COUNTING PATHS IN YOUNG'S LATTICE

Ira M. Gessel*
Department of Mathematics
Brandeis University
Waltham, MA 02254-9110

Abstract

Young's lattice is the lattice of partitions of integers, ordered by inclusion of diagrams. Standard Young tableaux can be represented as paths in Young's lattice that go up by one square at each step, and more general paths in Young's lattice correspond to more general kinds of tableaux. Using the theory of symmetric functions, in particular Pieri's rule for multiplying a Schur function by a complete symmetric function, we derive formulas for counting paths in Young's lattice that go up or down by horizontal or vertical strips. Our results are related to Richard Stanley's theory of differential posets in the special case of Young's lattice.

1. Introduction. Richard Stanley (1988) has studied paths in certain posets, called "differential posets," using properties of operators which move up and down by one rank in the poset. In the case of Young's lattice, the lattice of partitions ordered by inclusion of diagrams, these paths are sometimes called oscillating or up-down tableaux, and they generalize standard Young tableaux (i.e., with distinct entries). We describe here a related method, using symmetric functions, which can be used to extend some of these results to tableaux which may have repeated elements. We count paths in Young's lattice (or more precisely, walks in the Hasse graph of Young's lattice) that move up or down not only by one square at a time, but more generally by horizontal or vertical strips. Such paths have arisen in the work of Sundaram $(1986,1990)$ on the combinatorics of representations of symplectic groups.

A similar approach, in a more general context, has been developed independently by Fomin (1992).
2. Symmetric functions. We follow the notation of Macdonald (1979) for symmetric functions. In particular, s_{λ}, h_{n}, and e_{n} denote the Schur function, the complete symmetric function, and the elementary symmetric function.

[^0]Pieri's rule (see Macdonald (1979, p. 42)) is the formula

$$
\begin{equation*}
s_{\lambda} h_{n}=\sum_{\mu} s_{\mu} \tag{1}
\end{equation*}
$$

where the sum is over all partitions μ such that $\mu-\lambda$ is a horizontal n-strip, i.e., a set of n squares no two of which are in the same column. We shall also need the analogous formula (Macdonald (1978), p. 42)

$$
\begin{equation*}
s_{\lambda} e_{n}=\sum_{\mu} s_{\mu} \tag{2}
\end{equation*}
$$

where the sum is over all partitions μ such that $\mu-\lambda$ is a vertical n-strip.
It follows from (1) by induction on k that the coefficient of s_{μ} in $s_{\lambda} h_{n_{1}} \cdots h_{n_{k}}$ is the number of paths in Young's lattice from λ to μ consisting of k steps, in which the i th step goes up by a horizontal n_{i}-strip. Such a path can be represented by a tableau of shape $\mu-\lambda$ with $n_{1} 1$'s, $n_{2} 2$'s, $\ldots, n_{k} k$'s. More generally, the coefficient of s_{μ} in

$$
s_{\lambda} h_{m_{1}} e_{n_{1}} h_{m_{2}} e_{n_{2}} \cdots h_{m_{k}} e_{n_{k}}
$$

is the number of paths in Young's lattice from λ to μ consisting of $2 k$ steps, which go up alternately by horizontal and vertical strips of sizes $m_{1}, n_{1}, \ldots, m_{k}, n_{k}$. (Since steps of size 0 are allowed, all possible paths from λ to μ that go up by horizontal and vertical strips are covered.) For further information on the corresponding generalized tableaux, see, for example, Remmel (1984).

We would now like to count paths that can go either up or down by horizontal or vertical strips. To do this we will work with linear operators on symmetric functions which are products of the operators of multiplication by h_{n} or e_{n} and the adjoints of these multiplication operators. It is convenient to write operators after their operands. Our notation does not distinguish between the symmetric function f and the operator of multiplication by f, but this should cause no problems.

If f is any symmetric function, then $D(f)$ is the adjoint of multiplication by f with respect to the usual scalar product on symmetric functions; that is, for any symmetric functions a and $b,\langle a D(f), b\rangle=\langle a, b f\rangle$. (See Macdonald (1979, pp. 43-45).) For convenience we write f^{*} for $D(f)$.

