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Abstract. We study, via character-theoretic methods, an `-analogue of the

modular representation theory of the symmetric group, for an arbitrary integer

` ≥ 2. We find that many of the invariants of the usual block theory (ie. when
` is prime) generalize in a natural fashion to this new context.

The study of the modular representation theory of symmetric groups was ini-
tiated in the 1940’s. One of the first highlights was the proof of the so-called
Nakayama conjecture describing the distribution of the irreducible characters into
p-blocks in terms of a combinatorial condition on the partitions labelling them.
More specifically two irreducible characters are in the same p-block if and only if
the partitions labelling them have the same p-core. There is also a comprehensive
literature on decomposition numbers, Cartan matrices and other block-theoretic
invariants of symmetric groups.

The representation theory of symmetric groups has served as a source of inspi-
ration for the study of representations of other classes of groups and algebras. As
an example we may refer to the book [9]. Corollary 5.38 in that book presents an
analogue of the Nakayama conjecture for Iwahori-Hecke algebras for the symmetric
group Sn at an `-th root of unity. Donkin [4] has presented a direct link between
the representation theory of these algebras and an `-analogue of the modular rep-
resentation theory of the symmetric groups. It thus seems a natural problem to
study “`-blocks” of Sn. We attempt to do this here based primarily on the ordi-
nary character theory of symmetric groups and on some very general ideas from
the character theory of finite groups. We study analogues of blocks, of the second
main theorem on blocks, of decomposition matrices and of Cartan matrices in this
context and prove an `-analogue of the Nakayama conjecture. We believe that this
approach may provide additional insight, eg. concerning the invariant factors of
Cartan matrices. For instance we show that these calculations for a given block
of weight w may be performed inside the wreath product Z` o Sw. It should be
mentioned that Brundan and Kleshchev [3] have recently given a formula for the
determinant of the Cartan matrix of an `-block for the Hecke algebras. In view
of [4] this also is the determinant of the Cartan matrix of an `-block of Sn. (See
Proposition 6.10 for details).

The paper is organized as follows: The first two sections present a very general
theory of contributions, perfect isometries, sections and blocks, suitable for our
purposes. These sections may have independent interest beyond the questions at
hand. In section 3 we introduce `-sections and `-blocks in symmetric groups and
prove an analogue of the second main theorem of blocks. Then in section 4 we
construct “basic sets”, i.e. integral bases for the restrictions of the generalized
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characters of Sn to `-regular elements. Generalizing ideas of Osima we study in
section 5 the equivalence of blocks of a given weight w. A relation between their
decomposition matrices is given, showing also that their Cartan matrices have the
same invariant factors. More generally, any such block is “perfectly isometric” to
the set of irreducible characters of Z` o Sw over a set of “regular” elements, defined
by Osima. In the final section the invariant factors of the Cartan matrices are
studied more closely. First the largest invariant factor is determined. In analogy
with the prime case, each `-regular conjugacy class should contribute (in a quite
subtle way) to the invariant factors and we make a specific conjecture what this
contribution should be. Then we confirm (based on [3]) that the determinant of the
`-Cartan matrix of Sn is in accordance with a conjecture of Bessenrodt and Olsson
[1], and we explain how our conjectured invariant factors predict the determinant.

1. On contributions and isometries

Let G be a finite group and Irr(G) denote its set of complex irreducible charac-
ters. Let C be a union of conjugacy classes of G. For complex-valued class functions
α, β of G, we define

〈α, β〉C :=
1
|G|

∑
y∈C

α(y)β(y).

If 〈α, β〉C = 0, we say that α and β are orthogonal across C.
First we discuss linking of irreducible characters across C. This notion has been

considered by several authors in many contexts, but the original inspiration and
motivation for considering it comes from the well-known fact that the usual
(p-)blocks of irreducible characters of modular representation theory are precisely
the C-blocks (in the sense we will describe now) in the case that C is the set of
p-regular elements of G.

