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1. Introduction

Let G be a finite group and let χ ∈ Irr(G) be an irreducible complex character
of G. W. Burnside proved that if χ is nonlinear, then there exists g ∈ G such that
χ(g) = 0.

Theorem A. Let G be a finite group and let χ ∈ Irr(G) be nonlinear. If χ(1) is a
π-number, then there exists a π-element g ∈ G such that χ(g) = 0.

In the special case when χ(1) is a power of a prime p, we will prove that χ vanishes
on some p-element of G by using some elementary argument. To prove the general
result, however, we will need the Classification of Finite Simple Groups.

What we really prove in this paper is the following stronger result.

Theorem B. Let G be a finite group and let χ ∈ Irr(G) be nonlinear. Then there
exists g ∈ G of prime power order such that χ(g) = 0.

Since characters of degree not divisible by some prime number p never vanish on
p-elements, it is then clear that Theorem B implies Theorem A.

There are some variations of theorems A and B which are simply not true. For
instance, if χ in Irr(G) has degree divisible by p, then there does not necessarily exist
a p-element on which χ vanishes. It is enough to consider L2(11) with any character
of degree 10 and p = 2. It is also not true that if χ vanishes on some element x,
then χ has to vanish on some p-part of x. For instance, if G is M11, then χ has
an irreducible character of degree 11, vanishing on an element of order 6 and which
is nonzero on 2- and 3-elements. Thirdly, it is not true that a nonlinear character
has to vanish on some element of prime order, as shown by any quaternion group.
Interestingly enough, this seems to be the case for simple groups (and we do prove
this for the groups of Lie type and the sporadic groups).

Part of this work was done while the authors were visiting the Mathematisches Forschungsinstitut
Oberwolfach. We would like to thank the Institute for its hospitality.
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2. The case where χ(1) is a prime power

We start with an elementary lemma.

(2.1) Lemma. Let χ ∈ Irr(G) and let Z ≤ Z(G) such that χ|Z = χ(1)λ for a faithful
character λ ∈ Irr(Z). Then χ(x) = 0 for all x ∈ G with CG(x)/Z 6= CG/Z(xZ).

Proof. Let y ∈ CG/Z(xZ) \ CG(x)/Z and write z := [x, y] so that xz = xy. Then
1 6= z ∈ Z and hence

χ(x) = χ(xy) = χ(xz) = χ(x)λ(z) .

Since λ(z) 6= 1, the result follows. �

For inductive purposes we will need the following statement:

(2.2) Lemma. Assume that χ ∈ Irr(G) vanishes on some p-element of G/ kerχ.
Then χ vanishes on some p-element of G.

Proof. Let K = kerχ > 1 and xK ∈ G/K a p-element such that χ(xK) = 0. In this
case, we have that xK = xpK,

χ(xp) = χ(xpK) = χ(xK) = 0

and the result follows.

(2.3) Theorem. Let χ ∈ Irr(G) with χ(1) > 1. If χ(1) is a power of a prime number
p, then χ(x) = 0 for some p-element x of G.

Proof. We argue by induction on |G|. We may assume that kerχ = 1 for otherwise
the theorem follows by induction from Lemma (2.2).

Let Z = Z(G) and write
χ|Z = χ(1)λ ,

where λ ∈ Irr(Z) is faithful.
If G/Z is a p′-group, then χ(1) = 1 since χ(1) divides |G : Z| by Ito’s theorem

(Theorem (6.15) of [5]). This contradiction shows that |G/Z|p > 1.
Let Z 6= xZ ∈ Z(PZ/Z), where x is a p-element and P is a Sylow p-subgroup of

G. Let H/Z = CG/Z(xZ); then it follows by Lemma (2.1) that H = CG(x). Since
|G : H| is prime to p we conclude that

(χ(1), |G : CG(x)|) = 1 .

By Burnside’s theorem (Theorem (3.8) of [5]), we deduce that χ(x) = 0 or |χ(x)| =
χ(1). In the latter case, since χ is faithful we will have that x ∈ Z(G) (by Lemma
(2.27) of [5]) and this is not possible. Hence, we have that χ(x) = 0, proving the
theorem. �

3. Reducing to simple groups

To reduce Theorem B to a question on finite simple groups, we will need the
following two results (which also depend on the Classification). We state them for
the reader’s convenience.
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(3.1) Theorem (B. Fein, W. M. Kantor, M. Schacher). Suppose that H < G.
Then there exists an element x ∈ G of prime power order such that x lies in no
G-conjugate of H.