By the definition of $h_{n}^{*},\left\langle s_{\lambda} h_{n}^{*}, s_{\mu}\right\rangle=\left\langle s_{\lambda}, s_{\mu} h_{n}\right\rangle$. Then Pieri's rule, together with orthogonality of the Schur functions, implies that

$$
\begin{equation*}
s_{\lambda} h_{n}^{*}=\sum_{\mu} s_{\mu} \tag{3}
\end{equation*}
$$

where the sum is over all partitions μ such that $\lambda-\mu$ is a horizontal n-strip, and similarly

$$
\begin{equation*}
s_{\lambda} e_{n}^{*}=\sum_{\mu} s_{\mu} \tag{4}
\end{equation*}
$$

where the sum is over all partitions μ such that $\lambda-\mu$ is a vertical n-strip.

It follows that the coefficient of s_{μ} in

$$
s_{\lambda} h_{k_{1}} e_{l_{1}} h_{m_{1}}^{*} e_{n_{1}}^{*} h_{k_{2}} e_{l_{2}} h_{m_{2}}^{*} e_{n_{2}}^{*} \cdots h_{k_{r}} e_{l_{r}} h_{m_{r}}^{*} e_{n_{r}}^{*}
$$

is the number of paths in Young's lattice from λ to μ consisting of $4 r$ steps, each of which goes up or down by a horizontal or vertical strip of the appropriate size.

We now describe a very useful notation for symmetric functions. (For some other applications of this notation, see, for example, Lascoux and Pragacz (1988).) Let α, β, \ldots be variables. By a monomial we mean an expression of the form $\alpha^{r} \beta^{s} \cdots$. Note that the coefficient of a monomial must be 1 ; thus $2 \alpha^{2} \beta^{3}$ is not a monomial, but it may be written as a sum of two (equal) monomials. Note also that $1=\alpha^{0} \beta^{0} \ldots$ is a monomial.

Now let w_{1}, w_{2}, \ldots be monomials and let $f=f\left(x_{1}, x_{2}, \ldots\right)$ be a symmetric function. We define $f\left(w_{1}+w_{2}+\cdots\right)$ to be $f\left(w_{1}, w_{2}, \cdots\right)$. It is clear that if $w=w_{1}+w_{2}+\cdots$ and f and g are symmetric functions then

$$
\begin{equation*}
(f+g)(w)=f(w)+g(w) \quad \text { and } \quad(f \cdot g)(w)=f(w) \cdot g(w) \tag{5}
\end{equation*}
$$

It is useful when working with vertical strips to extend this definition of $f(w)$ to sums of monomials with arbitrary coefficients. If $w=m_{1} w_{1}+m_{2} w_{2} \cdots$, where the m_{i} are nonnegative integers, then $f(w)$ is already defined as

$$
f(\underbrace{w_{1}+\cdots+w_{1}}_{m_{1}}+\underbrace{w_{2}+\cdots+w_{2}}_{m_{2}}+\cdots) .
$$

In particular, for the power sum symmetric functions p_{r}, we have

$$
\begin{equation*}
p_{r}\left(m_{1} w_{1}+m_{2} w_{2}+\cdots\right)=m_{1} w_{1}^{r}+m_{2} w_{2}^{r}+\cdots \tag{6}
\end{equation*}
$$

whenever the w_{i} are monomials and the m_{i} are nonnegative integers.
We now take (6) as a definition for arbitrary coefficients m_{1}, m_{2}, \ldots Together with (5), this defines $f(w)$ for all symmetric functions f.

It is sometimes useful to let an unsubscripted letter denote the sum of the corresponding subscripted letters, which we take as variables. Thus if $x=x_{1}+x_{2}+\cdots$ and f is a symmetric function then $f(x)$ is actually equal to $f\left(x_{1}, x_{2}, \ldots\right)$. We adopt this convention for the letters x, y, u, d, U, and D.

We also use the notation $h=h(x)$ for $\sum_{n=0}^{\infty} h_{n}=\prod_{i}\left(1-x_{i}\right)^{-1}$. One of the basic properties of h is that $h(x+y)=h(x) h(y)$. In particular, $1=h(0)=h(x-x)=$ $h(x) h(-x)$, so $h_{n}(-x)=(-1)^{n} e_{n}(x)$. This property will allow us to write formulas involving both complete and elementary symmetric functions compactly.