If χ, µ ∈ Irr(G) are not orthogonal across C, then they are said to be directly
C-linked. A subset B of Irr(G) is said to be closed under C-linking, if whenever
χ ∈ B and µ ∈ Irr(G) is directly C-linked to χ, then also µ ∈ B. A C-block of G
is a non-empty subset of Irr(G) which is minimal subject to being closed under
C-linking. Irreducible characters of G in the same C-block are said to be C-linked.

For a complex-valued class function, θ, of G, let θC denote the class function of G
which agrees with θ on C, and vanishes elsewhere. Similarly θC

′
is the class function

which agrees with θ on C′ = G\C and vanishes on C. It is an immediate consequence
of the definition of C-linking that whenever χ is an irreducible character of G, both
χC and χC

′
are linear combinations of irreducible characters from the same C-block

as χ.
Our first general results will play a rôle in sections 2 and 4.

Lemma 1.1. Let B be a C-block of G. Then:
(1) Whenever

∑
χ∈Irr(G) aχχ is a class function of G which vanishes identically on

C′, the class function
∑

χ∈B aχχ vanishes identically on C′.
(2) Whenever

∑
χ∈Irr(G) aχχ is a class function of G which vanishes identically on

C, the class function
∑

χ∈B aχχ vanishes identically on C.

Proof: (1) Let µ be any irreducible character of G. If µ 6∈ B then 〈µ, χC′〉 = 0
for each χ ∈ B, so that 〈

∑
χ∈B aχχ

C′ , µ〉 = 0. On the other hand, if µ ∈ B, then
certainly 〈

∑
χ∈Irr(G) aχχ

C′ , µ〉 = 0, as, by hypothesis,
∑

χ∈Irr(G) aχχ
C′ = 0. Since
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〈µ, χC′〉 = 0 for each χ 6∈ B, we have 〈
∑

χ∈B aχχ
C′ , µ〉 = 0. Hence

∑
χ∈B aχχ

C′ = 0,
as it is orthogonal to Irr(G). Thus

∑
χ∈B aχχ vanishes identically on C′. The proof

of (2) is similar, and is omitted.

Corollary 1.2. Let u ∈ C and v ∈ C′. Then for each C-block, B, of G, we have∑
χ∈B

χ(u−1)χ(v) = 0.

This shows that C-blocks separate C from C′. In fact, this could be used to give
an alternative definition of C-blocks: Any non-empty set of irreducible characters
of G which separates C from C′ is a union of C-blocks (cf Osima’s theorem in the
usual block theory). We sketch a proof of this:

Assume that S is a non-empty subset of Irr(G) such that∑
χ∈S

χ(u−1)χ(v) = 0

whenever u ∈ C and v ∈ C′. We claim that S is a union of C-blocks. Indeed, if we
choose y ∈ C, then the class function θy =

∑
χ∈S χ(y−1)χ vanishes identically on

C′, by hypothesis. If µ ∈ Irr(G) \ S then

0 = 〈µ, θy〉 = 〈µC ,
∑
χ∈S

χ(y−1)χ〉 =
∑
χ∈S

χ(y)〈µC , χ〉.

Since y ∈ C was arbitrary, it follows that
∑

χ∈S〈µC , χ〉χ vanishes identically on C.
Write µC = α + β where α has all its irreducible constituents in S and β has all
its irreducible constituents outside S. Then α =

∑
χ∈S〈α, χ〉χ =

∑
χ∈S〈µC , χ〉χ

vanishes identically on C. Since µC vanishes identically on C′, we see that 0 =
〈α, µC〉 = 〈α, α + β〉 = 〈α, α〉. Thus α = 0. Hence, for every χ ∈ S, we have
0 = 〈µC , χ〉 = 〈µ, χ〉C . Thus no irreducible character in S can be directly C-linked
to an irreducible character outside S, so that S is a union of C-blocks.

We next make some general observations about contributions.
Let X(C) denote the part of the complex character table X of G consisting just

of the columns corresponding to classes in C. Hence X(C) is a k(G)× k(C)-matrix,
where k(G) is the number of conjugacy classes in G and k(C) is the number of
conjugacy classes in C.