Proof. See [3]. �

(3.2) Theorem (H. Blau). Assume that G is a quasisimple group and let z ∈ Z(G).
Then one of the following holds:

(i) order(z) = 6 and G/Z(G) ∼= A6,A7,Fi22,U6(2), or 2E6(2);
(ii) order(z) = 6 or 12 and G/Z(G) ∼= L3(4),U4(3) or M22;

(iii) order(z) = 2 or 4, G/Z(G) ∼= L3(4), and Z(G) is noncyclic;

(iv) z is a commutator.

Proof. See [1]. �

(3.3) Theorem. Theorem B is true if it holds for the non-abelian finite simple
groups.

Proof. Let G be a minimal counterexample to Theorem B. We prove that G is a
nonabelian simple group.

Write Z = Z(G) and χZ = χ(1)λ, where λ ∈ Irr(Z).

Step 1. The character χ is primitive.

Suppose that γG = χ, where γ ∈ Irr(H) and H < G. By the Theorem (3.1), there
exists an element x ∈ G of prime power order lying in no G-conjugate of H. Then

χ(x) = γG(x) = 0

by the character induction formula.

Step 2. The character χ is faithful. Hence, every abelian normal subgroup of G is
cyclic and central.

The first assertion is Lemma (2.2), and then the second part follows from Lemma
(2.27) and Corollary (6.13) of [5].

Step 3. The group G/Z is simple nonabelian. Furthermore, Z contains every normal
subgroup of G.

Let N / G and let θ ∈ Irr(N) be an irreducible constituent of χN . By the Clifford
correspondence (Theorem (6.11) of [5]), we will have that χ is induced from some
irreducible character of T , where T is the stabilizer of θ in G. By Step 1, we deduce
that θ is G-invariant. Then χN = eθ for some integer e, by Clifford’s theorem. Now,
if θ(1) > 1, since the zeros of θ are zeros of χ, the theorem would be true for χ. So
we may assume that θ(1) = 1. Hence

N ′ ⊆ ker θ ⊆ kerχ = 1

and we deduce that N ⊆ Z by Step 2. Hence G/Z is simple. If G is solvable, we
conclude that G is abelian and we are done.
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Step 4. We have that

CG/Z(gZ) = CG(g)/Z

for every g ∈ G.

Let g ∈ G. Write H/Z = CG/Z(gZ). We have that CG(g)/Z ⊆ H/Z and we want
equality. If g ∈ Z, there is nothing to prove. So we may assume that g ∈ G \ Z.
Suppose that CG(g) < H. Then there exists a Sylow p-subgroup of H which is not
contained in CG(g). Hence, there exists a p-element x ∈ H \CG(g), and χ(x) = 0 by
Lemma (2.1).

Step 5. G is a simple group.

If 1 6= z ∈ Z, we claim that z is not a commutator. Otherwise, z = x−1y−1xy and
we deduce that xZ ∈ CG/Z(yZ). Hence y ∈ CG(x) and z = 1, a contradiction.

Now, we use Theorem (3.2). Assume that Z > 1 and let 1 6= z ∈ Z. Since z is not
a commutator, we should be in cases (i), (ii) or (iii) of Theorem (3.2). Also, since Z
is cyclic (by Step 2), we may rule out the case (iii). Hence, by Theorem (3.2), there
exists y ∈ 〈z〉 of order 3. Now, y is not a commutator and by applying Theorem (3.2)
to y, we get a contradiction. �

For the 26 sporadic simple groups, the Atlas [2] allows to easily verify the following:

(3.4) Theorem. Let G be a sporadic simple group. Then there exist four conjugacy
classes of elements of prime order in G such that every non-trivial irreducible character
of G vanishes on at least one of them.

Here, four cannot be replaced by three since in the Thompson group Th there do
not exist three conjugacy classes of prime power elements such that any nontrivial
character vanishes on at least one of them.

We will consider the validity of the principal results for the remaining two families
of non-abelian simple groups, that is, the alternating groups, and the simple groups
of Lie type, in the next two sections.

4. Alternating groups

The irreducible characters χλ of the symmetric group of degree n are labelled by
the partitions λ of n.

If p is a prime number let

n = a0 + a1p+ · · ·+ akp
k

be the p-adic decomposition of n, (0 ≤ ai ≤ p − 1, ak 6= 0). We let πnp ∈ Sn be an
element, which is a product of a1 p-cycles with a2 p

2-cycles · · · and ak pk-cycles. We
prove

(4.1) Theorem. If p|χλ(1) then χλ(πnp) = 0.
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(4.2) Theorem. Let ρ be a nonlinear irreducible character of the alternating group
An. Then there exists a prime p and a p-element g ∈ An such that ρ(g) = 0.