Rather than working with h_{n} and h_{n}^{*} directly, it will be more convenient to work with their generating functions. If s is a variable, $\sum_{n=0}^{\infty} s^{n} h_{n}(x)=h(s x)$. There is also a simple description of the action of $\sum_{n=0}^{\infty} t^{n} h_{n}^{*}(x)=h^{*}(t x)$, where t is a variable. It is not hard to show that for any symmetric functions $f=f(x)$ and $g=g(x), g f^{*}=\langle g(x+y), f(y)\rangle_{y}$, where \langle,\rangle_{y} denotes the scalar product
in the y variables only. ${ }^{1}$ We also recall that for any symmetric function $f(x)$, $\langle f(y), h(z y)\rangle_{y}=f(z)$. Thus

$$
\begin{equation*}
g(x) h^{*}(t x)=\langle g(x+y), h(t y)\rangle_{y}=g(x+t) \tag{7}
\end{equation*}
$$

so $h^{*}(t x)$ is a homomorphism. (In fact (7) is true for arbitrary t.) Although $h(s x)$ and $h^{*}(t x)$ don't commute, (7) makes it easy to evaluate the products in which they appear.
3. Paths. We first consider the case of paths that go up or down by horizontal strips only. Note that

$$
s_{\lambda} h_{m_{1}} h_{n_{1}}^{*} h_{m_{2}} h_{n_{2}}^{*} \cdots
$$

is the coefficient of $u_{1}^{m_{1}} d_{1}^{n_{1}} u_{2}^{m_{2}} d_{2}^{n_{2}} \cdots$ in

$$
\begin{equation*}
s_{\lambda} h\left(u_{1} x\right) h^{*}\left(d_{1} x\right) h\left(u_{2} x\right) h^{*}\left(d_{2} x\right) \cdots . \tag{8}
\end{equation*}
$$

We recall that

$$
\begin{equation*}
h(x y)=\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) . \tag{9}
\end{equation*}
$$

Thus (8) is the coefficient of $s_{\lambda}(y)$ in

$$
h(x y) h\left(u_{1} x\right) h^{*}\left(d_{1} x\right) h\left(u_{2} x\right) h^{*}\left(d_{2} x\right) \cdots
$$

Now $h(x y) h\left(u_{1} x\right) h^{*}\left(d_{1} x\right)=h\left(x y+u_{1} x+d_{1} y+u_{1} d_{1}\right)$, and an easy induction shows that in general

$$
\begin{equation*}
h(x y) h^{*}\left(d_{1} x\right) h\left(u_{1} x\right) h^{*}\left(d_{2} x\right) h\left(u_{2} x\right) \cdots=h\left(x y+u x+d y+\sum_{i \leq j} u_{i} d_{j}\right) \tag{10}
\end{equation*}
$$

Thus the coefficient of $s_{\lambda}(x) s_{\mu}(y)$ in (10) is the generating function for paths from μ to λ; that is, the coefficient of $s_{\lambda}(x) s_{\mu}(y) u_{1}^{m_{1}} d_{1}^{n_{1}} u_{2}^{m_{2}} d_{2}^{n_{2}} \cdots$ in (10) is the number of paths in Young's lattice from λ to μ that first go up by a horizontal m_{1}-strip, then down by a horizontal n_{1}-strip, then up by a horizontal m_{2}-strip, and so on. A straightforward calculation, which we omit, shows that the coefficient of $s_{\lambda}(x) s_{\mu}(y)$ in (10) may be expressed as

$$
\begin{equation*}
\sum_{\nu} s_{\lambda / \nu}(u) s_{\mu / \nu}(d) / \prod_{i \leq j}\left(1-u_{i} d_{j}\right) \tag{11}
\end{equation*}
$$

In particular, the generating function for paths from $\hat{0}$ to λ is

$$
\begin{equation*}
s_{\lambda}(u) / \prod_{i \leq j}\left(1-u_{i} d_{j}\right) \tag{12}
\end{equation*}
$$

[^1]and the generating function for paths from $\hat{0}$ to $\hat{0}$ is
\[

$$
\begin{equation*}
\prod_{i \leq j} \frac{1}{1-u_{i} d_{j}} \tag{13}
\end{equation*}
$$

\]

To count paths in which all the up steps come before all the down steps, we set some of the u_{i} and d_{j} equal to zero so that $i \leq j$ for every nonzero u_{i} and v_{j}, and (13) becomes $h(u d)$. In this case a path can be represented by a pair of tableaux of the same shape, and our result reduces to (9), with u and d replacing x and y.