Notice that ∆(C) = X(C)
t
X(C) is a diagonal matrix whose i-th diagonal entry

is |CG(yi)|, where yi is a representative for the i-th conjugacy class in C.
Let Γ(C) denote the matrix of C-contributions. This is the square k(G)× k(G)-

matrix with (i, j)-entry 〈χi, χj〉C , where χi, χj ∈ Irr(G).
We see immediately from the definition that

Γ(C) = X(C)∆(C)−1X(C)
t
.

Let {φr|1 ≤ r ≤ k(C)} be any C-basis for the space of complex-valued class
functions of G which vanish identically on C′. Let Φ(C) be the (invertible) k(C) ×
k(C)-matrix with (i, j)-entry φi(yj). Let D(C) be the associated k(G)×k(C)-matrix
of coefficients (analogous to the “decomposition matrix” of the usual block theory)
such that X(C) = D(C)Φ(C).

Now we have
Γ(C) = X(C)∆(C)−1X(C)

t
,
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which re-arranges to D(C)C(C)−1D(C)
t
, where C(C) = D(C)

t
D(C) is analogous to

the Cartan matrix of the usual block theory (however, in our later work, we prefer
to reserve the term “Cartan matrix” for the case when D is integral and the φi’s
are generalized characters).

This yields two expressions for the matrix of C-contributions which will be useful
later:

Γ(C) = D(C)C(C)−1D(C)
t
= X(C)[X(C)

t
X(C)]−1X(C)

t
.

We note that Γ(C) is idempotent and that (since Γ(C)X(C) = X(C)) its rank (and
trace) is k(C).

We say that the union of conjugacy classes C is closed if whenever x ∈ C, ev-
ery generator of 〈x〉 is also in C. For the rest of this section we consider only
closed unions of conjugacy classes. When C is a closed union of classes, R(C) de-
notes the Z-submodule of the space of complex class-functions of G generated by
{χC |χ ∈ Irr(G)} and P(C) denotes the Z-submodule of R(C) consisting of general-
ized characters. Notice that |G|R(C) ⊆ P(C) ⊆ R(C), so that R(C) and P(C) both
have the same Z-rank. A C-basic set, or just a basic set if there is no danger of
ambiguity about C, is any Z-basis for R(C).

The notion of a closed union of classes goes back to Suzuki. Its definition ensures
that P(C) has Z-rank k(C), and that, furthermore, any C-basic set remains linearly
independent over C, so may be chosen as the C-basis {φr|1 ≤ r ≤ k(C)} used
earlier (we will always make such a choice of basis when C is closed). For the
convenience of the reader, let us briefly indicate a proof of this fact. We note that
C′ is also a closed union of classes. Since {χC |χ ∈ Irr(G)} spans a C-subspace of
dimension k(C) of the space of complex-valued class functions of G, we certainly
have rk R(C) ≥ k(C). Similarly, rk R(C′) ≥ k(C′). On the other hand, it is easy to
check that |G|R(G) ⊆ P(C)⊕ P(C′) ⊆ R(G), so that rk R(C) + rk R(C′) = k(G).

Let Cart(C) denote the Abelian group R(C)/P(C) (which additionally has the
structure of a commutative ring). We note thatR(C) and P(C) are both free Abelian
(as noted above, of rank k(C)). Also, Cart(C) is finite (of exponent dividing |G|)
and can be generated by k(C) or fewer elements. Now R(C),P(C) and Cart(C) all
have a direct sum decomposition corresponding to the C-blocks. Let Cart(C, B)
denote the summand corresponding to B, a union of C-blocks (and similarly for
other notations). Given a choice of Z-basis for P(C, B), say {θi|1 ≤ i ≤ s}, the
Cartan matrix of B is the s× s matrix C(B) with (i, j)-entry 〈θi, θj〉C . A different
choice of Z-basis leads to a Cartan matrix C ′(B) which satisfies C ′(B) = AtC(B)A
for some unimodular integral matrix A, so the integral equivalence type of the
associated quadratic form is well-defined (in particular, the invariant factors of the
Cartan matrix are well-defined).

