least one other typical vectorhas
the same encoding We now concentrate on the proba-
bility of a decoding error arising this way, and denote
the average of over drawn from ensemble 1)
(Section II-A) by .

We define the indicator function to have the value
if the proposition is true and otherwise. We can bound

by

(19)

In (19) the second sum is the number of typical vectorsthat
have the same encoding as. We now average over codes.

(20)

The term in brackets only depends on the weightof the
difference . The probability that is the
probability that columns of the very sparse matrixsum to
zero. Because is constructed by flipping bits per column
at random with replacement, this is the probability that
steps of the random walk on the -dimensional hypercube,
starting from the origin, bring us back to origin. We denote
this probability and define to be the number of
typical vectors such that the difference has weight

, for the given . Then we have

(21)

In Appendix E we give an expression for the function ;
this function is zero for all odd, and is a decreasing function
of even . It will be convenient to introduce an upper bound on

which is equal to it for even and which is a decreasing
function. We define this function, , in (87). In Appendix
E we also derive various upper bounds on and from
which we will use the following two:

for where

for
(22)

(23)

These bounds are tightest for and , respec-
tively. Both these bounds are decreasing functions of.

We now have

(24)

We pause to dissect the product

The first factor is typically a rapidly increasing function of
up to some peak (which in the case of a binary-symmetric

channel of density is located at ). The
second factor is largest for and falls initially as
a power law (see (22)) decreasing to an equilibrium
value of (see (23)), corresponding to an equilibrium
distribution uniform over (half of) the states of the hypercube.
We want the product of these two factors to be vanishingly
small (in increasing ) for all .

Intuitively, if the product were large at small, then type
II errors would arise because there would be a small subset
of columns in that sum to zero such that it is possible to
confuse vectors and that differ in only a few bits (and
which could therefore both be typical). If the product is large
at large , then type II errors would arise because there are
two completely different vectors which have the same
encoding. Gallager codes and MN codes are good because we
can indeed make the product vanishingly small for all.

1) Worst Case Analysis:Up to this point we have not men-
tioned any form for , which determines the function

in (24). We now proceed with a worst case assumption
for the function .

We know that

Also is bounded above by the maximum number of
distinct vectors of weight . Finally, is a decreasing
function of . So we can replace the function in (24)
by the worst case function which has the maximum
value at small

(25)

where is chosen to satisfy . If we

write

(26)
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where is a small quantity satisfying and ,
then

(27)

as long as is sufficiently small and is sufficiently large
that . (Here we have used (73) from
Appendix D.) Notice that the only dependence that the function

has on the source distribution is the cutoff value
, which is controlled by . Thus

(28)

(29)

We now seek conditions under which can be made arbit-
rarily small by increasing . Here first is a sketch of our
proof. Consider the logarithm of the term inside the summation
in (29) as a function of . Using (73) again

(30)

We want to show that for all less than some that
grows linearly with , , the above term becomes
increasingly large and negative as increases. We need all
the terms in the sum in (29) to go to zero, and we need almost
all of them to do so faster than , so that the sum itself
goes to zero. To aid the intuition, the two terms and

(a tight numerical upper bound on ) are
plotted in Fig. 1 as a function of for a variety of values of
, for . The function is an increasing function

of (if ) reaching a maximum value of at
; the function is a decreasing function of

reaching a minimum value of asymptotically. For
, the right-hand side of (30) is certainly positive

since . For small , on the other hand (starting at
), the sum is negative, if , as we now prove. There

therefore exists a such that, for all , the sum is
negative. This defines the critical value of which, via (26),
proves the existence of the function that we seek.

We continue from (29), using (22) and inequality (85) and
assuming .

(31)

(32)

(33)

(34)

Fig. 1. Plot of a numerical upper bound1
M

log q
(wt)
e on the function

1
M

log q
(wt)
00 , for large M and for various values oft; and the function

�He
2(w=L), as a function ofw=L, for � = 2. For convenience, the

function��He
2 (w=L) is also shown. The intersection point of the two curves

��He
2(w=L) and 1

M
log q

(wt)
e defines a value ofw� which gives a lower

bound on the achievable information rate for Gallager and MN codes. This
graph gives an informal proof of Theorems 1 and 2 for the case� = 2.
The content of Theorem 1 is that for anyt the solid line��He

2(w=L) lies

above the dotted line1
M

log q
(wt)
e for all w=L up to some nonzero value.

The content of Theorem 2 is that ast!1, the first point of intersection of
the two curves approaches the point at which�He

2 (w=L) = log 2.

where satisfies if , and

Now as a function of , is a decreasing function
for , as is easily confirmed by differentiation, so if we
constrain by , we can bound the last
terms by times the third term

(35)

Thus the average probability of error for this ensemble of
codes vanishes with increasing as if and
faster if . There therefore exists a given by

such that if , or equivalently, if
, then

as (36)
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This establishes the existence of the function , since
if we define

(37)

then, for any , we can set , , and such
that and .

This completes the proof of Theorem 1. We note that the
value of given above is not the largest such function

that satisfies the theorem. By using tighter bounds
on we can prove the theorem for larger values of

. We use a numerical bound to obtain graphs of lower
bounds on in Section II-D.

Comment. It is instructive to study the terms which dom-
inate the sum over . The terms with small decrease as
inverse powers of as long as for all

, i.e., as long as . The term, the largest,
decreases as . We can get a stronger decrease of
with if we assume that each column has exactlyones
in it. Then we can omit the term, which corresponds
to the probability of there being a zero column in. By the
further step of ensuring that no two columns of the matrix
are identical, we can rule out the term from the sum.
By adding further constraints when generating the code, that
the girth of the corresponding bipartite graph must be large,
we can make the probability of this sort of “small” error
even smaller. This is the motivation for the code Constructions
1B and 2B that we introduce later on.

2) Proof of Theorem 3:A code with parity-check matrix
has minimum distance if and only if any

columns of are linearly independent, and there exist
linearly dependent columns. We can prove the existence of a
matrix with linearly independent columns easily starting
from (36). Here is the desired minimum distance. We
set and note that the assumption of the theorem,

implies that the quantity
vanishes with increasing .

The quantity is the expected number of
linear dependences of up to columns in a randomly
generated matrix . Since this expected number is less than
(indeed, it goes to zero), there must be at least onein the
ensemble such that the number of linear dependences is zero
(indeed, nearly all in the ensemble must satisfy this).

3) Proof of Theorem 2:We now show that if we are free
to choose then Gallager and MN codes can get arbitrarily
close to the Shannon limit. We prove that for a desired
and any source with mean entropy such that ,
and any , there exists a and an such that
for any , the corresponding decoding problem

can be solved with probability of failure less
than , averaged over the first ensemble of matrices.

We start from (29), which bounds the type II probability of
error thus

(38)

where is given by

(39)

and . From (30),

(40)

If we can set and such that the term in parentheses is neg-
ative for all then goes to zero as increases. For
large it is evident (c.f. Fig. 1) that
attains its largest value at . So, substituting upper
bound (23) for , our condition for vanishing is

(41)

Substituting in (39), we require

(42)
so that if we set such that and such that

then vanishes with increasing , so an can be
found such that the average error probability of the ensemble
of matrices is below any desired error probability.

4) Proof of Theorem 4:This theorem follows from The-
orem 2 as Theorem 3 followed from Theorem 1. Briefly,
since we can find a such that vanishes with
increasing for any satisfying , this
implies that, for sufficiently large , we can find a matrix with
at least linearly independent columns for anysatisfying

.

D. Numerical Bounds on : Worst Case

Theorem 1 proved the existence, for a given ratio, of an
entropy such that there exist good Gallager and MN
codes with rates defined byfor any channel with symmetric
stationary ergodic noise (Definition 6) with mean entropy up to

. We define to be the largest function for
which the theorem holds. In Fig. 2(a) we show a numerically
obtained bound on this function. The graph shows a lower
bound on as a function of ; the Shannon limit
provides the upper bound . This graph was
obtained as follows. Using the expansion of in (86), the
condition for to vanish is that for all and all
the quantity

(43)

should be negative. We use the inequality
and maximize as a function of and . We
repeat this procedure iteratively to locate the critical value of

such that is zero. This gives the bound.
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(a)

(b)

Fig. 2. Lower bounds on�Hmax

x
(�; t) (a) for arbitrary sourceP (xxx) and

(b) assumingP (xxx) corresponding to binary-symmetric channel, for matrices
AAA with t from 3 to 6. As the weight per columnt increases, the achievable
rates rise towards the Shannon limit�Hx = 1.

E. Numerical Upper and Lower Bounds: Uniform Noise Model

We now assume that the channel under discussion is the
binary-symmetric channel and obtain numerical upper and
lower bounds on the achievable rate of Gallager codes, assum-
ing the optimal decoder. The method here is as in the previous
section, with the worst case function replaced
by the appropriate to the uniform noise case, as detailed
in Appendix F. The resulting lower bounds on are
shown in Fig. 2(b).

1) Achievable Rate for Gallager Codes over Binary-Sym-
metric Channel: From the lower bound on the noise entropy
plotted in Fig. 2(b) we can compute a lower bound on the
achievable communication rate using Gallager codes (given
an optimal decoder), as a function of the noise level of the
binary-symmetric channel. This rate is shown in shannons in
Fig. 3 for and compared with the capacity. As
the weight per column increases the bounds rise towards the
capacity.

2) Upper Bounds on the Communication Rate over a Binary-
Symmetric ChannelFig. 4(a) and (b) addresses the question
“what information rate is definitelynot achievable for a given

and noise level ?” This is a relatively easy question to
answer, and it gives insight into what is lost in the above
proof by switching from the constrained ensemble of random
matrices with weight per column and per row to
the unconstrained ensemble of matrices. It also gives insight

Fig. 3. Lower bounds on achievable information rate (in shannons) versus
binary-symmetric channel’s noise levelf for Gallager codes (ensemble 1)
with t from 3 to 6. The solid line shows the channel capacity.

