
A Computational model for linear codes
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t ],[ knC  be a binary linear block

h of n and dimension of k. Let

]n  be its parity check matrix, where
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ectors. Construct a factor graph [1]
 this code, illustrated as Fig.1. In

node ix  (represented by the unfilled

values from the binary integer set

}1− . In particular, 00 == nxx .

d circles (called subset nodes),
functions with the joined variable
uments. For ni ≤≤1 , define local

][1 WZS n+ , where 1+nS  is the

t induced by S and ][WZ  is the

over the integer ring. Specificly,

1 if 1−= ii xx  and

Wxxf iiii =−− ),( 1,1  if iii Hxx += −1  (mod 2) and

0),( 1,1 =−− iiii xxf  otrherwise. It should be noted that,

in the equation iii Hxx += −1 , ix ’s are viewed as
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Clearly, 0),,...,,( 110 ≠− nn xxxxg  if and only if the

sequence of nodes nn xxxx ,,...,, 110 −  is related to a

codeword in the code ],[ knC . Furthermore,

w
nn Wxxxxg =− ),,...,,( 110  means that the

corresponding codeword has Hamming weight of w.
Therefore the weight enumerating function (WEF)

)(WA  can be calculated as
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can be solved by the sum-product algorithm (SPA) [1],
which has been shown to be extended to an arbitrary
semiring. It should be noted that the SPA over the
factor graph is equivalent to the gerneralized Viterbi
algorithm (GVA) [3] over the trellis graph. It is also
pointed out by [3] that the GVA can be utilized to
calculate the WEF of any given trellis codes.



Disscussions: For a code ],[ knC  with small n and k,

the sum-product algorithm can be utilized for
calculating out its WEF. In other cases, we are faced
with computational difficulties. Messages transmitted
along edges of the factor graph are polynomials,
which perhaps include so many monomials and some
monomials have so large integer cofficients that it is
impossibe to store and process these messages on
computers. However, we can calculate out the
monomials with lower degree of the WEF by
discarding the monomials with degrees greater than

some integer maxD . In this case, the messages

transmitted are incomplete.

Generalizations: By introducing another dummy
variable Z and modifying slightly the local functions,
we also can calculate out the input-redundancy weight
enumerating function (IRWEF) [2] of a code. The
method can be also applied to convolutional codes
and other trellis codes by properly defining the factor
graph.

Examples: Consider the code ]10,20[C  defined by

H = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 41, 35, 190,
900, 737, 364, 214, 686, 338, 912].
Its WEF is
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Its IRWEF is
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Conclusions: An algorithm for computing the WEF
(or IRWEF) of a given linear code is described on the
factor graph. For large parameters, the algorithm can

be utilized to calculate out the minimum Hamming
weight.
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Fig1. A factor graph for the code C[n, k]