Let us now examine the relationship between the invariant factors of a Cartan
matrix (in the sense above) and of the corresponding matrix of contributions.

Suppose that we have the contribution matrix Γ(C) as before (we could also work
with a union of C-blocks, but we illustrate with the case of all of Irr(G)). For ease of
notation, let s = k(C). By standard theory of finitely generated Z-modules, there is
a Z-basis {ψi|1 ≤ i ≤ s}, for R(C) such that {diψi|1 ≤ i ≤ s} is a Z-basis for P(C),
and such that di divides di+1 for all i (the di may be taken to be positive integers).
Set βi = diψi for each i. Notice, then, that dsχ

C has integral inner product with
each element of R(C) for each χ ∈ Irr(G). Furthermore, ds is the smallest positive
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integer with this property. For if d is any positive integer with this property, then
we see immediately that dθ is a generalized character for each θ ∈ R(C). Hence
the group Cart(C) has exponent dividing d. But the group Cart(C) visibly has
exponent ds, so ds divides d. We conclude that ds is the smallest positive integer
for which dsΓ(C) (= M(C), say), is an integral matrix.

We now claim that the non-zero invariant factors of M(C) are precisely the ds/di

(1 ≤ i ≤ s) above. We recall that Γ(C) has rank k(C), which is also the rank of the
Cartan matrix C(C).

We notice that {dsχ
C |χ ∈ Irr(G)} generates dsR(C), which clearly has Z-basis

{ds

di
βi|1 ≤ i ≤ s}.

The i-th row of M(C) has j-th entry ds〈χi, χj〉C , where χi is the i-th irreducible
character of G. It follows from the discussion above that we may perform invertible
(integral) elementary row operations on M(C) to obtain a new matrix N(C) whose
i-th row has j-th entry 〈ds

di
βi, χj〉C (for 1 ≤ i ≤ k(C)), and whose remaining rows

are zero.
Now it is easily verified that there is a Z-basis of R(C) which is “dual” to {βi|1 ≤

i ≤ s}, say {γi|1 ≤ i ≤ s}, in the sense that 〈βi, γj〉 = δi,j for all i, j (this basis
is uniquely determined by {βi|1 ≤ i ≤ s}). By performing invertible (integral)
elementary column operations on our matrix N(C), we obtain a matrix with (i, j)-
entry

〈ds

di
βi, γj〉 = δi,j

ds

di

for 1 ≤ j ≤ s, and all other entries 0. Conjugating by a suitable permutation
matrix, we deduce

Lemma 1.3. In the above notation, the non-zero invariant factors of M(C), listed
in correct order, are 1, ds

ds−1
, . . . , ds

d2
, ds

d1
.

We finally discuss the notion of perfect isometry in a somewhat more general
context than the usual block-theoretic one. We remark however that, when special-
ized to the usual block-theoretic case, the notion we use here appears to be slightly
weaker than M. Broué’s definition (see eg. [2]). However, for the purposes of the
invariants we will be interested in later, this definition is strong enough.

Suppose that C and D are closed unions of conjugacy classes of finite groups G
and H respectively. Let B = B(C) and B′ = B′(D) be sets of irreducible characters
of G,H which are closed under C-linking and D-linking respectively. Let Γ(C, B)
and Γ(D, B′) be the contribution matrices associated to B and B′ respectively. We
say that B and B′ are perfectly isometric if there is a diagonal matrix of signs S
such that SΓ(C, B)S = Γ(D, B′).

Suppose then that B and B′ are perfectly isometric. Let B = {χi|1 ≤ i ≤ n}
and B′ = {µi|1 ≤ i ≤ n}. The relationship between the contribution matrices just
means that there are signs ε1, . . . , εn such that 〈χi, χj〉C = 〈εiµi, εjµj〉D for all i, j.