For a generating function of a slightly different type, let us count closed paths, where instead of keeping track of the starting and ending point, we weight a path from λ to λ by $q^{|\lambda|}$. Then the generating function for these paths is

$$
\sum_{\lambda, \nu} s_{\lambda / \nu}(u) s_{\lambda / \nu}(d) q^{|\lambda|} / \prod_{i \leq j}\left(1-u_{i} d_{j}\right)
$$

which by Corollary 6.7 of Sagan and Stanley (1990) is equal to

$$
\begin{equation*}
h\left(q \frac{1+u d}{1-q}\right) / \prod_{i \leq j}\left(1-u_{i} d_{j}\right)=\prod_{m=1}^{\infty}\left(1-q^{m}\right)^{-1} \prod_{k, l, m=1}^{\infty}\left(1-u_{k} d_{l} q^{m}\right)^{-1} \prod_{i \leq j}\left(1-u_{i} d_{j}\right)^{-1} \tag{14}
\end{equation*}
$$

When we allow vertical strips as steps, it is convenient to work with $(-1)^{n} e_{n}=$ $h_{n}(-x)$ and $(-1)^{n} e_{n}^{*}=h_{n}^{*}(-x)$ rather than e_{n} and e_{n}^{*}, since this allows us to use a more compact notation. Then in the generating functions obtained using this convention, the term in the corresponding to a path will be multiplied by $(-1)^{N}$, where N is the sum of the lengths of all the vertical strips, up and down, in the path. When our final result is obtained and written out explicitly, we can make all signs positive by replacing each U_{i} with $-U_{i}$ and each D_{j} with $-D_{j}$.

We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(-1)^{n} e_{n}(x) U_{i}^{n}=h\left(-U_{i} x\right) \\
& \sum_{n=0}^{\infty}(-1)^{n} e_{n}^{*}(x) D_{i}^{n}=h^{*}\left(-D_{i} x\right)
\end{aligned}
$$

and with the formula $g(x) h^{*}(-t x)=g(x-t)$ we find as before that

$$
\begin{align*}
h(x y) h\left(u_{1} x\right) h(& \left.-U_{1} x\right) h^{*}\left(d_{1} x\right) h^{*}\left(-D_{1} x\right) \cdots \\
& =h\left(x y+(u-U) x+(d-D) y+\sum_{i \leq j}\left(u_{i}-U_{i}\right)\left(d_{j}-D_{j}\right)\right) . \tag{15}
\end{align*}
$$

Thus, for example, setting $x=y=0$ and fixing the signs, we find that the generating function for paths from $\hat{0}$ to $\hat{0}$ is

$$
\prod_{i \leq j} \frac{\left(1+u_{i} D_{j}\right)\left(1+U_{i} d_{j}\right)}{\left(1-u_{i} d_{j}\right)\left(1-U_{i} D_{j}\right)}
$$

Similar formulas can be obtained if we don't care where the paths start, by using

$$
\begin{equation*}
\sum_{\lambda} s_{\lambda}(x)=h\left(x+e_{2}(x)\right)=\prod_{i} \frac{1}{1-x_{i}} \prod_{i \leq j} \frac{1}{1-x_{i} x_{j}} \tag{16}
\end{equation*}
$$

in place of (9), and more generally, we may use any of Littlewood's formulas described in Macdonald (1979, pp. 45-47). Thus, for example, we can count paths that begin at a partition with an even number of parts or paths that begin at a partition of the form $\left(\alpha_{1}-1, \ldots, \alpha_{p}-1 \mid \alpha_{1}, \ldots, \alpha_{p}\right)$ in Frobenius notation.
4. An R-S-K bijection. As noted above, the generating function (13) for paths from $\hat{0}$ to $\hat{0}$ is a generalization of the generating function for pairs of tableaux of the same shape. It is natural to ask whether a bijective proof can be given by a generalization of the Robinson-Schensted-Knuth correspondence (Knuth, 1970). We describe a bijection that proves the "dual" of (12), that the generating function for paths from μ to $\hat{0}$ is $s_{\mu}(d) / \prod_{i \leq j}\left(1-u_{i} d_{j}\right)$. We omit the proof, which follows easily from properties of Knuth's insertion algorithm.