(a)

(b)

Fig. 4. Upper bound on the achievable information rate in shannons versus
binary-symmetric channel’s noise level, for Gallager codes, compared with
the channel capacity. (a) This bound was obtained assuming that matricesAAA

were drawn from the ensemble having uniform weight per row as well as per
column (Ensemble 3). (b) This bound was obtained assuming that matrices
AAA were drawn from the ensemble having uniform weight per column only
(Ensemble 2). The graphs differ significantly at high noise levels.

into why Gallager codes with fixedare only good codes and
not very good codes.

Consider the decoding problem , where has
density and length , and has length . It is clearly
impossible to solve the problem of deducingreliably from
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Fig. 5. The vectorsxxx andzzz viewed as nodes in a belief network. White circles denote bitsxl. Black dots denote checkszm. We illustrate the caset = 4;

tr = 8. (a) This figure emphasizes with bold lines the four connections from one bit and the eight connections to one check. Every bitxl is the parent of
four checkszm, and each checkzm is the child of eight bits. (b)–(e) Certain topological structures are undesirable in the network defined by the matrixAAA:
in (b) there is a cycle of length4 in the network; we can forbid this topology by saying that the overlap between two columns ofAAA must not exceed1; in
(c), (d), and (e) more complex topologies are illustrated. Many of our experiments have used matricesAAA in which these topologies are also forbidden—we
eliminate bits that are involved in structures like the “doublet” (e), of which (c) and (d) are special cases. This means that every bit’s “coparents” (other
bits that are parents of its children) consist oft nonoverlapping sets of bits as shown in (f). (g) A fragment of an infinite belief network witht = 4 and
tr = 8 and no cycles. In Section III-C2 we analyze the flow of information up this network.

if the information content of , shannons, is more
than the information content of. We get the Shannon bound
by noting that , in shannons, is less than or equal to its
length . But we can get upper bounds lower than this by
tightening the bound on .

Probability distribution of the random variable . We
refer to the elements corresponding to each row

of as checks and to the elements ofas bits. Let
be the sum of bits of density . We define to be

the probability that . Starting from , we can
use the recurrence relation

(44)

to obtain [26]

(45)

We use this result to obtain tighter bounds on the achievable
communication rate.

Bound for constrained matrices . Consider the ensemble
of random matrices with weight per column and as near
as possible per row (Ensemble 3 in Section II-A). In the
general case where is not an integer, the information
content per check of is bounded above by the average of
the marginal information content of one check, averaged over
the ensemble, that is,

(46)

This gives the bound shown in Fig. 4(a), which was created
as follows. For a selected value ofand , a search was made
over for a value such that the upper bound on the information
content per check of is just above , using (46). The
graph is then a plot of versus .

Bound for unconstrained matrices . Now what if we
remove the constraint per row, reverting to Ensemble 2 of
Section II-A? Intuitively we can see that will decrease.
Some checks will be sums of more than bits of , and
some will be sums of fewer than . The former checks will
have a value of slightly closer to , whereas the latter will
have values of further from . Some checks may be the
sum of no bits at all (with probability ), so that they
convey no information. The convexity of the relevant functions

produces a net decrease in the information content of. To
work out a bound for the unconstrained ensemble, we sum
over all possible weights of a row, evaluate , and
weight by the probability of , which is a Poisson distribution
with mean . The resulting upper bound is shown in Fig. 4(b).
We see that the bound is lower than that for the constrained
matrices, and looks similar to the lower bound in Fig. 3. It
thus seems plausible that, were we to change from Ensemble
2 to Ensemble 3 in the main proof of the paper, we would be
able to prove the achievability of somewhat larger rates for
any given .

This concludes our discussion of what would be achievable
given an optimal decoder. We now move on to practical
decoding algorithms.

III. PRACTICAL DECODING BY

THE SUM-PRODUCT ALGORITHM

We have developed a “sum-product decoder,” also known
as a “belief propagation decoder” [51], [33] for the decoding
problem . In this work, we have rediscovered a
method of Gallager [27]. See [68], [24], and [46] for further
discussion of the sum-product algorithm.

We refer to the elements corresponding to each row
of as checks. We think of the set of bitsand

checks as making up a “belief network,” also known as a
“Bayesian network,” “causal network,” or “influence diagram”
[51], in which every bit is the parent of checks , and
each check is the child of bits (Fig. 5). The network of
checks and bits form a bipartite graph: bits only connect to
checks, andvice versa.

We aim, given the observed checks, to compute the marginal
posterior probabilities for each . Algorithms
for the computation of such marginal probabilities in belief
networks are found in [51]. These computations are expected
to be intractable for the belief network corresponding to our
problem because its topology contains many
cycles. However, it is interesting to implement the decoding
algorithm that would be appropriate if there were no cycles, on
the assumption that the errors introduced might be relatively
small. This approach of ignoring cycles has been used in
the artificial intelligence literature [4] but is now frowned
upon because it produces inaccurate probabilities (D. Spiegel-
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halter, personal communication). However, for our problem
the end product is a decoding; the marginal probabilities are
not required if the decoding is correct. Also, the posterior
probability, in the case of a good code communicating at an
achievable rate, is expected typically to be hugely concentrated
on the most probable decoding. And as the size of the
code’s matrix is increased, it becomes increasingly easy to
produce matrices in which there are no cycles of any given
length, so we expect that, asymptotically, this algorithm will be
a good algorithm. We have obtained excellent results with
equal to and . The algorithm often gives useful
results after a number of iterations much greater than the
number at which it could be affected by the presence of cycles.

A. The Algorithm

We have implemented the following algorithm (for back-
ground reading see [51]). The algorithm is appropriate for
a binary channel model in which the noise bits are in-
dependent—for example, the memoryless binary-symmetric
channel, or the Gaussian channel with binary inputs and real
outputs (the connection to real-output channels is explained in
Appendix A).

We denote the set of bits that participate in check
by . Similarly, we define the set of
checks in which bit participates, .
We denote a set with bit excluded by . The
algorithm has two alternating parts, in which quantities
and associated with each nonzero element in thematrix
are iteratively updated. The quantity is meant to be the
probability that bit of has the value , given the information
obtained via checks other than check. The quantity is
meant to be the probability of check being satisfied if bit
of is considered fixed at and the other bits have a separable
distribution given by the probabilities .
The algorithm would produce the exact posterior probabilities
of all the bits after a fixed number of iterations if the bipartite
graph defined by the matrix contained no cycles [51].

Initialization. Let (the prior probability
that bit is ), and let . In the case
of a Gallager code and a binary-symmetric channel,will
equal . In the case of an MN code, will be either or ,
depending on whether bitis part of the message or the noise.
If the noise level varies in a known way (for example, if the
channel is a binary input Gaussian channel with a real output)
then is initialized to the appropriate normalized likelihood.
For every such that the variables and
are initialized to the values and , respectively.

Horizontal step. In the horizontal step of the algorithm, we
run through the checks and compute for each
two probabilities: first, , the probability of the observed
value of arising when , given that the other bits

have a separable distribution given by the
probabilities , defined by:

(47)

and second, , the probability of the observed value of
arising when , defined by

(48)

The conditional probabilities in these summations are either
zero or one, depending on whether the observedmatches
the hypothesized values for and the .

These probabilities can be computed in various obvious
ways based on (47) and (48). The computations may be done
most efficiently (if is large) by regarding
as the final state of a Markov chain with statesand ,
this chain being started in state, and undergoing transitions
corresponding to additions of the various, with transition
probabilities given by the corresponding and . The
probabilities for having its observed value given either

or can then be found efficiently by use of the
forward–backward algorithm [7], [65], [5].

A particularly convenient implementation of this method
uses forward and backward passes in which products of the
differences are computed. We obtain

from the identity

(49)

This identity is derived by iterating the following observation:
if , and and have probabilities
and of being and , then
and . Thus

Finally, note that , and hence
and .

Vertical step. The vertical step takes the computed values
of and and updates the values of the probabilities
and . For each we compute

(50)

(51)

where is chosen such that . These products
can be efficiently computed in a downward pass and an upward
pass.

We can also compute the “pseudoposterior probabilities”
and at this iteration, given by

(52)

(53)
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These quantities are used to create a tentative decoding, the
consistency of which is used to decide whether the decoding
algorithm can halt.

At this point, the algorithm repeats from the horizontal step.
Decoding. If the belief network really were a tree without

cycles, the values of the pseudoposterior probabilitiesand
at each iteration would correspond exactly to the posterior

probabilities of bit given the states of all the checks in a
truncated belief network centred on bitand extending out to
a radius equal to twice the number of iterations. Our decoding
procedure is to set to if and see if the checks

are all satisfied, halting when they are, and
declaring a failure if some maximum number of iterations
(e.g., 200 or 1000) occurs without successful decoding. When
there is a failure, the partial decodingmay serve as a useful
starting point for another decoding algorithm [47].

We note in passing the difference between this decoding
procedure and the widespread practice in the turbo code
community, where the decoding algorithm is run for a fixed
number of iterations (irrespective of whether the decoder
finds a consistent state at some earlier time). This practice
is wasteful of computer time. In our procedure, “undetected”
errors would only occur if the decoder found ansatisfying

which was not equal to the true. “Detected”
errors occur if the algorithm runs for the maximum number
of iterations without finding a valid decoding. The alternative
practice mentioned above blurs this distinction between unde-
tected and detected errors. Undetected errors are of scientific
interest because they reveal distance properties of a code and in
engineering practice, it would seem preferable for the detected
errors to be labeled as erasures if practically possible.

