
Classification of some strongly regular

subgraphs of the McLaughlin graph

J. Degraer ∗, K. Coolsaet

Department of Applied Mathematics and Computer Science,
Ghent University,

Krijgslaan 281–S9, B–9000 Ghent, Belgium

Abstract

By means of an exhaustive computer search we have proved that the strongly
regular graphs with parameters (v, k, λ, µ) = (105, 32, 4, 12), (120, 42, 8, 18) and
(176, 70, 18, 34) are unique upto isomorphism. Each of these graphs occurs as an
induced subgraph in the strongly regular McLaughlin graph. We have used an or-
derly backtracking algorithm with look-ahead and look-back strategies, applying
constraints based on several combinatorial and algebraic properties of graphs with
the given parameters.

Key words: Computer classification, Strongly regular graph, Orderly generation
1991 MSC: 05E30, 05–04

1 Introduction

Let Γ be a simple undirected graph with vertex set V = {1, . . . , v}. We shall
write p ∼ q to indicate that two vertices p, q ∈ V are adjacent (and distinct)
and p 6⊥ q to indicate that they are not adjacent (and distinct). If p is a vertex
of Γ then the neighbourhood graph Γ(p) with respect to p is the subgraph of
Γ induced by all the vertices that are adjacent to p.

A graph Γ is called regular of degree k when every vertex of Γ has exactly k
common neighbours. Γ is called strongly regular with parameters (v, k, λ, µ)
when it has v vertices, is regular of degree k and moreover each pair of adjacent

∗ Corresponding author.
Email addresses: Jan.Degraer@UGent.be (J. Degraer),

Kris.Coolsaet@UGent.be (K. Coolsaet).

Preprint submitted to Discrete Mathematics 29 October 2004



vertices has the same number λ of common neighbours and each pair of non-
adjacent vertices has the same number µ of common neighbours. We shall
call a strongly regular graph with given parameters unique if and only if all
strongly regular graphs with these parameters are isomorphic.

The neighbourhood graph of a vertex p of a strongly regular graph Γ is also
called a first subconstituent of Γ. The subgraph of Γ induced on all vertices of
Γ which are not adjacent to (and different from) p, is called a second subcon-
stituent.

The McLaughlin graph [6] is the well known unique strongly regular graph
with (v, k, λ, µ) = (275, 112, 30, 56). This graph contains many induced sub-
graphs which are again strongly regular (for example, the first and second
subconstituents of the graph). For four of the corresponding parameters sets,
i.e., (105, 32, 4, 12), (120, 42, 8, 18), (176, 70, 18, 34) and (253, 112, 36, 60), the
strongly regular graph is not known to be unique. In this paper we report on
an exhaustive computer search which settles the uniqueness question in the
first three cases.

2 Backtrack search with isomorphism rejection

2.1 General strategy

For a simple graph Γ we use the following computer representation : vertices
are represented by the consecutive integers 1, . . . , v and adjacency information
is stored in a square symmetric v × v matrix M , where rows an columns are
indexed by the vertices of the graph and the entries (M)xy are defined as
follows :

(M)xy
def
=





0 if x = y,

1 if x ∼ y,

2 if x 6⊥ y.

The exhaustive search algorithm basically generates all matrices of this kind in
a recursive way, trying each of the two possible values from the domain {1, 2}
for each of the (upper diagonal) matrix entries, and filters out those that do
not satisfy the definition of a strongly regular graph with a given parameter
set.

Different techniques are used to do this in an intelligent way and make the
program complete its search within reasonable time. Most of them amount
to ‘pruning’ the search tree at points where M is only partially instantiated,

2



either because we know that it will never be possible to complete it to a
strongly regular graph with the requested properties, or because the partially
instantiated matrix can be proved isomorphic to an instance we have already
considered earlier in the search.

Also the order in which the various matrix entries are filled in may influence
the speed of the algorithm dramatically. We use the column-by-column order

(x, y) = (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . , (v − 2, v), (v − 1, v)

but deviate from this when certain domain values are ‘forced’ (see §2.5 below).

2.2 Combinatorial constraints

Several properties of strongly regular graphs can be used to prune the search
tree. As a strongly regular graph is regular of degree k, we may prune the
search as soon as a row or column of M contains more than k entries equal to
1 (denoting adjacency). Similarly, no row or column may contain more than
v − k − 1 entries equal to 2 (denoting non-adjacency) as the complement of
the graph is regular of degree v − k − 1.