The bijection is given by an algorithm which constructs a sequence of columnstrict decreasing tableaux P_{i} from a two-line array of positive integers

$$
\begin{equation*}
\binom{q_{1} \cdots q_{N}}{p_{1} \cdots p_{N}} \tag{17}
\end{equation*}
$$

together with a column-strict decreasing tableau T of shape μ. The two-line array must satisfy $q_{i} \leq p_{i}$ and the lexicographic conditions $q_{i} \leq q_{i+1}$ and if $q_{i}=q_{i+1}$ then $p_{i} \geq p_{i+1}$. The sequence of shapes of the P_{i} is the desired path from μ to $\hat{0}$ in Young's lattice. Given a two line array (17) and a tableau T, the tableaux P_{i} are constructed as follows:

Let M be the largest integer occurring in T or among the p_{i}. Let σ_{k} for $1 \leq k \leq N$ be the word in the p 's lying underneath the occurrences of k among the q 's (so σ_{k} is weakly decreasing). By "insertion" of σ_{k} into a column-strict decreasing tableau we mean the usual Knuth row insertion.
(1) Start with $P_{0}=T$.
(2) For $k=1$ to M do

Step $2 k-1$: Insert σ_{k} into $P_{2 k-2}$ to obtain $P_{2 k-1}$.
Step $2 k$: Delete all k 's from $P_{2 k-1}$ to obtain $P_{2 k}$.
As an example we take the tableau

and the two-line array

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 2 & 2 \\
2 & 2 & 1 & 3 & 2
\end{array}\right)
$$

Then we have $P_{0}=T$,

$$
P_{5}=\begin{array}{|l|l|l|}
\hline 3 & 3 & 3 \\
\hline
\end{array} \quad P_{6}=\hat{0}
$$

Similar algorithms in the special case of oscillating tableaux were given by Delest, Dulucq, and Favreau (1988) Sundaram (1986, Lemma 8.7), R. P. Stanley (unpublished), and G. X. Viennot (unpublished). The general case was found independently by Roby (1991).
5. Exponential generating functions. As special cases of his results on differential posets, Stanley obtained numerous exponential generating functions for paths in Young's lattice that go up or down by only one square at a time. We indicate how some of these results can be derived from the results of Section 3. The key to obtaining exponential generating functions is a well-known homomorphism from symmetric functions to exponential generating functions. (See, e.g., Macdonald (1979, p. 18, Ex. 2) or Gessel (1990 Theorem 1).) We may define a linear map θ from power series in u_{1}, u_{2}, \ldots to power series in z by

$$
\begin{aligned}
\theta\left(u_{1} u_{2} \cdots u_{n}\right) & =\frac{z^{n}}{n!}, \quad \text { including } \theta(1)=1 \\
\theta\left(\prod u_{i}^{m_{i}}\right) & =0 \quad \text { for all other monomials. }
\end{aligned}
$$

Then the restriction of θ to symmetric power series is a homomorphism that also satisfies

$$
\theta\left(p_{n}(u)\right)= \begin{cases}z, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

and it is clear that

$$
\theta\left(s_{\lambda}(u)\right)=f^{\lambda} \frac{z^{|\lambda|}}{|\lambda|!}
$$

where f^{λ} is the number of standard Young tableaux of shape λ.
To count paths that go up or down by 1 square at each step, we set $d_{i}=u_{i}$ in the relevant generating function and extract the coefficient of $u_{1} u_{2} \cdots u_{n}$. Since the substitution yields a symmetric function of u, an exponential generating function can be obtained by applying θ. It is easily checked that $\theta\left(\prod_{i \leq j}\left(1-u_{i} u_{j}\right)^{-1}\right)=e^{z^{2} / 2}$.