B. Relationship to Other Algorithms

Meier and Staffelbach [47] implemented an algorithm sim-
ilar to this sum-product decoder, also studied by Mihaljević
and Golíc [49], [50]. The main difference in their algorithm is
that they did not distinguish between the probabilities and

for different values of ; rather, they computed and
, as given above, and then proceeded with the horizontal

step with all set to and all set to .
Another related algorithm is the variational free-energy

minimization decoder [37]. We describe the application of
this decoder to Gallager and MN codes in Appendix C. Its
performance is not as good as the sum-product decoder’s.

C. Analysis of Decoding Algorithms

We analyze a simple decoding algorithm, following Gallager
[27] and Meier and Staffelbach [47]. (The same algorithm has
been used by Spielman [60].) We also study the sum-product
decoder in the limit of large using Monte Carlo methods.
Although an explicit positive statement of the sum-product
decoder’s capabilities remains elusive, the important message
of our analysis that follows is that the algorithms have “cor-
rection effects” which are independent of the blocklength
for large . These results lead us to the following conjecture.

Conjecture 1: Given a binary-symmetric channel with
noise density , there exist practical decoders for Gallager

and MN codes with rates close to capacity, that can achieve
negligible probability of error, for sufficiently large .

1) Analysis of Correction Effect in a Simple Decoder:We
introduce a simple decoder to iteratively solve forsuch that

.

Simple decoder:
Set .

: Evaluate . This is the check pattern
that remains to be explained.
if , end .
Evaluate the “vote” vector (not ), which counts,
for each bit , the number of unsatisfied checks to which
it belongs.The bits of that get the most votes are viewed
as the most likely candidates for being wrong. The biggest
possible vote that a bit can receive is, since each bit
participates in checks.
Flip all bits of that have the largest vote.
go to .

This decoding algorithm is not guaranteed to reach a stable
state, but it is easy to analyze whether the first iteration of
the decoder produces a “correction effect” or not. We say that
there is a correction effect if the Hamming distance between

and the true vector decreases. We expect this decoding
algorithm to have similar properties to those of the sum-
product algorithm—at least for the first iteration—because, in
the case of a binary-symmetric channel, the vote for a bit is
directly related to its pseudoposterior probability.

Expected change in Hamming distance.We will assume
that the weight of each row of is an integer , i.e., that

bits participate in each check. We consider the flipping
of a single bit whose vote is (the largest possible vote),
and evaluate the probability that this reduces the Hamming
distance. If the expected change in Hamming distance is
negative, then we might hope that decoding algorithms of this
type would work.

Consider a bit that has value , and a check in which
it participates (i.e., an such that ). The probability
that , given that is , is , as defined in
Section II-E2. So the probability that a bit receives vote
is the binomial probability

(54)

Similarly, the probability that , given that is , is
. So the probability that a bit receives vote is

(55)

Now, given that a bit has vote, the probabilities that it is
a or a bit are, by Bayes’ theorem

(56)

Thus the expected change in Hamming distance when a bit
with vote is flipped is

(57)
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(a)

(b)

Fig. 6. Analysis of practical decoding algorithms. (a) Time course of the decoding process in an infinite belief network witht = 4, tr = 8. Graph shows
average entropy of a bit as a function of number of iterations, as estimated by a Monte Carlo algorithm using 10 000 samples per iteration. Densityf increases
by steps of0:005 from bottom graph(f = 0:010) to top graph(f = 0:100). There is evidently a transition ataboutf = 0:075, above which the algorithm
cannot determinexxx. (b) Rates achievable by Gallager codes according to two analyses, fort = 3; 4; 5; 6 as a function of noise level.Dotted lines show
estimates of decodability based on the first iteration of the simple decoder. Below the dotted line there is a correction effect; above the line, this decoder
gives no correction effect.Points show theoretical success of decoding in infinite belief networks with various values oft = 3; 4; 5; 6, computed by Monte
Carlo simulations of up to 29 iterations, as in part (a). Point styles diamond, square, triangle, and plus represent values of(f; R) at which complete decoding
occurred after a number of iterations less than 29. Point style� denotes no decoding after 29 iterations.

If this is negative then there is a correction effect. We assume,
rather simplisticly, that if there is no correction effect on the
first iteration then reliable communication is not achievable
using the code; that is, we assume that this analysis predicts
a boundon the achievable communication rate.

For any given and (and hence ), we can locate
numerically the above which there is no correction effect.
The lower dotted curves in Fig. 6(b) show the corresponding
information rate of a Gallager code as a function

of for a variety of values of and , compared with the
capacity. It is interesting that (at least for ) as
increases, the bound on the achievable rate given by this
simple analysis decreases. Thus in contrast to the results for
the optimal decoder, where largeis best, we find that codes
with small are best for practical decoding.

2) Analysis of Decoding of Infinite Networks by Monte Carlo
Methods: The sum-product decoder’s performance can be
analyzed in terms of the decoding properties of an infinite
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(a) (b)

(c) (d)

Fig. 7. Schematic illustration of (a) Construction 1A for a Gallager code witht = 3, tr = 6, and R = 1=2, (b) Construction 2A for a Gallager
code with rate1=3, (c), (d) two constructions similar to Construction 1A. Notation: an integer represents a number of permutation matrices superposed
on the surrounding square. A diagonal line represents an identity matrix. A rotating ellipse imposed on a block within the matrix represents random
permutation of all the columns in that block.

network without cycles (of which Fig. 5(g) shows a fragment).
The larger the matrix , the closer its decoding properties
should approach those that we now derive.

We consider an infinite belief network with no loops, in
which every bit connects to checks and every check

connects to bits. We consider the iterative flow of
information in this network, and examine the average en-
tropy of one bit as a function of number of iterations. At
each iteration, a bit has accumulated information from its
local network out to a radius equal to the number of iter-
ations. Successful decoding will only occur if the average
entropy of a bit decreases to zero as the number of iterations
increases.

We have simulated the iteration of an infinite belief network
by Monte Carlo methods—a technique first used by Gallager
[27]. Imagine a network of radius (the total number of
iterations) centred on one bit. Our aim is to compute the
conditional entropy of the central bit given the state of
all checks out to radius . To evaluate the probability that
the central bit is given aparticular observation involves
an -step propagation from the outside of the network into the
center. At the th iteration probabilities at radius are
transformed into ’s and then into ’s at radius in a way
that depends on the statesof the unknown bits at radius .
In the Monte Carlo method, rather than simulating this network
exactly, which would take a time that grows exponentially
with , we create for each iteration a representative sample
(of size , say) of the values of . In the case of a
regular network with parameters each new pair in
the list at the th iteration is created by drawing the new
from its distribution and drawing at random with replacement

pairs from the list at the th iteration;
these are assembled into a tree fragment and the sum-product
algorithm is run to find the new value associated with the
new node.

As an example, the results of runs with , , and
noise densities between and , using 10 000 samples
at each iteration, are shown in Fig. 6(a). It can be seen that
runs with low enough noise level collapse to zero entropy after
a small number of iterations, and those with high noise level

decrease to a stable entropy level corresponding to a failure
to decode.

The results of many such runs with various values ofand
are summarised by the points in Fig. 6(b), where the time to

reach virtually zero entropy is indicated by the point style on a
graph of rate versus noise level of the corresponding Gallager
code, with denoting “no decoding after 29 iterations.”
Regions in the graph where there are points corresponding
to 1–29 iterations define values of the crossover probability

and rate such that successful communication is possible
with Gallager codes, according to the Monte Carlo analysis.

The two analyses, using the simple decoder and using Monte
Carlo methods, appear to give similar predictions as to the
maximum achievable rate as a function of .

We note that when the entropy drops to zero the decoding
error probability falls to zero with a terminal convergence that
is faster than exponential. The vertical step involves the multi-
plication of probabilities, so we believe the probability of
decoding error falls asymptotically as where

is the number of decoding iterations andis a constant.

IV. EXPERIMENTAL RESULTS USING

THE SUM-PRODUCT DECODER

Choice of ensemble.In early experiments using matrices
from ensemble 4) of Section II-A, we examined some of the
decoding errors made by the free-energy minimization decoder
to be described in Appendix C and found that they tended
to occur when the vector was such that another slightly
different typical vector had a similar (but not identical)
encoding . In terms of the random walk on the hypercube
(Section II-C), these errors correspond to walks that after a
small number of steps return close to the starting corner.
They were possible because of rare topologies in the bipartite
graph corresponding to the matrix such as the topology
illustrated in Fig. 5(c). We can eliminate the possibility of
these errors by modifying the ensemble of matricesso that
the corresponding graph does not have short cycles in it. We
made new matrices by taking matrices from Ensemble 4 and
deleting columns until there were no short loops of the type
shown in Fig. 5(e). These matrices, having fewer columns,
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TABLE I
RESULTS OF SUM-PRODUCT DECODING EXPERIMENTS FORTWO GALLAGER CODES ON BINARY-SYMMETRIC CHANNELS.

“trials” = NUMBER OF BLOCKS DECODED; “ers” = NUMBER OF BLOCK ERRORS. pML = MAXIMUM -LIKELIHOOD

ESTIMATE OF BLOCK ERROR PROBABILITY . p+ IS UPPER ERROR BAR FOR BLOCK ERROR PROBABILITY (APPENDIX B)

correspond to codes with slightly lower rates. They also have
nonuniform weight per row.

We report results for codes with a variety of rates whose
low density parity-check matrices are created in the following
ways.

Construction 1A. An by matrix ( rows,
columns) is created at random with weight per column
(e.g., ), and weight per row as uniform as possible, and
overlap between any two columns no greater than. Fig. 7(a)
shows the construction schematically for a rate code with

.
Construction 2A. Up to of the columns are designated

weight columns, and these are constructed such that there
is zero overlap between any pair of columns. The remaining
columns are made at random with weight, with the weight
per row as uniform as possible, and overlap between any
two columns of the entire matrix no greater than. Fig. 7(b)
shows the construction schematically for a rate code.
(This irregular construction using weight columns was
introduced because we guessed that it might give better
practical performance; we used such columns because
this was the maximum number of weightcolumns for which
it was easy to make “good” matrices; if more than
columns of weight are introduced at random then there
is a risk that the corresponding code will have low weight
codewords.)