Remark. If ρ is as in Theorem (4.2) and p|ρ(1) then we show in fact that ρ(πnp) = 0
whenever πnp ∈ An. This is always the case when p is odd. When p = 2, πnp need
not be in An. This happens for instance when n is a power of 2. It is not known
whether ρ will necessarily vanish on some 2-element in this case.

The proof of Theorem (4.2) depends on Theorem (4.1) with an additional argument
for p = 2. The essential ingredient in the proof of Theorem (4.1) is a new combinato-
rial result (Proposition (4.5)) about the connection between certain p-invariants of a
partition. We also need a combinatorial description of the power of p dividing χλ(1),
essentially due to Macdonald [9].

Remark. It is an easy consequence of the Murnaghan-Nakayama formula ([6], 2.4.7),
that any non-linear character of Sn vanishes on either an n-cycle or on an (n − 1)-
cycle and thus the corresponding conjugacy classes are strongly orthogonal as defined
in the next section. Most likely it is also true, that any nonlinear character of An
vanishes on some element of prime order, but the method used here is not sufficient
to prove this.

For the following calculations p need not be a prime. To each partition λ of n is
associated a p-core Cp(λ) and a p-quotient Qp(λ) = (λ0, · · · , λp−1). See [6], [14]. The
p-core is a partition without p-hooks obtained by removing a sequence of p-hooks
from λ. The p-quotient is a p-tuple of partitions. We may recover λ from Cp(λ) and
Qp(λ). The following important fact is needed:

(4.3) Lemma. Let Hp(λ) be the (multi-)set of hooks of λ of length divisible by p.
(Thus H1(λ) =: H(λ) is the set of all hooks of λ). There is a canonical bijection

between Hp(λ) and
•⋃p−1
t=0H(λt) such that a hook of length `p is mapped onto a hook

of length `. This bijection is compatible with hook removals.

Proof. See for example Theorem (3.3) in [14]. �

If Qp(λ) = (λ0, · · · , λp−1) we call

wp(λ) = |λ0|+ · · ·+ |λp−1|

the p-weight of λ. Then Lemma (4.3) implies that

(1) |Hp(λ)| = wp(λ)

and the compatibility of hook removals implies

(4.4) Lemma. If µ is obtained from λ by removing an `p-hook then

wp(µ) = wp(λ)− ` .
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In particular, wp(λ) is the maximal number of p-hooks which may subsequently be
removed from λ.

We have generally

(2) n = |λ| = |Cp(λ)|+ pwp(λ) .

As described in [13], [14] we may repeat the process of taking cores and quotients
to obtain the p-core tower of λ. It has rows numbered by i = 0, 1, 2, · · · . The
i’th row contains pi p-cores. The 0’th row is Cp(λ), the p-core of λ. If Qp(λ) =
(λ0, · · · , λp−1) then the 1st row is Cp(λ0), · · · , Cp(λp−1). The 2nd row contains the
p-cores of the partitions occurring in Qp(λ0), · · · , Qp(λp−1), and so on. A partition
may be recovered from its p-core tower. We let αi(λ) be the sum of the cardinalities
of the partitions in the ith row of the p-core tower. By iteration of (2) we get

(3) n =
∑
i≥0

αi(λ)pi .

We need also the integers vi(λ) defined by

vi(λ) = wpi(λ) ,

the pi-weight of λ, so that v0(λ) = |λ| = n, v1(λ) is the p-weight of λ and so on. The
relation between the αi(λ)’s and vi(λ)’s is given by

(4.5) Proposition. For j ≥ 0
(i) vj(λ) =

∑
i≥j

αi(λ)pi−j

and
(ii) αj(λ) = vj(λ)− pvj+1(λ).

Proof. It is clear that (ii) is a consequence of (i). We prove (i) by induction on j ≥ 0.
For j = 0 (i) is just the formula (3) above. Assume j > 0.

Let Qp(λ) = (λ0, λ1, · · · , λp−1). From the definition of the p-core tower it is clear
that for all j ≥ 1

αj(λ) =
p−1∑
t=0

αj−1(λt) .

Moreover the bijection of Lemma (4.3) between Hp(λ) and
p−1⋃
t=0

H(λt) shows that for

all j ≥ 1

vj(λ) =
p−1∑
t=0

vj−1(λt) .