Thus from (12) we obtain the generating function $f_{\lambda} e^{z^{2} / 2} z^{|\lambda|} /|\lambda|$! for oscillating tableaux of shape λ, as found by Sundaram (1986) and Delest, Dulucq, and Favreau (1988). Similarly, from (14) we obtain the exponential generating function

$$
\exp \left(\frac{z^{2}}{2}+\frac{q z^{2}}{1-q}\right) / \prod_{m=1}^{\infty}\left(1-q^{m}\right)
$$

in which the coefficient of $q^{k} z^{n} / n$! is the number of closed paths in Young's lattice with n steps (each up or down by one square), beginning and ending at the same partition of k. This is the case $r=1$ of Stanley (1988, Corollary 3.14).
6. Commutation relations. The operators U and D of Stanley (1988) (not to be confused with U and D as used in this paper), when restricted to Young's lattice, are h_{1} and h_{1}^{*}. Stanley's theory is based on the fact that their commutator is 1 . Thus it is natural to try to generalize these commutation relations to h_{m} and h_{n}^{*}, and to ask whether analogous operators satisfying these relations exist for other posets. We note also that the h_{i}^{*}, like Stanley's D, are differential operators, but not of first order (Macdonald (1978, pp. 43-45)).

The commutation relations are easily derived by considering the action of their generating functions: If f is any symmetric function then

$$
f(x) h^{*}\left(d_{1} x\right) h\left(u_{1} x\right)=f\left(x+d_{1}\right) h\left(u_{1} x\right) .
$$

and

$$
\begin{align*}
f(x) h\left(u_{1} x\right) h^{*}\left(d_{1} x\right) & =f\left(x+d_{1}\right) h\left(u_{1} x+u_{1} d_{1}\right) \\
& =f\left(x+d_{1}\right) h\left(u_{1} x\right) h\left(u_{1} d_{1}\right) \\
& =f(x) h^{*}\left(d_{1} x\right) h\left(u_{1} x\right) h\left(u_{1} d_{1}\right) \tag{18}
\end{align*}
$$

Equating coefficients of $u_{1}^{m} d_{1}^{n}$ in the extremes of (18) we obtain

$$
\begin{equation*}
h_{m} h_{n}^{*}=\sum_{i \geq 0} h_{n-i}^{*} h_{m-i} \tag{19}
\end{equation*}
$$

Equivalently, multiplying both sides of (18) by $1-u_{1} v_{1}=h\left(u_{1} d_{1}\right)^{-1}$, we obtain

$$
h_{n}^{*} h_{m}=h_{m} h_{n}^{*}-h_{m-1} h_{n-1}^{*} .
$$

Similarly,

$$
h_{m} e_{n}^{*}=e_{n}^{*} h_{m}+e_{n-1}^{*} h_{m-1}
$$

and analogous formulas hold for the other operators.
It is not too difficult to give combinatorial proofs of these commutation relations. Thus to prove (19) combinatorially in our context, given partitions λ and μ, we must find a bijection from the set of partitions ν such that $\nu-\lambda$ is a horizontal m-strip and $\nu-\mu$ is a horizontal n-strip to the set of partitions $\bar{\nu}$ such that for some
$i \geq 0, \lambda-\bar{\nu}$ is a horizontal $(n-i)$-strip and $\mu-\bar{\nu}$ is a horizontal ($m-i$)-strip. It can be shown that the following correspondence is such a bijection: Given ν, let $\alpha_{i}=\nu_{i}-\lambda_{i}$ and $\beta_{i}=\nu_{i}-\mu_{i}$. Let $\bar{\alpha}_{i}=\min \left(\alpha_{i+1}, \beta_{i+1}\right)+\max \left(0, \beta_{i}-\alpha_{i}\right)$. Then define $\bar{\nu}$ by $\bar{\nu}_{i}=\lambda_{i}-\bar{\alpha}_{i}$.

An informal description of this bijection may be helpful: When we go from λ up to ν then down to μ, in row i there is an "overlap" of $\min \left(\alpha_{i}, \beta_{i}\right)$ squares which are added and then removed and a "net gain" of $\alpha_{i}-\beta_{i}$ squares or a "net loss" of $\beta_{i}-\alpha_{i}$ squares, whichever is nonnegative. A similar statement holds when we go from λ down to $\bar{\nu}$ then up to μ. Then $\bar{\nu}$ is chosen so that the overlap in row i of $\lambda \rightarrow \bar{\nu} \rightarrow \mu$ is equal to the overlap in row $i+1$ of $\lambda \rightarrow \nu \rightarrow \mu$. We note that the special case $\lambda=\mu$ (and consequently $m=n$) of this bijection was given by Macdonald (1979, Ex. 4, p. 45) who used it to prove (16).