Construction 1B and 2B. A small number of columns are
deleted from a matrix produced by Constructions 1A and 2A,
respectively, so that the bipartite graph corresponding to the
matrix has no short cycles of length less than some length,
here .

Another way of constructing regular Gallager codes is to
build the matrix from nonoverlapping random permuta-
tion matrices as shown in Fig. 7(c), (d). Fig. 7(c) shows the
construction used by Gallager [26]. For practical purposes,
codes constructed in these ways appear to have very similar
properties to codes made with Construction 1A, as long as
cycles of length are forbidden.

A. Rate of Codes Defined by These Matrices

The above constructions do not ensure that all the rows of
the matrix are linearly independent, so the matrix
created is the parity-check matrix of a linear code with rateat
least , where . We report results on

(a)

(b)

Fig. 8. Performance of Gallager codes applied to binary-symmetric channel
and decoded by sum-product decoder. Comparison of empirical decoding
results with calculated performance of Reed–Muller codes (diamonds) and
BCH codes (squares), and the Shannon limit. BSC’s with (a)fn = 0:076
(b) fn = 0:16 are assumed. Arrows show the values ofR0(fn) and
GV (fn) for the channels. (a) Horizontal axis: information rateR. Vertical
axis: block error probability. Curve: Shannon limit on achievable (rate, bit
error probability) values. Results shown are for a code of Construction 1B
whose parity matrix hasM = 10000 rows andN = 19839. The weight
per column ist = 3. (b) A BSC with fn = 0:160 is assumed. Horizontal
axis: information rateR. Vertical axis:bit -error probability. Results shown
are for a code of Construction 1A whose parity matrix hasM = 10000
rows and13336 columns, and for three codes derived from this code by
shortening, i.e., deleting columns from the parity matrix. These codes have
N = 13298; 13119;12955. The weight per column ist = 3.

the assumption that the rate is. The generator matrix of the
code can be created by Gaussian elimination.
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(a)

(b)

Fig. 9. Gallager codes’ performance over Gaussian channel (solid curves) compared with that of standard textbook codes and state-of-the-art codes (dotted
curves). Vertical axis shows empirical bit error probability. It should be emphasised thatall the block errors in the experiments with Gallager codes were
detectederrors: the decoding algorithm reported the fact that it had failed. Panel (a) shows codes with rates between about1=2 and2=3; panel (b) shows codes
with rates between1=4 and1=3. Textbook codes:The curve labeled(7; 1=2) shows the performance of a rate1=2 convolutional code with constraint length
7, known as thede factostandard for satellite communications [29]. The curve (7,1/2)C shows the performance of the concatenated code composed of the same
convolutional code and a Reed–Solomon code.State of the art: The curve (15,1/4)C shows the performance of an extremely expensive and computer intensive
concatenated code developed at JPL based on a constraint length15, rate1=4 convolutional code (data courtesy of R. J. McEliece.) The curves labeledTurbo
show the performance of the rate1=2 Turbo code described in [12], [11] and the rate1=4 code reported in [21].Gallager codes:From left to right the
codes had the following parameters(N;K;R). Panel (a):(65389; 32621;0:499) (1B); (19839;9839;0:496) (1B); (29331;19331;0:659) (1B). Panel (b):
(40000;10000;0:25) (Construction 2A);(29507;9507;0:322) (2B); (14971;4971;0:332) (2B); (15000;5000;0:333) (2A); (13298;3296;0:248) (1B).

B. Empirical Results for Gallager Codes:
Binary-Symmetric Channel

In the following experiments we performed up to 1000 iter-
ations of the algorithm when decoding each, halting earlier
if a consistent decoding was found. Most of the successful
decodings took 20 iterations or fewer to be completed, which,
for a code with blocklength , corresponds to a few
seconds on a Sparc I workstation. We found that the results
were best for and became steadily worse asincreased.

We compare Gallager codes with with Bose–
Chaudhuri–Hocquenghem (BCH) codes, which are described
in [52] as “the best known constructive codes” for memoryless
noisy channels, and with Reed–Muller (RM) codes. These
are multiple random error-correcting codes that can be
characterized by three parameters . The blocklength is

, of which bits are data bits and the remainder are parity
bits. Up to errors can be corrected in one block.

Fig. 8 compares two Gallager codes with BCH and RM
codes on two binary-symmetric channels. To compute the
probability of error for BCH codes we evaluated the prob-
ability of more than errors in bits. Similarly, for RM
codes of minimum distance, performance was computed
assuming that more than errors cannot be corrected.
(See Appendix B for discussion of how the presented results
were computed.)

The mean number of iterations of the algorithm to obtain
a successful decoding is displayed for a selection of codes
and different densities in Table I. In rare cases as many
as 800 iterations took place before a successful decoding
emerged.

C. Gallager Codes for the Gaussian Channel

We originally conceived MN codes as codes for the mem-
oryless binary-symmetric channel. It turns out, however, that
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Fig. 10. (a) Median number of iterations of sum-product algorithm taken to
obtain a successful decoding. Bars show 5th, 25th, 75th, and 95th percentiles.
(b) Corresponding bit error probability.

Gallager and MN codes have a much broader applicability. As
we proved in Section II, Gallager codes are very good for any
symmetric stationary ergodic noise model (including arbitrary
correlations and memory—Definition 6) as long as a mean
entropy can be defined for it. Here we report investigations
of nonuniform noise corresponding to communication over a
Gaussian channel with binary inputs.

Fig. 9 compares the performance of Gallager codes with
rates between and with textbook codes and with
state-of-the-art codes. As before, the best results are obtained
by making the weight per column as small as possible
(Constructions 2A and 2B). Unsurprisingly, codes with large
blocklength are better.

In some cases we modified the matrices so as to eliminate
short cycles. The original matrices, by construction, had no
cycles of length , a constraint which was found to be
beneficial. We deleted columns so as to remove cycles of
length expecting that this would further improve
performance. However, we found that these modifications
made little difference.

For the codes with blocklengths and and
in Fig. 9 the median number of iterations taken to complete
a successful decoding is shown in Fig. 10(a) as a function
of . The line shows the median number of iterations
and the bars show the 5th, 25th, 75th, and 95th percentiles.
Fig. 10(b) shows the corresponding bit error probabilities,
reproduced from Fig. 9.

D. Results for Small Blocklengths

To double-check our results against Gallager’s we replicated
experiments with codes of blocklength and . Our
random code constructions are not identical to Gallager’s, and
we ran the decoder for more iterations (up to 500), but the

Fig. 11. Short-blocklength Gallager codes’ performance over Gaussian chan-
nel (solid curves) compared with that of standard textbook codes (dotted
curves). Vertical axis shows empirical bit error probability. It should be
emphasised thatall the block errors in the experiments with Gallager codes
weredetectederrors: the decoding algorithm reported the fact that it had failed.
Textbook codes:as in Fig. 9.Gallager codes:From left to right the codes
had the following parameters(N;K;R): (1008; 504; 0:5) (Construction 1A);
(504;252;0:5) (1A).

results for Construction 1A appear much the same as those in
his book [27, fig. 6.7].

V. PICTORIAL DEMONSTRATION OF GALLAGER CODES

Figs. 12–15 illustrate visually the conditions under which
Gallager’s low-density parity-check codes can give reliable
communication over binary-symmetric channels and Gaussian
channels. These demonstrations may be viewed as animations
on the world wide web [39].

A. Encoding

Fig. 12 illustrates the encoding operation for the case of a
Gallager code whose parity-check matrix is a
matrix with three ’s per column. The high density of the
generator matrix is illustrated in (b) and (c) by showing the
change in the transmitted vector when one of the 10 000
source bits is altered. Of course, the source images shown
here are highly redundant, and such images should really be
compressed before encoding. Redundant images are chosen in
these demonstrations to make it easier to see the correction
process during the iterative decoding. The decoding algorithm
doesnot take advantage of the redundancy of the source vector,
and it would work in exactly the same way irrespective of the
choice of source vector.

B. Iterative Decoding

After the transmission is sent over a channel with noise level
%, the received vector is as shown in the upper left of

Fig. 13. The subsequent pictures in Fig. 13 show the iterative
probabilistic decoding process. The sequence of figures shows
the best guess, bit by bit, given by the iterative decoder, after
0, 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts
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Fig. 12. Demonstration of encoding with a rate1=2 Gallager code. The encoder is derived from a very sparse10000� 20000 parity-check matrix with
three1’s per column. (a) The code creates transmitted vectors consisting of 10 000 source bits and 10 000 parity-check bits. (b) Here, the source sequence
has been altered by changing the first bit. Notice that many of the parity-check bits are changed. Each parity bit depends on about half of the source
bits. (c) The transmission for the casesss = (1; 0; 0; � � � ; 0). This vector is the difference (modulo2) between transmissions (a) and (b). (Dilbert image
Copyright1997 United Feature Syndicate, Inc., used with permission.)

after the 13th iteration when the best guess violates no parity
checks. This final decoding is error free.

C. Gaussian Channel

In Fig. 14 the first picture shows the transmitted vector and
the second shows the received vector after transmission over
a Gaussian channel with . The greyscale repre-
sents the value of the normalized likelihood, .
This signal-to-noise ratio is a noise level at
which this rate Gallager code communicates reliably (the
probability of error is ). To show how close we are to
the Shannon limit, the third panel shows the received vector
when the signal-to-noise ratio is reduced to , which
corresponds to the Shannon limit for codes of rate.

Fig. 15 shows the analogous vectors in the case of a code
with rate about .