If we apply the induction hypothesis to each λt we get

vj−1(λt) =
∑

i′≥j−1

αi′(λt)pi
′−j+1 .
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Summing over t we get in view of the above equations

vj(λ) =
∑

i′≥j−1

αi′+1(λ)pi
′−j+1

and if we substitute i′ = i− 1 we get

vj(λ) =
∑
i≥j

αi(λ)pi−j ,

as desired. �

(4.6) Proposition. Let n =
k∑
i=0

aip
i be the p-adic decomposition of n, ak 6= 0.

Consider the decomposition of n according to the p-core tower of λ

n =
k∑
i=0

αi(λ)pi .

(i) If αk(λ) 6= ak then it is not possible to remove subsequently ak hooks of length
pk from λ.

(ii) If αk(λ) = ak then it is possible to subsequently remove ak hooks of length pk

from λ. The resulting partition µ is unique and satisfies αi(µ) = αi(λ) for 1 ≤ i ≤ k−1
and αk(µ) = 0.

Proof. Since pk+1 > n we have vk+1(λ) = 0. Hence by Lemma (4.5) (ii) αk(λ) =
vk(λ).

(i) If αk(λ) 6= ak then in fact αk(λ) < ak since otherwise

(αk(λ)− ak)pk ≥ pk > (p− 1)pk−1 + (p− 1)pk−2 + · · ·+ (p− 1)

≥ ak−1p
k−1 + ak−2p

k−2 + · · ·+ a0

or

αk(λ)pk > n =
k∑
i=0

aip
i .

Thus the pk-weight vk(λ) of λ is strictly less than ak, so (i) follows from Lemma
(4.4).

(ii) If αk(λ) = ak, then ak is the exact pk-weight of λ, whence µ = Cpk(λ) is the
pk-core of λ. We use Lemma (4.4) (with appropriate values for p and ` in that lemma)
to get

vk(µ) = vk(λ)− vk(λ) = 0

vk−1(µ) = vk−1(λ)− pvk(λ)

vk−2(µ) = vk−2(λ)− p2vk(λ)

etc.
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For 1 ≤ i ≤ k − 1 we get from Proposition (4.5) (ii) that

αi(µ) = vi(µ)− pvi+1(µ)

= vi(λ)− pk−ivk(λ)− pvi+1(λ) + p · pk−i−1vk(λ)

= vi(λ)− pvi+1(λ)

= αi(λ) ,

as desired. �

Proof of Theorem (4.1). We are now assuming that p is a prime. Let λ be a partition
of n and let the integers ai and αi(λ) be as above. By Proposition (6.4) in [14] (see
also [9], [13]), the exponent to which p divides χλ(1) is(

k∑
i=1

αi(λ)−
k∑
i=1

ai

)/
(p− 1) .

Thus if p|χλ(1), then this number is nonzero.
Assume that j is the maximal number, 0 ≤ j ≤ k such that αj(λ) 6= aj . Note that

j 6= 0: If αi(λ) = ai for all i ≥ 1 then also α0(λ) = a0. By repeated use of Proposition
(4.6) (ii) we see that it is possible to remove ak cycles of length pk from λ followed by
ak−1 cycles of length pk−1 . . . followed by aj+1 cycles of length pj+1. The resulting
partition µ satisfies

αi(µ) = αi(λ) for 1 ≤ i ≤ j .

By Proposition (4.6) (i) it is not possible to remove αj(λ) = αj(µ) cycles of length pj

from µ.
Assume now that χλ(πnp) 6= 0. Then by repeated use of the Murnaghan-Nakayama

formula for the character values of Sn ([6], 2.4.7) it should be possible to remove ak
cycles of length pk-cycles from λ followed by ak−1 cycles of length pk−1 . . . followed
by a1 cycles of length p. But this contradicts the above. Thus χλ(πnp) = 0. �

Proof of Theorem (4.2). We need the description of the irreducible character values
in An, as given in [6], Section 2.5. The character χλ of Sn remains irreducible when
restricted to An exactly when the partition λ is different from its associate partition.
This means that the Young diagram of λ is non-symmetric.

Suppose that p is odd. Then πnp ∈ An. Moreover if ρλ is a constituent of χλ|An
then p|χλ(1) if and only if p|ρλ(1). By [6], Theorem, 2.5.13 and Theorem (4.1)
ρλ(πnp) = 0 except in the case where λ is self-associate and the cycle lengths of πnp
are exactly the diagonal hooklengths of λ. Thus

n = pd1 + pd2 + · · ·+ pdt

is a sum of different powers of p, say d1 > · · · > dt ≥ 0, where pdi , i = 1, · · · , t are
the diagonal hooklengths of λ. By repeated use of Proposition (4.5) (ii) we see that

αj(λ) =
{

1 if j = di for some i
0 otherwise .