As a direct consequence of the definition of a strongly regular graph we may
also prune the search whenever a partially filled matrix M has two adjacent
vertices that have more than λ vertices in common or two non-adjacent vertices
with more than µ common neighbours. Moreover, similar restrictions can be
deduced for the cardinality of the set of vertices z that are adjacent to p but
not to q, adjacent to q but not to p and adjacent to neither p nor q. We list
the corresponding numbers in the tables below:

When p ∼ q :

z ∼ q z 6⊥ q

z ∼ p λ k − λ− 1

z 6⊥ p k − λ− 1 v − 2k + λ

When p 6⊥ q :

z ∼ q z 6⊥ q

z ∼ p µ k − µ

z 6⊥ p k − µ v − 2k + µ− 2

When M is not completely filled in, we do not always know whether p and q
are adjacent or not, and then the information above cannot be used directly.
However, in that case we may still use a weaker constraint : the numbers are
then bounded by the maximum of the corresponding bounds for p ∼ q and
p 6⊥ q. When eventually the (non) adjacency of p and q is determined, we
check the constraint again for the appropriate bound.

3



2.3 Algebraic constraints

The 0–1 adjacency matrix A of a strongly regular graph has some interesting
algebraic properties which can be used to speed up the search. (We refer to
[1] for more information on how these properties are derived.)

A has exactly three eigenvalues. Their values θ0, θ1 and θ2 and the correspond-
ing multiplicities m0, m1 and m2 only depend on the parameters (v, k, λ, µ).
The table below lists these eigenvalues and multiplicities for the three graphs
under consideration (see also [2]).

(v, k, λ, µ) θm0
0 θm1

1 θm2
2

(105, 32, 4, 12) 321 284 −1020

(120, 42, 8, 18) 421 299 −1220

(176, 70, 18, 34) 701 2154 −1821

For each of the eigenvalues θi we may define a correspondig minimal idem-
potent matrix Ei. Each Ei can be expressed as a linear combination of the
form δ0I + δ1A + δ2A2 where each of the coefficients δi again only depends
on the parameters of the strongly regular graph. (Here I denotes the iden-
tity matrix, A is the adjacency matrix and A2 is the adjacency matrix of the
complement of the graph.) In other words, each idempotent corresponds to a
square symmetric v× v matrix with values δ0 on the diagonal, δ1 on positions
that correspond to adjacent vertices of the graph and δ2 elsewhere.

We list the minimal idempotents E1 and E2 for the relevant graphs in the
table below. (The idempotent E0 has δ0 = δ1 = δ2 = 1/v.)

(v, k, λ, µ) E1 E2

(105, 32, 4, 12) 4
5
I + 1

20
A − 1

30
A2

4
21

I − 5
84

A + 1
42

A2

(120, 42, 8, 18) 33
40

I + 11
280

A − 9
280

A2
1
6
I − 1

21
A + 1

42
A2

(176, 70, 18, 34) 7
8
I + 1

40
A − 1

40
A2

21
176

I − 27
880

A + 17
880

A2

As in [3], we make use of two important properties of these minimal idempo-
tents Ei in order to prune the search: they have rank mi and they are positive
semidefinite. Consequently, every principal submatrix of Ei must have rank
≤ mi and must also be positive semidefinite.

The program checks these constraints for every top left principal submatrix
of M . Because of the column-by-column instantiation order we use, large top
left principal submatrices turn up fairly early in the search process.

4



2.4 Isomorphism rejection

In order to detect partially filled matrices that are isomorphic to partially filled
matrices considered earlier in the search we use a so-called orderly approach.
An orderly algorithm [9] rejects matrices during the search if they are not in
canonical form.

Define a certificate C(M) for a symmetric v × v matrix M to be the string of
length v(v − 1)/2 obtained by concatenating the upper diagonal entries of M
in column-by-column order. I.e.,

C(M) = (M)12 (M)13 (M)23 (M)14 (M)24 · · ·

Note that the certificate for a top left principal submatrix of M is a prefix of
C(M).

The standard lexical (lexicographical) ordering on strings can now be used to
define a total ordering on symmetric matrices of the same order, as follows :
define M < M ′ if and only if C(M) < C(M ′).