We then have:

Proposition 1.4. (1) Under the above hypotheses, the Abelian groups R(C, B) and
R(D, B′) are isomorphic via an isomorphism which restricts to an isomorphism
between P(C, B) and P(D, B′). In particular, the Abelian groups Cart(C, B) and
Cart(D, B′) are isomorphic.
(2) (With suitable choice of Z-bases), the Cartan matrices C(B) and C(B′) are
equal.
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Proof: For a1, . . . , an ∈ Z, the class function
∑n

i=1 aiεiµ
D
i is orthogonal to every

µ ∈ Irr(H) \B′ while

〈
n∑

i=1

aiεiµ
D
i , µj〉 = 〈

n∑
i=1

aiεiµ
D
i , µ

D
j 〉 = εj〈

n∑
i=1

aiχ
C
i , χ

C
j 〉 = εj〈

n∑
i=1

aiχ
C
i , χj〉

for j = 1, . . . , n. Thus, if
∑n

i=1 aiχ
C
i is zero then

∑n
i=1 aiεiµ

D
i is orthogonal to every

µ ∈ Irr(H), so
∑n

i=1 aiεiµ
D
i is zero.

It follows that the map φS : R(C, B) → R(D, B′) sending
∑n

i=1 aiχ
C
i (where

a1, . . . , an ∈ Z) to
∑n

i=1 aiεiµ
D
i is well-defined. If

∑n
i=1 aiχ

C
i ∈ P(C, B) then, by

the formula above,
∑n

i=1 aiεiµ
D
i has integral inner product with every µ ∈ Irr(H),

so
∑n

i=1 aiεiµ
D
i ∈ P(D, B′).

Now it is clear that φS is invertible by similar arguments, and that its inverse
maps P(D, B′) into P(C, B). Hence φS yields the isomorphisms claimed in the
statement of part (1) of the proposition. Since the isomorphism φS of part (1)
restricts to an isomorphism of Z-modules between P(C, B) and P(D, B′) which
also preserves inner products, part (2) follows immediately.

2. On sections and blocks

In this section we formulate a generalized theory of sections and blocks for G.
As well as defining blocks by linking, as discussed in Section 1, we wish to discuss
blocks of centralizers of elements of certain distinguished conjugacy classes, and
relate these to blocks of G, in (rather loose) analogy with the usual block theory.

Let X be a union of conjugacy classes, containing the identity, of our finite group
G. Suppose that for each element x ∈ X , there is a union of conjugacy classes
Y(x), containing the identity, of the centralizer CG(x), such that two elements
of xY(x) are G-conjugate if and only if they are CG(x)-conjugate, and such that
CG(xy) ≤ CG(x) for each y ∈ Y(x). Suppose further that Y(xg) = Y(x)g for all
x ∈ X , g ∈ G and that G is the disjoint union of the conjugacy classes (xy)G, as
x runs through a set of representatives for the conjugacy classes in X and y runs
through a set of representatives for the CG(x)-conjugacy classes of Y(x). For any
x ∈ X , we call the union of the G-conjugacy classes meeting xY(x) the Y-section
of x. We will refer to Y(1G) as the set of Y-regular elements of G. We may consider
Y(x) as the set of Y-regular elements of CG(x) for each x ∈ X .

Notice that, for each x ∈ X , induction of complex class functions gives an isom-
etry from the inner product space of class functions of CG(x) vanishing outside
xY(x) onto the space of class functions of G vanishing outside the Y-section of x.