Zeros of characters 9

From Proposition (6.4) in [14] we conclude that p - χλ(1), a contradiction.
For p = 2 the problem arises that πnp may not be an element of An. (This occurs

if the even part of n is a sum of an odd number of different powers of 2). If πn2 ∈ An,
then the argument for p odd also works for p = 2. Indeed, if 2|ρλ(1) then 2|χλ(1),
whence χλ(πn2) = 0. But ρλ(πn2) = δ χλ(πn2), where δ = 1

2 or 1 according to whether
λ is self-associate or not.

It is not clear at the moment how the argument should be modified when πn2 /∈ An.
But in any case the following argument may be used:

Suppose 2|ρλ(1). If ρλ(1) is a power of 2 then ρλ vanishes on a 2-element by
Theorem (2.3). Otherwise some prime r 6= 2 divides ρλ(1) and then ρλ(πnr) = 0.
�

5. Groups of Lie type

In order to prove Theorem B for simple groups of Lie type we will use Lusztig’s
classification of the irreducible complex characters of these groups (see [8]). In fact
our methods allow to prove a result which is stronger in two aspects:

1) we are able to choose elements of prime order,
2) the number of elements can be bounded above (four elements suffice).
Thus we will show:

(5.1) Theorem. Let G be a finite simple group of Lie type. Then there exist four
conjugacy classes of elements of prime order in G such that every non-trivial irre-
ducible character of G vanishes on at least one of them.

The proof will be given in the subsequent sections. By going through these proofs
it is possible to recover the right choice for the four classes in each group.

The assertion about prime order already fails for covering groups of simple groups:
SL2(5) has faithful irreducible characters which only vanish on an element of order 4.
As for the number of classes, we shall prove in many cases that three elements suffice.
It is clear that for any given two conjugacy classes of G, there will always be at least
two irreducible characters taking nonzero values on both of them. Thus a result with
three classes would be optimal.

The underlying reason why Theorem 5.1 (and the related results in [12, 7, 11])
holds and can be proved is that, in a sense, most characters of groups of Lie type are
of defect zero for most primes dividing the group order.

This statement can be made more precise as follows. By the results of Lusztig,
for any given series {G(q) | q a prime power} of groups of Lie type the proportion
of irreducible characters which are not irreducible Deligne-Lusztig characters ±RT,θ
tends to zero like c/q for some constant c depending only on the type of G. But ±RT,θ
is of defect zero for any prime not dividing the order of the torus T (and different
from the defining characteristic). Since |T | is very small compared to |G|, this gives
a concrete form to our above claim.

If there exist two maximal tori T1, T2 of G of coprime order, then the above
considerations imply that asymptotically all but c/q of the irreducible of G vanish on
regular elements of at least one of the two tori. In fact, we will show in many cases
that then the corresponding classes are strongly orthogonal. Here we say that a pair
of conjugacy classes C1, C2 of a finite group G is strongly orthogonal if all but two
irreducible complex characters of G vanish either on C1 or on C2.
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The existence of pairs of strongly orthogonal classes for simple groups of Lie type
was already established in [12] and [7], but unfortunately the classes given there
cannot always be chosen to contain elements of prime power order.

5.1 The strategy.
We introduce the following notation. The n-th cyclotomic polynomial over Q is

denoted by Φn(x). For fixed q we denote by l(n) a Zsigmondy prime divisor of Φn(q).
By Zsigmondy’s theorem (see [4], IX, Theorem 8.3) l(n) exists whenever n ≥ 3,
(n, q) 6= (6, 2), or n = 2 and q + 1 is not a power of 2

Let G̃ be the group of fixed points under a Frobenius morphism of a simple algebraic
group of simply-connected type over the algebraic closure of a finite field. Thus we
have G̃ = G̃(q) for some prime power q = pf . We let G = G̃/Z(G̃). Then any
finite simple group of Lie type occurs among the groups G, except for the Tits group
2F4(2)′.

Our strategy for the proof of Theorem 5.1 is as follows. For each of the sixteen
families of groups of Lie type, we choose two or three maximal tori Ti such that
the Sylow `i-subgroups of G are cyclic for suitable Zsigmondy prime divisors `i of
|Ti|. It then follows that all elements of order `i of G are regular. Then we apply
Lusztig’s classification of the irreducible complex characters of G to prove that only
few irreducible characters do not vanish on regular elements of all Ti, and all of these
are unipotent characters. This was basically already done in [12,7,11]. We then
show that the remaining nontrivial unipotent characters different from the Steinberg
character are of defect zero for some other suitably chosen prime, thus vanish on all
elements of that order. Finally, the Steinberg character is of defect 0 for the defining
characteristic p, thus it vanishes on all p-elements.