VI. MN CODES

A. The Ideas Behind MN Codes

It is conventional to define a linear error-correcting code to
have transmitted blocklength , and to use signals of
density . Conventionally, the code is systematic, so
the first transmitted bits are the source bits. The
extra bits are parity-check bits, which produce redundancy in
the transmitted vector. This redundancy is exploited by the
decoding algorithm to infer the noise vector.

MN codes [40] are based on a different approach. We
first assume that the source may itself be redundant, having

, the expected density of, less than . Consecutive
source symbols are independent and identically distributed.
Redundant sources of this type can be produced from other
sources by using a variation on arithmetic coding [70], [57];
one simply reverses the role of encoder and decoder in a

standard arithmetic coder based on a model corresponding to
the sparse messages (see Appendix G). Now given that the
source is already redundant, we are no longer constrained to
have . In MN codes, may be less than , equal
to , or greater than . We distinguish between the “symbol
rate” of the code, , and the “information rate” of the
code, . Error-free communication may be
possible if the information rate is less than the capacity of the
channel. For example, consider a binary-symmetric channel
having , and assume that we have a source with
density . Then we might construct a code with

, i.e., a square linear code with symbol rate[Fig. 16(b)].
The information rate, , is less than the channel capacity,

, so it is plausible that we might construct a sequence of
codes of this form achieving vanishing probability of error.

The key idea behind MN codes is that we construct the
generator matrix in terms of aninvertible matrix, in such
a way that the sparse source and the sparse noise can be
treated symmetrically in the decoding problem—in contrast to
conventional syndrome decoding where only the noise vector
appears in the problem.

1) Code Construction:MN codes make use of the same
matrices and that were constructed in Section I-C1.
These matrices will now be denoted by (the square
invertible matrix) and . We redefine and
such that is an matrix and is an matrix.

2) Encoding: A source vector of length is encoded
into a transmitted vector defined by (Fig. 17(a))

(58)

This encoding operation takes time of order
. The mapping from source bits to transmitted bits

is a linear mapping, however, MN codes arenonlinearcodes
in the sense that the codewords that have high probability do
not form a complete linear subspace of .
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Fig. 13. Iterative probabilistic decoding of a Gallager code. The sequence of figures shows the best guess, bit by bit, given by the iterative decoder, after
0, 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts after the 13th iteration when the best guess violates no parity checks. This final decoding is
error free. (Dilbert image Copyright1997 United Feature Syndicate, Inc., used with permission.)

3) The Decoding Problem:The received vector is

(59)

where the noise is assumed to be a sparse random vector
with independent and identically distributed bits, density.
(See Appendix A for discussion of other channels.)

The first step of the decoding is to compute

(60)

which takes time of order .
Because

the decoding task is then to solve for the equation

(61)

where is the by matrix . This decoding
problem is shown schematically in Figs. 17(b) and 18 for MN
codes with symbol rates and .

We emphasize two properties of (61).

1) There is a pleasing symmetry between the sparse source
vector and the sparse noise vector, especially if

.
2) Both the matrix and the unknown vector are sparse

(the bits of have density or ), so the decoding
problem is identical to the syndrome decoding problem
for Gallager codes.

B. Theoretical Results for MN Codes

The theoretical properties of optimal decoding derived in
Section II imply that good MN codes exist. Fig. 19 shows
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Fig. 14. Demonstration of a Gallager code for a Gaussian channel. (a) A data transmission consisting of 10 000 source bits and 10 000 parity-check bits.
(b1) The received vector after transmission over a Gaussian channel withx=� = 1:185. (Eb=N0 = 1.47 dB.) The greyscale represents the value of the
normalized likelihood. This transmission can be perfectly decoded by the sum-product decoder, that is, the decoder’s output is identical to the original
data shown in (a). The empirical probability of decoding failure is about10

�5. (b2) The probability distribution of the outputy of the channel with
x=� = 1:185 for each of the two possible inputs. (c1) The received transmission over a Gaussian channel withx=� = 1:0, which corresponds to the
Shannon limit. (c2) The probability distribution of the outputy of the channel withx=� = 1:0 for each of the two possible inputs. (Dilbert image
Copyright1997 United Feature Syndicate, Inc., used with permission.)

the communication rates proved achievable with MN codes
communicating over a binary-symmetric channel with .
This figure was produced by the same method as Fig. 3.

C. Experimental Results: One MN Code Can be Used for
Channels with a Range of Noise Levels

1) Binary-Symmetric Channel:We initially made experi-
ments in which a sparse source communicated over a binary-
symmetric channel, with . Results for two codes with
symbol rates about and about are shown in Table II and
Fig. 20(a).

We then explored cases with , using the same
encoderwith and . Fig. 20 shows that
a single encoder can be used to transmit quite near to capacity
over two channels with substantially different noise levels
(15.3% and 11.4%), simply by changing the density of the
source stream. Contrary to our expectations, the performance
appeared to get better when the symmetry between the source
and the noise in the decoding was broken; in the case with

and , the performance is beyond .
2) MN Codes for the Gaussian Channel:We have simu-

lated MN codes with dense sources and sparse sources. The
rate code with a dense source gave a probability of bit
error less than at 1.81 dB. The same code,

encoding a sparse source with gave a
similar error probability at 2.31 dB. MN codes seem
to be inferior to Gallager codes in terms of , but it may
be that their novel properties offer compensating benefits.

VII. D ISCUSSION

This paper has given a semiconstructive proof of the noisy
channel coding theorem using low-density parity-check codes.
Gallager and MN codes are good not only for the binary-
symmetric channel but also for any channel models for which
the optimizing input distribution is symmetrical and the law of
large numbers holds. It is a surprise to us that a single code can
be good for any channel. We had anticipated that to achieve
very good performance on a new channel (such as a bursty
noise channel), a new custom-designed code would be needed.
This expectation is shared by Golomb, Peile, and Scholtz,
who state that “the optimal code for a given set of channel
conditions may not resemble the optimal code for another”
[29, p. 369]. But theoretically, the same encoder family can
be used forany channel—all that needs to be changed is the
decoding algorithm.

The practical performance of Gallager’s 1962 codes, us-
ing Gallager’s 1962 decoding algorithm, would have broken
practical coding records up until 1993. The decoder works
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Fig. 15. Demonstration of a rate1=4 Gallager code for a Gaussian channel. (a) A data transmission consisting of 3296 source bits and 10 002 parity check
bits. (b1) The received vector after transmission over a Gaussian channel withx=� = 0:84. (Eb=N0 = 1.5 dB.) This transmission can be perfectly decoded
by the sum-product decoder, that is, the decoder’s output is identical to the original data shown in (a). The empirical probability of decoding failure is about
10�5. (b2) The probability distribution of the outputy of the channel withx=� = 0:84 for each of the two possible inputs. (c1) The received transmission
over a Gaussian channel withx=� = 0:64, which corresponds to the Shannon limit. (b2) The probability distribution of the outputy of the channel with
x=� = 0:64 for each of the two possible inputs. The crocodile image is the insignia of the Cavendish Laboratory.

(a) (b)

Fig. 16. (a) A conventional code. The source vectorsss, of lengthK, is dense.
The transmitted vectorttt is of lengthN > K. HereN = 2K, so the symbol
rate and information rate are bothK=N = 0:5 shannons. (b) Square code for
a sparse source, havingN = K. The symbol rate� is 1, but if the density
of the sourcefs is 0:1 then the information rate isH2(0:1) ' 0:5 shannons,
the same as that of the conventional code.

beyond the minimum distance of the code, beyond the Gilbert
bound, and beyond the rate that was widely believed to be the
“effective capacity” .

As far as we know, the only traditional code that can match
the performance of Gallager codes is the code for Galileo
developed at JPL, which employs a rate , constraint length

convolutional code surrounded by a Reed–Solomon code,
giving an effective blocklength of about 8000 bits (R. J.
McEliece, personal communication). This system can only be
decoded using expensive special-purpose hardware, and the
details of the code are unpublished outside JPL [61].

A. Comparison with Turbo Codes

We heard about turbo codes [12], [11], which outperform
Gallager’s codes in terms of , towards the end of
this work. There are some similarities between the codes.
The turbo decoding algorithm may be viewed as a sum-
product algorithm ([69], [68], [46]). Turbo codes also have
a construction in terms of sparse random trellises. Indeed, as

(a)

(b)

Fig. 17. Pictorial representation of MN Code with symbol rate� = 1. (a)
Encoding, transmission and reception. The vectorssss andnnn are sparse. The
matricesCCCs andCCCn are very sparse. (b) Decoding. The vectorzzz is given by
zzz = CCCnrrrmod 2. We attempt to solve forsss andnnn.

Fig. 18. The decoding situation for an MN code with symbol rate� = 1=3.
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TABLE II
RESULTS OF SUM-PRODUCT DECODING EXPERIMENTS FORTWO MN CODES ON BINARY-SYMMETRIC CHANNELS. “trials” = NUMBER

OF BLOCKS DECODED; “ers” = NUMBER OF BLOCK ERRORS. pML = MAXIMUM -LIKELIHOOD ESTIMATE OF BLOCK ERROR

PROBABILITY . p+ IS UPPER ERROR BAR FOR BLOCK ERROR PROBABILITY (APPENDIX B). HERE, fs = fn = f . SEE ALSO FIG. 20(a)

Fig. 19. Lower bounds on achievable information rate in shannons versus
noise levelf for MN codes witht from 3 to 6. The solid line shows the
channel capacity. The lines are lower bounds on rates achievable by MN codes.
This achievable region was obtained using the first ensemble of matricesAAA.
As the weight per columnt increases the achievable region rises towards the
fundamental limit, the capacity.

shown schematically in Fig. 21, turbo codesare low-density
parity-check codes. However, few “goodness” properties have
been proved for turbo codes.