Now consider the set {Mπ|π ∈ Sym(v)} of matrices that can be obtained from
M by applying every possible permutation π of the rows (and simultaneously
of the columns) to M , or equivalently, the set of matrices that represent the
same graph as M but use a (possibily) different numbering of the vertices. In
this set, the matrix M ′ for which C(M) is smallest shall be called the canonical
form of M . If M is equal to its canonical form, we say that M is in canonical
form. (It should be noted that not every author and not every algorithm uses
the same definition of certificate and hence of canonical form. Our choice is a
consequence of the column-by-column search order we use.)

The exhaustive search now uses the orderly approach in the following manner :
whenever a top left principal submatrix of M is fully instantiated, we check
whether that submatrix is in canonical form. If not, we prune the search.
Because computing the canonical form of a matrix is in general a very time
consuming task, we have introduced two additional criteria to speed up this
test : lexical ordering of the rows of M and clique checking.

2.4.1 Lexical ordering on rows

We say that M is lexically ordered if for every i ∈ 1, . . . , v − 1 the i-th row of
M , seen as a string of length v, is lexically smaller than the i + 1-th row or
equal to it. Note that every top left principal submatrix of a lexically ordered
matrix must itself be lexically ordered.

5



Lemma 1 Let M be a symmetric v × v matrix with zero diagonal and every
non-diagonal entry ≥ 0. If M is in canonical form, then M is lexically ordered.

Proof : Assume M is not lexically ordered. And let i be the smallest row
number for which the i + 1-th row of M is lexically smaller than the i-th row
of M . Let j be the smallest column number for which those rows differ, i.e.,
for which Mij > Mi+1,j, and hence, by symmetry, Mji > Mj,i+1. Because M
has zero diagonal, we must have j < i. But then it is easily seen that the
transposition π which interchanges the i-th and i + 1-th row (and column)
maps M onto a matrix Mπ with a smaller certificate. Hence M is not in
canonical form. 2

Checking whether a matrix is lexically ordered can be done much faster than
computing its canonical form. Hence, before checking whether a top left prin-
cipal submatrix is canonical, we first check whether it is lexically ordered.

2.4.2 Clique checking

A clique of a graph Γ is a subset of the vertices of Γ such that every two
distinct vertices in this set are adjacent.

Lemma 2 A graph Γ contains a clique of size s if and only if the canonical
form of the corresponding matrix M has a top left principal submatrix of order
s× s with all non-diagonal entries equal to 1.

Proof : If the top left principal s×s submatrix of M has the stated form, then
by definition of M the vertices of Γ numbered 1, . . . , s are mutually adjacent
and hence form a clique.

If the top left principal s× s submatrix of M does not have the stated form,
then C(M) contains at least one 2 within the first s(s− 1)/2 positions. If then
Γ has a clique of size s and we renumber the vertices of Γ in such a way that
the clique vertices are numbered 1, . . . , s, we obtain a matrix Mπ for which
the string C(Mπ) starts with s(s− 1)/2 ones. Hence C(Mπ) < C(M), and M
is not in canonical form. 2

We apply this lemma in the following way : if at a certain point in the search
process M has a completely instantiated top left principal submatrix of order
s × s which correponds to a clique, while the top left principal submatrix of
order s+1×s+1 does not, then we may prune the search if we detect a clique
of size s + 1 elsewhere in the graph.

In general, searching for cliques in a graph is a costly operation. However for
the three parameter sets we consider, the maximal clique size can be proved
to be at most 4 (e.g., using the Hoffman bound [1]). Searching for cliques of

6



such small size is not very expensive, the more so as we already keep track
of the number of common neighbours of any two points for the sake of the
combinatorial constraints (cf. §2.2).

2.5 Further refinements

Apart from pruning the search tree also other techniques contribute to the
overall speed of the algorithm.

One of the methods which has proven to be a big time saver, is the application
of a look-ahead strategy [5,7,8]. Basic backtracking always first assigns a value
1 or 2 to a matrix entry and then applies the constraints to check whether
this instantiation does not produce any inconsistencies with the partially filled
matrix obtained so far. In a look-ahead strategy we keep track at every position
in the matrix of all domain values that are still allowed for that position.
After every recursion step we adjust the domain of selected matrix entries by
temporarily removing values from their domains which are inconsistent with
the partially filled matrix M constructed so far.