This approach works at least if the group order is divisible by enough Zsigmondy
prime divisors. The remaining cases can be handled by ad hoc arguments and by
using the tables in the Atlas [2].

5.2 Classical groups.
Here we consider the case that G̃ is of simple, simply connected classical type.

Table 5.2: Tori and Zsigmondy primes for classical groups.

|T1| |T2| `1 `2
An (qn+1 − 1)/(q − 1) qn − 1 l(n+ 1) l(n)
2An (n ≥ 3 odd) (qn+1 − 1)/(q + 1) qn + 1 l(n+ 1) l(2n)
2An (n ≥ 2 even) (qn+1 + 1)/(q + 1) qn − 1 l(2n+ 2) l(n)
Bn, Cn (n ≥ 3 odd) qn + 1 qn − 1 l(2n) l(n)
Bn, Cn (n ≥ 2 even) qn + 1 (qn−1 + 1)(q + 1) l(2n) l(2n− 2)
Dn (n ≥ 5 odd) qn − 1 (qn−1 + 1)(q + 1) l(n) l(2n− 2)
Dn (n ≥ 4 even) (qn−1 − 1)(q − 1) (qn−1 + 1)(q + 1) l(n− 1) l(2n− 2)
2Dn(n ≥ 4) qn + 1 (qn−1 + 1)(q − 1) l(2n) l(2n− 2)

In Table 5.2 we have defined two maximal tori T1, T2 for each type of G̃ (by giving
their orders, which determines them uniquely). Except for types Bn, Cn with n even
this is Table 2.1 in [12]. Furthermore, in each case we have indicated the Zsigmondy
prime `i for the order of Ti.

Most of the following result is already contained in loc. cit., §2.
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(5.3) Lemma. Let G̃ be of classical simply-connected type as in Table 5.2, not of
type Bn, Cn or Dn with n even. Assume that the Zsigmondy primes indicated in the
table exist. Then there exist three conjugacy classes of elements of prime order in G
such that each nontrivial irreducible character of G vanishes on at least one of them.

Proof. We first claim that the tori T1, T2 contain regular elements of prime order.
It can be checked from the known formulas for the order of maximal tori of G̃ that
whenever T is a maximal torus of order divisible by the Zsigmondy prime `i then
it must be conjugate to Ti. Thus the centralizer of any `i-singular element of G
contains just one type of torus, hence must be a torus itself. In particular, any
`i-singular element is regular semisimple (see [12], §2).

It was shown in (the proofs of) Theorems 2.1–2.6 in loc. cit. that any irreducible
character of G different from the trivial and the Steinberg character vanishes on the
regular elements of T1 or of T2. The Steinberg character vanishes on all p-singular
elements, where p|q is the defining characteristic ofG. Thus we may choose elements of
order `i in Ti and an arbitrary element of order p to obtain the desired conclusion. �

(5.4) Lemma. Let G̃ be of classical simply-connected type as in Table 5.2, not of
type Bn, Cn or Dn with n even. Then there exist four conjugacy classes of elements
of prime order in G such that each nontrivial irreducible character of G vanishes on
at least one of them.

Proof. By Lemma 5.3, it remains to deal with the cases where not both Zsigmondy
primes `1, `2 exist. By the results in [12], §2, it still remains true that all irreducible
characters of G different from the trivial and the Steinberg character vanish on the
regular elements of either T1 of T2. Thus if we can find regular elements of prime
order in both tori, we are done by the same argument as in the generic case, with
three classes.

For G = L2(q) all non-trivial elements in T1 and in T2 are regular. Hence we may
choose any elements of prime order in T1, T2. For G = L3(q) Zsigmondy primes exist
in T1. The image of T2 in G has order (q2 − 1)/ gcd(q− 1, 3). Unless q+ 1 is a power
of 2, there exist regular elements of prime order in this torus and we are done. If q+1
is a power of 2, then it can be checked from the known character table of L3(q) that
we may take the Zsigmondy class in T1, the involution class, and a class of regular
unipotent elements. Note that all p-elements in G have order p since here p 6= 2.

For L6(2) we may take elements of order 2, 5, 7, and 31, for L7(2) we choose
elements of order 2, 3, 7, and 127.

For G = U3(q), q ≥ 3, there always exist Zsigmondy primes in T1. In T2 there
exist regular elements of prime order unless q − 1 is a power of 2. If q − 1 is a power
of 2, then it can be checked from the known character table of U3(q) that we may
take the Zsigmondy class in T1, the involution class, and a class of regular unipotent
elements.