At error probabilities of about , Gallager and MN codes
are not able to get quite so close to the Shannon limit as turbo
codes (Fig. 9). However, turbo codes as originally presented
are known to have an error “floor” at about due to low-
weight codewords (B. J. Frey, personal communication); the
error probability of these turbo codes no longer decreases
rapidly with increasing below this floor. We have
seen no evidence of such a floor in Gallager codes; and
theoretically we do not expect Gallager codes to have the low-
weight codewords that could give rise to this behavior. So it is
possible that at very low-bit error probabilities, Gallager codes
outperform turbo codes. It should also be emphasised that all
the errors made by Gallager codes that we have observed
are detectederrors, whereas the turbo codes’s errors that
are caused by low-weight codewords areundetectederrors.
Gallager codes may also have an advantage over turbo codes
in terms of their decoding complexity.

B. Computational Complexity

In a brute-force approach, the time to create a Gallager code
scales as , where is the block size. The encoding time

(a)

(b)

Fig. 20. OneMN code with fixed generator matrix can communicate at good
rates overtwo binary-symmetric channels with substantially different noise
levels by changing the source density. In (a)fn = 0:153 and the source is
sparse with densityfs = 0:153; in (b) fn = 0:114, and a dense source is
used(fs = 0:5). The empirical decoding results are compared with calculated
performance of Reed–Muller codes (diamonds) and BCH codes (squares), and
the Shannon limit (solid curve). Horizontal axis: information rateR. Vertical
axis: block error probability�. Arrows show the values ofR0 andGV (fn).
The MN code hasN = 10000; K = 3296; and t = 3 (Construction 1B).

scales as , but encoding involves only binary arithmetic, so
for the blocklengths studied here it takes considerably less
time than the simulation of the Gaussian channel. We are
currently investigating the performance of low-density parity-
check codes which can be encoded in linear time [42].

Decoding involves approximately floating-point mul-
tiplies per iteration (assuming a model of computation where
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(a)

(b)

Fig. 21. Convolutional codes and turbo codesare low-density parity-check
codes. Schematic pictures of the parity-check matrices of (a) a system-
atic recursive convolutional code with (binary) generator polynomials
(10001=11111) and (b) a rate1=3 turbo code formed by combining two
such convolutional codes. Notation: A band of diagonal lines represent a band
of diagonal1’s. Horizontal and vertical lines indicate the boundaries of the
blocks within the matrix. In (a) the left-hand band is10001, corresponding
to the numerator polynomial, and the right-hand band,11111, corresponds to
the denominator. In (b) the firstK bits are the systematic bits, the nextK
are the parity bits from the first convolutional code, and the lastK are the
parity bits from the second convolutional code, which receives the systematic
bits in a permuted order. The weight per row of the turbo code’s parity-check
matrix is 7 for almost all rows, and the weight per column is4 or 5.

the cost of elementary operations does not grow with),
so the total number of operations per decoded bit (assuming
20 iterations) is about , independent of blocklength.
For the codes presented here, this is about 800 operations.
This is not at all excessive when compared with textbook
codes—the constraint length convolutional code used by
Voyager requires 256 operations per decoded bit. The turbo
codes of [12] require about 3800 operations per decoded bit
(B. J. Frey, personal communication).

Strictly, a constant number of iterations (taken above to be
20) is not sufficient to achievenegligible probability of error
for any blocklength [26]. Assuming the truth of the conjecture
of Section III-C2 that the bit error probability decreases as

where is the number of decoding iterations
and is a constant, in order for this probability to decrease
as with increasing , we need the number of decoding
iterations to grow as .

The decoding algorithm involves no adjustable parameters,
except those associated with the handling of overflows. After
each vertical step we prevented all the probabilities from going
greater than or less than . (One could view the
“update schedule,” i.e., the order in which the quantitiesand

are updated, as an adjustable aspect of the algorithm [24]; we
have not explored this option. We have briefly examined two
modifications of the algorithm, making the prior probabilities
more extreme if a decoding has not emerged, and making the
propagated probabilities more (or less) extreme, but we have

not found any useful improvement in performance. However,
turbo code researchers have found similar tweaks to the sum-
product algorithm are helpful [21].)

The encoding and decoding software and the parity check
matrices used in this paper are available fromhttp://wol.ra.phy.

cam.ac.uk/mackay/codes/.

C. Descriptive Complexity

The descriptive complexity of these codes is much smaller
than the descriptive complexity of arbitrary linear codes, which
is bits. A Gallager code has a descriptive
complexity of about bits, since for every one
of columns we have to selectbits from .

D. Distance Properties

We have proved minimum distance properties of Gallager
codes in Section II-C2 (the Gilbert bound can be attained),
but we do not view this as a primary result. We view distance
properties as a secondary attribute compared with the block
error probability. The minimum distance of a code may be
viewed as a convenient measure of how “good” it is, but in
fact it is not possible to distinguish between good and very
good codes by their minimum distance, and bounded distance
decoders are well known to be unable to achieve the Shannon
limit [43]. We have proved that Gallager and MN codes can
(when optimally decoded) achieve capacity. Moreover, we
have demonstrated error correcting abilities at rates well above
the Gilbert rate.

E. Discussion Specific to MN Codes

In a conventional linear code, the codewords form
a complete linear subspace of , and it is conventional
to assume that its generator matrix might as well be put
in systematic form. In designing MN codes we made the
assumption instead that the source issparse, so the codewords
that have high probability are only a small subset of a complete
linear subspace. In this sense, MN codes are nonlinear codes,
even though the transmitted vectoris a linear function of
a source vector . The generator matrix maynot be put in
systematic form. The systematic form for a code with symbol
rate would simply be an identity matrix, giving no
error protection at all. We think the MN code’s sparse source
is an interesting idea which could have a variety of spinoffs.
For example, MN codes offer the potentially useful property
that the rate of the code can be changed without changing the
generator matrix.

F. Application of MN Codes to Multiple-User Channels

Consider a multiple-user linear binary channel whose out-
put, each cycle, is ,
where is the bit transmitted by user, and is noise. The
information-theoretic bound on the total information that the

users can communicate is the capacity .
We can create multiple-user codes for this channel di-

rectly from MN codes that encode sparse source bits
into transmitted bits. The columns of the matrix
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are divided up between the users, with userreceiving
columns, forming a matrix . All users know the

sparse matrix , and the decoder knows the entire matrix
. In each block cycle, user

encodes a vector of bits with density into a vector
of length bits, , and transmits this
vector.

The properties proved for MN codes immediately carry
over to these multiple-user codes. In particular, the Shannon
limit for the multiple-user linear channel can be achieved,
given an optimal decoder. Such a system, if appropriately
controlled, would allow the users dynamically to change their
rate of communication by changing their densitieswithout
changing their encoder.

G. Conundrum: Why Were Gallager Codes Forgotten?

Why was Gallager’s work mostly forgotten by the informa-
tion theory community?

There are very few citations of Gallager’s [26], [27] work
on low-density parity-check codes. A search on BIDS returns
the following citations: [14], [25], [28], [63], [44], [49], [48],
[54], [53], [55], [59], [64], [71], [72]. Of these, it seems that
the only author who pursued the practical implementation of
Gallager codes (and variations on them) was Tanner [63]. An
independent rediscovery of Gallager’s work has been made
by Wiberg [69], [68]. We regret that we initially misunder-
stood Gallager’s work: in [40], we incorrectly asserted that
Gallager’s codes were “bad” owing to a confusion with their
duals, low-density generator matrix codes, which are bad; we
also confused the decoding algorithms of Gallager and Meier
and Staffelbach.

In 1963, the cost in memory for explicit storage of the
generator matrix would have been unattainable, so computa-
tional resources were (temporarily) a problem. R. G. Gallager
(personal communication) has suggested that Gallager codes
were generally forgotten because it was assumed that concate-
nated codes [23] were superior for practical purposes.

H. Future Work

Generalization to -ary alphabets.Gallager and MN codes
can also be defined over-ary alphabets consisting of the
elements of GF . The generator matrix of a Gallager code
over GF takes the form , where the matrix

is a very sparse matrix with its nonzero elements
drawn from the nonzero elements of GF. The inversion
and multiplication operations are carried out in the algebra
of GF . The decoding can be performed with a belief
propagation algorithm, as with the binary Gallager codes.
We are investigating the application of these codes (with

) to the -ary symmetric channel—and to the
binary-symmetric channel and binary Gaussian channel, since
there is no obvious reason to believe that the Gallager
codes are the best Gallager codes for binary channels. Our
results show that Gallager codes over GF and GF
perform better than comparable Gallager codes over GF
in the case of the binary-symmetric channel and the Gaussian
channel [17].

Constructions. By introducing Constructions 2A and 2B,
we pushed the performance of Gallager codes a little closer
to capacity. Are there further useful changes we could make
to the code construction? We are currently investigating the
possibility of systematicconstruction of matrices whose
corresponding graphs have large girth [44], [8], [35].

In this paper we have mainly consideredregular low-density
matrices, that is, matrices in which the weight per column is
constant and the weight per row is constant, or nearly constant.
It is obviously a disappointment that, whereas the way to ob-
tain very good codes is to increase the density, the sum-product
algorithm performs worse for denser matrices. There is a way
out of this dilemma however: we obtained better performance
by using slightly irregular matrices with weight two and weight
three columns (see Fig. 9); Luby, Mitzenmacher, Shokrollahi,
and Spielman [36] have recently extended this idea, investigat-
ing highly irregular Gallager codes. Their results indicate that
significant enhancements in performance can be obtained. We
have applied this idea to Gallager codes over GFand have
discovered an irregular Gallager code with blocklength 24 000
bits whose performance equals that of the best turbo codes
[18]. The choice of construction of Gallager code remains a
productive area for further research.