Young's lattice is, in Stanley's terminology, a "1-differential poset"; but Stanley's theory applies more generally to " r-differential posets," of which the r-fold product of Young's lattice, Y^{r} is an example. We can study paths in Y^{r} by representing its elements as products of Schur functions in r sets of variables. Thus the element (λ, μ) of Y^{2} may be represented by $s_{\lambda}(x) s_{\mu}(y)$ and we may count paths in Y^{2} by using the operators $h_{n}(x+y)=\sum_{i+j=n} h_{i}(x) h_{j}(y)$ and $h_{n}^{*}(x+y)=\sum_{i+j=n} h_{i}^{*}(x) h_{j}^{*}(y)$. The commutation relations in the general case of Y^{r}, which correspond to the defining property of an r-differential poset, are easily shown to be

$$
h_{m} h_{n}^{*}=\sum_{i \geq 0}\binom{r+i-1}{r-1} h_{n-i}^{*} h_{m-i}
$$

here $h_{m}=h_{m}(x+y+\cdots)=\sum_{i+j+\cdots=m} h_{i}(x) h_{j}(y) \cdots$, and similarly for h_{n}^{*}.
Fomin (1992) has used more general commutation relations to count paths in graphs.

Acknowledgment: I would like to thank Adriano Garsia for helpful discussions regarding the operators h_{n}^{*} and e_{n}^{*}.

References

1. M.-P. Delest, S. Dulucq, and L. Favreau (1988), An analogue to Robinson-Schensted correspondence for oscillating tableaux, Actes 20^{e} Séminaire Lotharingien, Publ. I.M.R.A., 372/S-20, Strasbourg, pp. 57-78.
2. S. Fomin (1992), Schur operators and Knuth correspondences, preprint.
3. I. M. Gessel (1990), Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53, 257285.
4. D. E. Knuth (1970), Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34, 709-727.
5. A. Lascoux and P. Pragacz (1988), S-function series, J. Phys. A.: Math. Gen. 21, 4105-4114.
6. I. G. Macdonald (1979), Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford.
7. J. B. Remmel (1984), The combinatorics of (k, l)-hook Schur functions, Combinatorics and Algebra, (C. Greene, Ed.) Contemporary Mathematics, Vol. 34, American Mathematical Society, Providence, pp. 253-288.
8. T. W. Roby, Applications and Extensions of Fomin's Generalization of the Robinson-Schensted Correspondence to Differential Posets, Ph. D. Thesis, Massachusetts Institute of Technology.
9. B. E. Sagan and R. P. Stanley (1990), Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55, 161-193.
10. R. P. Stanley (1988), Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.
11. R. P. Stanley (1990), Variations on differential posets, Invariant Theory and Tableaux, ed. D. Stanton, The IMA Volumes in Mathematics and Its Applications, Vol 19, Springer-Verlag, New York, pp. 145-165.
12. S. Sundaram (1986), On the Combinatorics of Representations of $\operatorname{Sp}(2 n, \mathbf{C}), \mathrm{Ph} . \mathrm{D}$. Thesis, Massachusetts Institute of Technology.
13. S. Sundaram (1990), The Cauchy identity for $S p(2 n)$, J. Combin. Theory Ser. A 53, 209-238.

[^0]: *partially supported by NSF grant DMS-8902666
 1991 Mathematics Subject Classification. Primary: 05E05. Secondary: 05E10, 05A15.
 Key words and phrases. Young's lattice, tableaux, oscillating tableaux, symmetric functions, Schur functions, Pieri's rule, differential posets.

[^1]: ${ }^{1}$ This follows easily from the fact that the comultiplication $f(x) \mapsto f(x+y)$ is the dual of multiplication; i.e., $\langle a(x+y), b(x) c(y)\rangle_{x y}=\langle a(x), b(x) c(x)\rangle$.