For U6(2) the prime `1 does not exist, but the torus T1 contains a regular element
of order 7, and similarly `2 does not exist for U7(2) but the torus T2 contains a regular
element of order 7.

For S6(2) we take elements of orders 2, 3, 5, and 7.
Finally, if G = O−8 (2), there exists no Zsigmondy prime `2. Here the result holds

with elements of orders 2, 7, and 17. �
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(5.5) Lemma. Let G̃ be of simply-connected type Bn or Cn with n even. Then there
exist four conjugacy classes of elements of prime order in G such that each nontrivial
irreducible character of G vanishes on at least one of them.

Proof. Let C1, C2 be conjugacy classes of regular elements in T1, T2 respectively.
It was shown in the proof of [11], 3D and 3E, that the only characters apart from
the trivial and the Steinberg character not vanishing on either C1 or C2 are the two
unipotent characters (respectively one if n = 4) indexed by the symbols(

0 1 n

−

)
and

(
0 1 . . . n− 2 n− 1 n

1 . . . n− 2

)
.

Since these symbols possess no (n− 1)-hooks the degrees of the corresponding unipo-
tent characters are of `3-defect zero for any Zsigmondy prime l(n − 1). Let `1, `2
denote Zsigmondy primes as in Table 5.2. If `1, `2, `3 exist, we choose Ci to contain
elements of order `i, 1 ≤ i ≤ 3, and C4 to contain elements of order p. Then by the
above all non-trivial characters vanish on one of C1, . . . , C4.

We now deal with the cases where not all Zsigmondy primes exist, that is, n = 4
or (n, q) = (8, 2). In both cases, the groups of type Bn and Cn are isomorphic.

For G = S4(q) with q odd, we take C1 to contain elements of order `1 and C2 to
contain elements of odd prime order dividing q2 − 1. Then all but three (unipotent)
characters vanish on these two classes. There exists a subregular unipotent class C3

of elements of order p on which both the Steinberg character and the third remaining
unipotent character vanish. For G = S4(q) with q > 2 even, both `1 and `2 exist (note
that S4(2)′ ∼= A6). The unipotent character indexed by the above symbol is of defect
zero for any prime `3 dividing q2 − 1, the Steinberg character is of p-defect zero.

For S8(2) we take elements of orders 2, 5, 7, and 17. �

(5.6) Lemma. Let G̃ be of simply-connected type Dn with n even. Then there
exist four conjugacy classes of elements of prime order in G such that each nontrivial
irreducible character of G vanishes on at least one of them.

Proof. Let C1, C2 be conjugacy classes of regular elements in T1, T2 respectively. It
was shown in [11], 3G, that the only characters apart from the trivial and the Steinberg
character not vanishing on either C1 or C2 are the two unipotent characters indexed
by the symbols (

n− 1
1

)
and

(
0 . . . n− 3 n− 1
1 . . . n− 2 n− 1

)
.

and furthermore the latter two have degree divisible by l(2n−4). For n ≥ 4 there exists
a Zsigmondy prime `3 = l(2n−4) and moreover for n ≥ 6 the `3-Sylow subgroup of G
is cyclic. So in this case the unipotent characters indexed by the above two symbols
are of `3-defect zero. Let `1, `2 denote Zsigmondy primes for G as in Table 5.2. These
exist unless (n, q) = (4, 2). We may then choose Ci to contain elements of order
`i, 1 ≤ i ≤ 3, and C4 to contain elements of order p. By the above all non-trivial
characters vanish on one of C1, . . . , C4.

It remains to consider the case n = 4. ForG = O+
8 (q) with q > 2, `1, `2 and `3 exist.

Since `3 ≥ 5 there exist regular semisimple elements of order `3 in the maximal torus
of order (q2 + 1)2. As the degrees of the unipotent characters indexed by the above
two symbols are divisible by `3, both characters vanish on such a regular element.
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Finally, the Steinberg character vanishes on all elements of order p. For O+
8 (2) we

may choose elements of orders 2, 3, 5, and 7. �

Lemmas 5.3–5.6 prove Theorem 5.1 for simple groups of classical Lie type.

5.3 Exceptional groups.
We now investigate the exceptional groups of Lie type. We make use of the excep-

tional isomorphisms 2G2(3)′ = L2(8) and G2(2)′ = U3(3), and of the fact that 2B2(2)
is solvable to exclude these groups from consideration.