Bursty channels and fading channels.Since Gallager
codes are, given an optimal decoder, good codes for any
channel in a wide class, we are optimistic that they will
be excellent codes for channels with bursts and fades. We
anticipate that the sum-product algorithm can be generalized
to handle simultaneous equalization and decoding. Only if we
model and infer the channel variations will we be able to get
close to the Shannon limit of such time-varying channels. In
contrast, many codes handle bursts byinterleaving, that is,
reordering the bits so that the bursts look like uniform noise.

Our results on MN codes serve as initial results describing
the performance of Gallager codes for decoding in the presence
of bursts. Consider a two-state channel which flips between a
high noise state with and a low noise state with

. The rate code of blocklength 13 298 bits can
communicate reliably over this channel if the burst periods
are identified, as long as the fraction of time spent in the high
noise state is less than 25%.

In contrast, if we used a traditional interleaving method
to cope with the bursts, the effective noise level would be

, for which the capacity
is . It seems unlikely that there is a practical rate
interleaved code that can communicate reliably under these
conditions.

Cryptanalysis. This work grew out of an interest in a
problem in cryptanalysis [3], the inference of the state of a
linear feedback shift register given its noisy output sequence,
which is also equivalent to the decoding of a cyclic code.
The free energy minimization algorithm was found to be an
improvement over Meier and Staffelbach’s algorithm in [38].
We anticipate that the sum-product decoder might perform
even better on these cryptanalysis problems. We are at present
investigating this possibility.

Statistical Physics. Consider a set of spins
among which there are couplings of order such that
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the Hamiltonian is

(62)

We have assumed that spins are coupled together in groups
of eight in order to obtain a relationship to a matrixwith
weight per row. If we identify and set up
the functions to correspond to the’s in the matrix ,
then the decoding problem maps onto the task of finding the
ground state of this energy function in the limit of small.

We have found that the sum-product decoder is a better
algorithm than the free energy minimization algorithm (Ap-
pendix C) for solving this problem. A difference between the
algorithms is that the free energy minimization algorithm (also
known as “mean field theory”) shows spontaneous symmetry
breaking, whereas the sum-product algorithm only breaks
symmetry if the energy function itself breaks symmetry. Prior
work related to this concept is found in [65].

It is possible that further benefits may be obtained by
applying sum-product concepts in statistical physics or to other
optimization problems where mean field methods have been
found useful [30], [2].

Decoding algorithms.We conjecture that as we get closer
to the Shannon limit, the decoding problem gets harder. But we
do not understand what aspects of the problem determine the
practical limits of our present decoding algorithms. It would be
interesting to obtain a convergence proof for the sum-product
algorithm and to develop ways of reducing the inaccuracies
introduced by the approach of ignoring the cycles present in
the belief network.

APPENDIX A
REAL-OUTPUT CHANNELS

In the main body of the paper our theorems and discus-
sions have focussed on binary-input, binary-output channels
of two types: the memoryless binary-symmetric channel and
the more general symmetric stationary ergodic binary channel
(Definition 6). We proved that MN codes and Gallager codes
are good for such channels. The same codes are also good for
channels with other output alphabets as long as they satisfy
simple symmetry and law-of-large-numbers properties. We
have in mind binary-input channels with real outputs such as
the additive white Gaussian noise channel and fading channels.

We start by discussing the simple case of a channel with
inputs of and real-valued outputs. Here, an implicit
noise vector can be envisioned on the basis of an arbitrarily
selected received vector, with being perhaps the most
convenient choice, since it simplifies the computation of the
syndrome and (63) below. For independent
noise, the bits of are probabilistically independent, with the
probability of a bit being being determined by the likelihood
ratio for the received signal. For a Gaussian channel with
inputs of , the received signal is ,

where is zero-mean Gaussian noise of variance. The
effective probability for a in bit of the noise vector
(based on ) is then

(63)

(Note that this probability can be greater than , in keeping
with the arbitrary nature of the choice of .) In any given
realization of the noise we can thus deduce an effective binary
noise distribution for an equivalent time-varying binary-
symmetric channel. Whether the decoding problem is solvable
depends on the entropy of this distribution. We thus need to
add to our list of error types (Section II-C) a third possibility:

III. The distribution has entropy greater (by some)
than the mean entropy.Let the probability of this event
be .

This failure mode occurs with a probability determined by the
distribution of large deviations of the channel. This probability
obviously must vanish with increasing blocklength for our
codes to be good.

A. Extension of Proofs to Channels with Nonbinary
Outputs and Temporal Correlations

Gallager and MN codes are good for channels that are
stationary and ergodic, that have vanishing and that satisfy
this symmetry property:

Definition 8: A temporal binary-input channel issymmet-
ric1 if the optimizing distribution of the channel is a
uniform distribution .

If this symmetry property is satisfied then it is evident
that the decoding problem is equivalent to the decoding of
a symmetric stationary ergodic binary channel (Definition 6).

B. Gaussian Channel Definitions

We simulated the following Gaussian channel. The binary
inputs are and the real output has a conditional
distribution that is Gaussian with mean and variance

(64)

For convenience we set and varied to change
the signal-to-noise ratio. The capacity of the channel can be
defined in a couple of ways. If we were allowed to use arbitrary
input values with the same mean power as the binary inputs

, the capacity would be

(65)

1Our definition of a “symmetric” channel differs from that of Cover and
Thomas [16]. For them, a channel is “symmetric” if the rows ofp(y jx) are
permutations of each other and the columns are permutations of each other;
a channel is “weakly symmetric” if the rows ofp(y jx) are permutations of
each other and the column sums are equal. This definition of a symmetric
channel is too restrictive, as it cannot even encompass a Gaussian channel.
The definition given here may conversely be viewed as too broad.
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TABLE III
GLOSSARY

The symbol “” between two matrices denotes concatenation, for example
a systematic parity check matrix might be written .

Symbol Meaning Type

Transmitted blocklength of a code Integer
Source blocklength of a code Integer
Generator matrix of a code Binary matrix
Parity-check matrix of a code Binary matrix
Parity block within a systematic generator matrix or parity Binary matrix
check matrix, e.g.,
Source string, length Binary vector
Transmitted string, length . Binary vector
Noise vector Binary vector
Received string Binary vector
Syndrome vector Binary vector
Very sparse matrix of dimension . Binary matrix

Very sparse matrix of dimension Binary matrix
Very sparse square matrix of dimension Binary matrix
Number of columns in . In Gallager codes . In MN Integer
codes
Number of rows in . In Gallager codes . In Integer
MN codes
Number of 1’s per column in (Gallager’s ) Integer or real
Number of 1’s per row in (Gallager’s ) Integer or real
Ratio . Symbol rate of MN code. Real
Ratio . . Real
possibly sparse vector of length Binary vector
vector of length such that Binary vector
weight of vector ; equivalently, the number of columns Integer
of that might be linearly dependent
Probability that random walk on -dimensional hypercube Real
returns to starting corner on step
Upper bound for Real
indices running from to Integer
index running from to in the eigenvalue expansion of Integer

Real
Real

Density of Real
Noise density Real
Source density Real
Number of steps in random walk on -dimensional hyper- Integer
cube. . .
Probabilities in sum-product algorithm Real

Traditional labels for blocklength, source blocklength, and Integers
maximum number of errors that can be corrected. N.B.,
above is different.
Minimum distance of a code. Integer
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If we accept the constraint that only the defined binary inputs
are allowed, then the capacity is reduced to

(66)

(67)

where

(68)

which may be evaluated numerically. If one communicates
over the Gaussian channel using a code of ratethen it is
conventional to describe the signal-to-noise ratio by

(69)

and to report this number in decibels as .

APPENDIX B
REPORTING OFEMPIRICAL RESULTS

A. Error Bars

The experiments result in a certain number of block de-
coding failures out of a number of trials . We report the
maximum-likelihood estimate of the block error probability,

, and a confidence interval , defined thus: if
then

where

else if and . When
reporting the bit error probability we use the error bars
derived from the block error probability; we do not bother
including the additional uncertainty in the bit error rate within
erroneous blocks, which is expected to be much smaller than
the uncertainty in the block error probability.

B. Comparison with Other Codes

Performances of RM and BCH codes were computed as-
suming for an RM code of minimum distancethat more
than errors cannot be corrected. For BCH codes it
was assumed that more thanerrors cannot be corrected, as
specified in the description of the code. In principle,
it may be possible in some cases to make a BCH decoder that
corrects more than errors, but according to Berlekamp [9],
“little is known about how to go about finding the solutions”
and “if there are more than errors then the situation gets
very complicated very quickly.” All relevant BCH codes listed
in [56] are included (block sizes up to ).

APPENDIX C
DECODING BY FREE ENERGY MINIMIZATION

MacKay [38], [37] derived a continuous optimization algo-
rithm for solving the discrete decoding problem

(70)

where is a given binary matrix and is a received
vector of length . The vectors and are assumed to have
a prior distribution that is separable thus

The algorithm is only practically useful for matrices that
are sparse. Problems of the form

(71)

can also be solved using the free energy minimization algo-
rithm by solving a sequence of problems of the general form
(70) with the fictitious noise level of the vectordecreasing
to zero.

The algorithm works by approximating the complicated
posterior probability of given by a simpler separable
distribution

This distribution’s parameters (one parameter for
each bit of ) are then adjusted so as to minimize a measure
of the divergence between the approximating distribution
and the true distribution , the variational free energy

(72)

The evaluation of this objective function and its gradient is
possible in time linear in the weight of . There is also
an update algorithm for each componentsuch that is
guaranteed to decrease. This iterative procedure is obviously
not the optimal decoding algorithm, but it is practical. We
originally developed MN codes with this decoding algorithm
in mind, so we report some experimental results. However,
this decoder has been superseded by the sum-product algo-
rithm of Section III. Sum-product decoding is less complicated
because there is no need to have an annealing schedule for a
temperature parameter.