For example, when we introduce the k-th entry with value 1 in a given row,
we remove 1 from the domain of all entries in the same row which have not
yet been given a value. This is a look-ahead version of the degree constraint
described in §2.2. A similar strategy can be applied for the other combinatorial
constraints. For more information on the specific domain reduction rules used
for selection of the set of matrix entries to be considered and the removal of
inconsistent domain values, we refer to [4].

For the look-ahead strategy to be effective, we need to introduce two changes
into the backtrack algorithm. First, it may happen that at some point the
domain of an uninstantiated matrix entry becomes empty. In that case the
search tree can be pruned immediately. Without look-ahead this inconsistentcy
would only be noted when the corresponding matrix position was actually
reached during the search, which might be a lot further down the search tree.

Secondly, we may use domain information to deviate from the column-by-
column search order whenever a domain has size 1. In other words, when a
certain value is forced for a certain matrix entry, we instantiate that element
first. This requires some extra bookkeeping, but again it can have a substantial
impact on the running time of the algorithm.

Finally, to improve the clique search (cf. §2.4) we use a look-back strategy.
Suppose that the instantiation of the matrix entry Mxy completes a clique of
size s + 1 and this enables us to prune the search. Then this instantiation
remains forbidden (this forces a non-adjacency) until a backtrack occurs to

7



the second last instantiated matrix entry that contributed to the same clique.

3 Results and final remarks

As stated in the introduction, the main result of our computer search is the
following

Theorem 1 The three strongly regular graphs with parameters (v, k, λ, µ) =
(105, 32, 4, 12), (120, 42, 8, 18) and (176, 70, 18, 34) are uniquely determined by
their parameters (upto isomorphism).

The algorithm was implemented in the programming language Java and the
search was carried out on a single CPU with a clock speed of approximately 1
GHz. We list the time needed to perform the exhaustive searches in the table
below.

(v, k, λ, µ) CPU time

(105, 32, 4, 12) 5 s

(120, 42, 8, 18) 13 m 40 s

(176, 70, 18, 34) 11 h 45 m 10 s

To double check the computer results, we tested the program on various other
parameter sets of strongly regular graphs for which the results were already
known before.

Finally we would like to mention that we had not expected to be able to
tackle graphs of these sizes. Former computer enumerations of strongly regular
graphs by ourselves and by different authors were restricted to graphs of size
v = 64 or less and took many computers and a lot more time to complete. We
think that the refinements introduced in section §2.5 are largely responsible for
our success and hope that applying the same techniques to other parameters
sets will lead to further classification results in the near future.

4 Acknowledgements

We would like to thank Frank De Clerck for suggesting to apply our techniques
to the strongly regular graphs studied in this paper.

8



References

[1] Brouwer A. E., A. M. Cohen & A. Neumaier, Distance-Regular Graphs,
Ergeb. Math. Grenzgeb. (3) 18, Springer-Verlag, Berlin (1989).

[2] Brouwer A. E., Strongly Regular Graphs, in The CRC handbook of
Combinatorial Designs, Chap. VI.5, Ch. J. Colbourn, J. H. Dinitz (eds.), CRC
Press, Boca Raton (1996).

[3] Coolsaet K. & J. Degraer, A computer assisted proof of the uniqueness of
the Perkel graph, to be published in Designs, Codes and Cryptography.

[4] Degraer J. & K. Coolsaet, Classification of three-class association schemes
using backtracking with dynamical variable ordering, submitted to Journal of
Discrete Mathematics.

[5] Gibbons P. B., Computational Methods in Designs Theory, in The CRC
handbook of Combinatorial Designs, Chap. VI.9, Ch. J. Colbourn, J. H. Dinitz
(eds.), CRC Press, Boca Raton (1996).

[6] Goethals J.-M., J. J. Seidel, The regular two graph on 276 vertices, Discrete
Math. 12 (1975),143–158.

[7] Haralick R., Elliott G., Increasing tree search efficiency for constraint-
satisfaction problems, Artificial Intelligence 14 (3) (1980), 216–313.

[8] Kumar V., Algorithms for Constraint Satisfaction Problems: A Survey, AI
Magazine 13(1) (1992), 32–44;

[9] Read R.C., Every one a winner, or, how to avoid isomorphism search when
cataloguing combinatorial configurations, Ann. Discrete Math. 2 (1978), 107–
120.

9