We define an (X ,Y)-block of G simply as a Y(1G)-block of G in the sense of
Section 1. Such a block separates Y(1G) from its complement in G, by Corollary
1.2. However, we also wish to define (X ,Y)-blocks of CG(x) for each x ∈ X .
A non-empty set of irreducible characters of CG(x) which is minimal subject to
separating Y(x) from its complement in CG(x) (which, as x is central in CG(x), is
equivalent to separating xY(x) from its complement) is considered to be an (X ,Y)-
block of CG(x). We note that, by the results of section 1, irreducible characters in
different (X ,Y)-blocks of CG(x) are orthogonal across xY(x), and this condition
could equally well be used to define (X ,Y)-blocks of CG(x).
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Definitions. For an irreducible character χ, of G and β a union of (X ,Y)-blocks
of CG(x), we define the character χ(β) of CG(x) via

χ(β) =
∑
µ∈β

〈ResG
CG(x)(χ), µ〉µ.

Let b be an (X ,Y)-block of CG(x).We say that an (X ,Y)-block B of G dominates
b (and write B ≥ b) if there is some irreducible character χ ∈ B and some y ∈ Y(x)
such that

〈χ, IndG
CG(x)(

∑
µ∈b

µ(x−1y−1)µ)〉 6= 0.

Notice that we have

〈χ, IndG
CG(x)(

∑
µ∈b

µ(x−1y−1)µ)〉 = χ(b)(xy)

for each y ∈ Y(x). Hence B dominates b if and only if there is some χ ∈ B such
that χ(b) does not vanish identically on xY(x). Furthermore, we see that for each
y ∈ Y(x), we have χ(xy) =

∑
b χ

(b)(xy), where b runs over (X ,Y)-blocks of CG(x)
dominated by B. We note also that if b′ is another (X ,Y)-block of CG(x), and
γ is an irreducible character of G (possibly equal to χ), then χ(b) and γ(b′) are
orthogonal across xY(x).

We say that the (X ,Y)-blocks of G satisfy the Second Main Theorem property if
for each x ∈ X and each (X ,Y)-block b of CG(x), b is dominated by a unique (X ,Y)-
block of G (it is always the case that each (X ,Y)-block of CG(x) is dominated by
at least one (X ,Y)-block of G).

Theorem 2.1. The (X ,Y)-blocks of G satisfy the Second Main Theorem property,
if and only if, whenever x is an element of X and B is an (X ,Y)-block of G, there
is a union of (X ,Y)-blocks of CG(x), say β(x,B) = β, such that whenever y, z are
elements of Y(x), we have∑

χ∈B

χ(x−1y−1)χ(xz) =
∑
µ∈β

µ(y−1)µ(z).

Proof: Suppose that (X ,Y)-blocks of G have the property of the statement of the
Theorem. Choose an element x ∈ X and an element y ∈ Y(x). Consider the class
function

θxy = IndG
CG(x)

∑
µ∈β

µ(x−1y−1)µ

 .

Notice that
ψxy =

∑
µ∈β

µ(x−1y−1)µ

vanishes outside xY(x), as β is a union of (X ,Y)-blocks of CG(x), so that θxy

vanishes outside the Y-section of x and has the same norm as ψxy. Furthermore,
ψxy and θxy agree on xY(x).

Let Φxy =
∑

χ∈B χ(x−1y−1)χ. Notice that our hypotheses imply that

〈Φxy,Φxy〉 =
∑
χ∈B

|χ(xy)|2 =
∑
µ∈β

|µ(xy)|2 = 〈ψxy, ψxy〉 = 〈θxy, θxy〉.

Furthermore, our hypotheses also imply that Φxy agrees with θxy on the Y-
section of x in G. Since θxy vanishes identically outside the Y-section of x in G and
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has the same norm as Φxy, we must conclude that Φxy also vanishes outside the
Y-section of x, and that Φxy = θxy. Hence every irreducible character of G outside
B is orthogonal to IndG

CG(x)(ψxy).
Let b1, . . . , bn be the distinct (X ,Y)-blocks whose union is β. We now know that

for each irreducible character γ of G outside B, and each y ∈ Y(x), we have
n∑

i=1

γ(bi)(xy) = 〈γ, θxy〉 = 0.

Thus
∑n

i=1 γ
(bi) vanishes identically on xY(x). Since the distinct γ(bi) are mutually

orthogonal across xY(x), each of them vanishes identically on xY(x). By definition
of domination, this means that each bi is dominated by the (X ,Y)-block B and no
other.