It has been proved in [7], Theorem 10.1, that pairs of strongly orthogonal classes
exist for all exceptional simple groups of Lie type. Nevertheless, it is not true that the
classes in loc. cit. can always be taken to contain elements of prime power order. We
will hence rather make use of the approach in [11], §4. For the Suzuki- and Ree-groups
explicit character tables are known, and an easy check shows:

(5.7) Lemma. Let G be a simple exceptional group of type 2B2, 2G2 or 2F4. Then
Theorem 5.1 holds for G.

Proof. Let first G = 2B2(q2), q2 = 22n+1 > 2. Then it follows from the known
character table that any non-trivial irreducible character of G vanishes on either an
involution, an element of prime order dividing q2 − 1 or an element of prime order
dividing q4 + 1.

Similarly, for G = 2G2(q2), q2 = 32n+1 > 3, any non-trivial character vanishes on
either an element of order 3, or elements of odd prime order dividing either q2 − 1 or
q6 + 1.

For G = 2F4(q2), q2 = 22n+1 > 2, we let C1, C2 be classes of elements of prime
order dividing q4 +

√
2q3 + q2 +

√
2q + 1, (q4 − q2 + 1)/3 respectively. Then by the

results of [10] only four irreducible characters of G vanish on neither class, all of them
unipotent. Furthermore, two of these unipotent characters of degree q4(q8 − 1)2/3
vanish on elements of prime order dividing q4 + 1, while the Steinberg character
vanishes on all p-elements.

For 2F4(2)′ we may take elements of orders 2, 3, 5, and 13. �

For the seven remaining families, we choose two or three classes of maximal tori as
in Table 4.2 of [11], which is reproduced here in Table 5.8.

Table 5.8: Tori T1, T2 and T3.

G |T1| |T2| |T3| `1 `2 `3

G2(q) Φ6 Φ3 l(6) l(3)
3D4(q) Φ12 Φ2

3 l(12) l(3)
F4(q) Φ12 Φ8 l(12) l(8)
E6(q) Φ12Φ3 Φ9 Φ8Φ2Φ1 l(12) l(9) l(8)
2E6(q) Φ18 Φ12Φ6 Φ8Φ2Φ1 l(18) l(12) l(8)
E7(q) Φ18Φ2 Φ14Φ2 Φ12Φ3Φ1 l(18) l(14) l(12)
E8(q) Φ30 Φ24 Φ20 l(30) l(24) l(20)
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(5.9) Lemma. Let G̃ be a simple simply-connected group of exceptional Lie type as
in Table 5.8. Then Theorem 5.1 holds for G.

Proof. Let Ti be maximal tori of G̃ with orders as given in Table 5.8. Let C1, C2 be
conjugacy classes of regular elements in T1, T2 respectively. The irreducible characters
of G not vanishing on either of T1, T2 were determined in [11], §4. In particular they
are all unipotent.

For G2(q), Zsigmondy primes `1, `2 exist unless q = 2, which is excluded because
G2(2)′ = U3(3). Since the Sylow `i-subgroups are cyclic, any element of order `i in
Ti is regular, so we choose Ci to contain elements of order `i. If q is not a power
of 3, let C3 be the class of elements of order 3 which are not central in a Sylow
3-subgroup. Then from the known character table one can check that two of the
unipotent characters not vanishing on C1 and C2 take value 0 on C3. If q = 3f > 3
then there exists an odd prime `3 6= 3 dividing q2 − 1. Here, the two unipotent
characters are of `3-defect 0. In both cases, the Steinberg character is of p-defect 0.
For G2(3) we may take elements of orders 2, 3, 7, and 13.

For G = 3D4(q) both Zsigmondy primes exist. Let Ci be classes of elements of
order `i in Ti. The elements in C1 are necessarily regular. The characters of G not
vanishing on C1 were listed in [11]. Among those, only three are not of `2-defect 0.
One of them is of defect zero for Zsigmondy primes l(6) (which exist for q 6= 2),
the other is the Steinberg character. In the case of q = 2, we may take elements of
orders 2, 3, 7, and 13.

For G = F4(q) both Zsigmondy primes exist. By loc. cit. the characters of G not
vanishing on regular elements of either torus are the trivial character, the Steinberg
character, and two unipotent characters of `3-defect zero, for the Zsigmondy prime
`3 = l(3).

For G = E6(q), 2E6(q), E7(q) or E8(q) all three Zsigmondy primes always exist.
Let Ci be conjugacy classes of elements of order `i, i = 1, 2, 3. By loc. cit. only the
trivial and the Steinberg character do not vanish on at least one of the Ci, i = 1, 2, 3.
Thus taking for C4 any class of p-elements we obtain the assertion for G. �

This completes the proof of Theorem 5.1 and hence of Theorem B.
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