A. Empirical Results: Free Energy Minimization, Ensemble 4

A value of was selected for experiments with
Gallager codes having rate and , using
Construction 1A.

We found that as the block size was increased the
performance improved. The block error probabilities for rate

codes with block lengths of 2000, 4000, 8000, and 20 000
were and . We also found that
with larger and smaller values ofthan , the code did
not work as well when decoded by free energy minimization.
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B. Insights into the Source of Errors

We examined some of the errors made by the free energy
minimization decoder and found that they tended to occur
when the vector was such that another slightly different
typical vector had a similar (but not identical) encoding.
In terms of the random walk on the hypercube (Section II-C),
these errors correspond to walks that after a small number of
steps return close to the starting corner. They were possible
because of rare topologies in the network corresponding to
the matrix such as the topology illustrated in Fig. 5(c). We
can eliminate the possibility of these errors by modifying the
ensemble of matrices so that the corresponding network
does not have short cycles in it.

C. Empirical Results: Free Energy Minimization,
Construction 1B

We made new matrices by taking matrices from Ensemble
4 with and deleting columns until there were no
short loops of the type shown in Fig. 5(e). These matrices,
having fewer columns, correspond to codes with slightly lower
rates. They also have nonuniform weight per row, which may
make them slightly suboptimal. We found that the topological
modifications gave codes which were able to communicate
at slightly higher rates over slightly noisier channels with a
smaller probability of error. A summary of our results is that
in terms of block error probability for a given communication
rate, Gallager and MN codes,when decoded by free energy
minimization, can be superior to Reed–Muller codes, and
Gallager codes can outperform BCH codes by a small margin.

Significantly better results were obtained using the sum-
product decoder described in the main body of this paper.

D. Contrast with Sum-Product Algorithm

We believe the reason the sum-product algorithm performs
much better than the variational free energy minimization
(mean field) algorithm is that the mean field algorithm exhibits
spontaneous symmetry breaking. It is possible for a cluster of
bits, whose state has not been determined by the influence
of the data, to collapse into a locally consistent state. The
sum-product algorithm (at least in the ideal case of a graph
without cycles) does not show any such spontaneous symmetry
breaking.

APPENDIX D
INEQUALITIES

We prove the following inequalities:

(73)

In general, if and
then

(74)

Proofs of Inequalities (73) and (74):Proof of right-hand
inequality: consider the multinomial distribution

(75)

Set . Then evaluate the probability, which we know
is less than

(76)

(77)

The left-hand inequality in (73) is proved by considering
again the quantity

(78)

If then is greater than or equal to for
all . So

(79)

(80)

Similarly, we may prove that, for

(81)

Proof: Consider the sum of binomial terms

(82)

Setting , we examine the factor
. Because , this factor is greater than.

So, dividing each term in the sum by an appropriate
number of times

(83)

(84)
We also note the following inequalities:

or equivalently

(85)

The proof is straightforward by integration of .



MACKAY: GOOD ERROR-CORRECTING CODES BASED ON VERY SPARSE MATRICES 427

APPENDIX E
BOUNDS ON RANDOM WALK’S RETURN PROBABILITY

We derive several upper bounds on the probability that
the random walk on the -dimensional hypercube returns to
its starting corner on theth step. We use the result from [31]
that

(86)

See [13], [20], [32], [34], and [62] for further information
about this random walk, which is also known as the Ehrenfest
Urn model. Equation (86) is an eigenvalue expansion, where
the eigenvalues of the Markov process are labeled by

and have value . For every positive eigenvalue
there is an opposite negative eigenvalue. We note that for odd

is zero, and that for even is a decreasing function
of . For convenience we can obtain a monotonic upper bound
on by restricting the sum overto the positive eigenvalues
and including a leading factor of.

(87)

We now derive various bounds valid for all ; some
bounds are tight for and some for . We also
evaluate a numerical bound that is useful for all.

A. Bound that is Tight for

(88)

(89)

(90)

At (89) we have used the inequality . We
note that

(91)

and obtain

(92)

(93)

(94)

The logarithm of this bound is

(95)

B. Bound that is Tight for

We consider the logarithm of one term in the sum overin
(87). We obtain a bound on the maximum value overthat
this quantity can assume. We define and .

(96)

(97)

At (96) we use inequality (73) and at (97) we use the inequality
We differentiate and find that

the maximum of this function is at , so that we can
bound every term as follows for any:

(98)

We thus conclude that for any

(99)

(100)

(101)

This bound illustrates the important power law decrease of
for small . The logarithm of this bound is

(102)

(103)

The leading factor of in (101) is the undesirable side-effect
of two of the inequalities.

C. Bound That Is a Factor of Tighter for

The above bound is tight enough to prove the main theorems
of the paper for but not for , because of the leading
factor of , so we now improve on it.

We count the number of walks of length(where is even)
that return to the origin. A walk that returns to the origin
can be created as follows. First we select (with replacement)

directions from the axes of the hypercube as the
directions that will be traversed twice. The number of different
selections is equal to the number of ways of putting
indistinguishable objects in bins, which is the number of
distinct ways of ordering indistinguishable partitions
and indistinguishable objects, which is . Then
having decided which are the directions we will traverse, the
number of distinct walks that can be created is less than or
equal to the number of distinct orderings of pairs of
indistinguishable objects, , with equality in the case where
all directions are traversed twice or zero times. Thus the total
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number of walks of length that return to the origin, ,
is bounded by

(104)

and so, since the total number of walks of lengthis

(105)

We loosen this bound into a slightly more convenient form,
introducing a largest value of, , for which we plan
to use this bound. We will set at our convenience to a value
independent of .

for

(106)

for

(107)

For our proof we set so that

for (108)

This bound decreases monotonically inup to ,
where (found by differentiation), so, since we know

is bounded by a decreasing function, we obtain

where

(109)

The logarithm of is

for (110)

D. Numerical Bound Useful for All

We continue from (96) and derive a numerical bound

(111)

We differentiate with respect toto find the maximum value of
this quantity; then we can bound the sum by the number of
terms in the sum times the maximum value of the summand.
Thus

(112)

(113)

or, equivalently,

(114)

where is the solution of

(115)

or, equivalently,

(116)

We can solve this equation numerically by iteration, starting
(for example) from , and setting equal to , the
value of the right-hand side, repeating until convergence
is established. Convergence, which can be slow, may be
accelerated by setting equal to .

For large and , the term is of small order
and we neglect it in our numerical computations, using

(117)

E. Another Good Bound for Large

Using the same method as in Appendix E-D, we can obtain
an explicit bound

(118)

Now is a convex function, so it is upper-bounded by its
tangent. For any choice of , and for all

(119)

So

(120)

We differentiate with respect to to find the maximum value
of this quantity, which is at

(121)

then we can bound the sum by the number of terms in the
sum times the maximum value of the summand, choosing
to have any convenient value. Based on what we have learned
from the previous bound, we choose

(122)

and obtain (after straightforward algebra)

(123)

The five bounds and are plotted
in the large limit in Fig. 22.
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Fig. 22. Plot of five bounds on the function1
M

log p
(r)
00 , for largeM , as

a function of r=M .
Bound b: 1

M
log q

(r)
b = (e�2r=M � log 2).

Bound c: 1
M

log q
(r)
c = 1

2
(�r=M + r=M log(r=M)).

Bound d:q(r)d = ( 3
4
r
M

)r=2 for r � r0 = 0M , where0 = 4
3e

.

Bound f: q(r)f = M exp[�M log 2 + MHe
2(�

�(r)) � 2r��(r)] where

��(r) = 1
1+exp( )

.

Numerical bound 1
M

log q
(r)
e computed as described in Appendix E-D. .

APPENDIX F
EVALUATION OF UPPER ANDLOWER BOUNDS ON ACHIEVABLE

INFORMATION RATE IN CASE OF NOISE OFUNIFORM DENSITY

We start from (21). In the case of uniform density,
depends only on the weight of, which we will denote .

(124)

We obtain a numerical lower bound on the achievable rate of
Gallager codes by computing as a function ofa bound on

, the number of pairs that give
rise to an of weight .

First consider the number of pairs such thathas weight
, has weight , and has weight . This quantity

can be written in terms of and
as

(125)

where it is understood that whenever any of the terms
in the denominator has . We arrive at this expression

by considering the number of ways of subdividingbits into
four blocks: the bits found in but not ; the bits found
in but not ; the bits common to and ; and the bits
common to and .

The number of pairs is bounded
by the number of terms in the sum times the maximum value

(126)

We can bound the maximum by minimizing the products
and in the denominator.

The first product is minimized by setting ; the second

by setting to its largest value (assuming that the density
). Thus

(127)

where .
The function is an increasing function of for

, where it has a sharp maximum. It is well
approximated by , where and

(128)

The step to (128) made use of inequality (74). We find
achievable rates by finding values ofand such that the
maximum value over and of is
just less than zero (see Appendix E-D).

APPENDIX G
ARITHMETIC CODING FOR CREATION OF SPARSE SOURCES

A redundant source having density less than, with con-
secutive source symbols that are independent and identically
distributed, can be produced from a dense source by using a
variation on arithmetic coding [70], [57]; one simply reverses
the role of encoder and decoder in a standard arithmetic coder
based on a model corresponding to the sparse messages. The
following pseudocode gives an algorithm for this task, but
ignores issues of initialization and termination.
Loop to read a dense stream and output a sparse stream with
density .
loop

At this point, and .
while

next input bit
end while

if then
output “ ” bit

else
output “ ” bit

end if
end loop
Loop to reconstruct the original dense stream from its
encoding as a sparse stream.
loop

At this point, and .
while

if then

else
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if then

output a “ ” bit followed by “ ” bits
else

output a “ ” bit followed by “ ” bits
endif

end if

end while

if next input bit then

else

end if
end loop
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