On the other hand, for each irreducible character χ ∈ B, we have

χ(xy) =
n∑

i=1

χ(bi)(xy)(= 〈χ,Φxy〉)

(for each y ∈ Y(x)) so that χ(b) vanishes identically on xY(x) for each (X ,Y)-block
of CG(x) which is not a subset of β. Hence each (X ,Y)-block of CG(x) dominated
by B is a subset of β.

Since each (X ,Y)-block of CG(x) is dominated by at least one (X ,Y)-block of
G, we see that each (X ,Y)-block of CG(x) is a subset of β(x,B) for precisely one
(X ,Y)-block B of G, and the (X ,Y)-blocks of G satisfy the Second Main Theorem
property.

The proof of the implication in the opposite direction is rather similar, so we
only indicate it. For x an element of X and B an (X ,Y)-block of G, let β = β(x,B)
denote the union of those (X ,Y)-blocks of CG(x) dominated by B. Then we find
that for each y ∈ Y(x), we have

∑
χ∈B

χ(x−1y−1)χ = IndG
CG(x)

∑
µ∈β

µ(x−1y−1)µ

 ,

and evaluating both class functions at xz for z ∈ Y(x) gives the result.

Corollary 2.2. The (X ,Y)-blocks of G satisfy the Second Main Theorem property
if and only if, for each (X ,Y)-block B of G, there is for each x ∈ X a (possibly
empty) union of (X ,Y)-blocks β = β(x,B) of CG(x) such that for each irreducible
character χ ∈ B, and each irreducible character µ ∈ β(x,B) we may find a complex
number dχ,µ such that for each y ∈ Y(x) we have

χ(xy) =
∑
µ∈β

dχ,µµ(xy),

and, furthermore, β(x,B) and β(x,B′) are disjoint whenever B and B′ are distinct
(X ,Y)-blocks of G.

Proof: Suppose that (X ,Y)-blocks of G satisfy the Second Main Theorem property.
Then whenever B is an (X ,Y)-block of G, and x ∈ X , we let β = β(x,B) be the
union of those (X ,Y)-blocks of CG(x) dominated by B. For each χ ∈ B, we have
(for each y ∈ Y(x))

χ(xy) = χ(β)(xy),
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so complex numbers as in the statement of the corollary exist.
Conversely, suppose that for each x ∈ X , and each (X ,Y)-block B of G, we have

a union of blocks β = β(x,B) as in the statement. We claim that for each χ ∈ B,
we have χ(b) = 0 unless the (X ,Y)-block b of CG(x) is a subset of β. For, given such
a block b which is not a subset of β, the orthogonality of characters from different
(X ,Y)-blocks of CG(x) across xY(x), and the fact that we have

χ(xy) =
∑
µ∈β

dχ,µµ(xy)

for each y ∈ Y(x) shows that χ(b) and ResG
CG(x)(χ) are orthogonal across xY(x). But

χ(b) is certainly orthogonal to ResG
CG(x)(χ)−χ(b) across xY(x), so χ(b) is orthogonal

to χ(b) across xY(x). In other words, χ(b) vanishes identically on xY(x).
We conclude that each (X ,Y)-block of CG(x) dominated by B is a subset of β.

Since the hypotheses we are assuming imply that β(x,B) and β(x,B′) are disjoint
whenever B and B′ are distinct, we conclude that each (X ,Y)-block of CG(x) is
dominated by a unique (X ,Y)-block of G, so (X ,Y)-blocks of G satisfy the Second
Main Theorem property.

Corollary 2.3. Suppose that (X ,Y)-blocks of G satisfy the Second Main Theorem
property. Then:
(1) Irreducible characters of G which are in different (X ,Y)-blocks are orthogonal
across each Y-section of G.
(2) If B is an (X ,Y)-block of G, x ∈ X and

∑
χ∈Irr(G) aχχ is a class function which

vanishes identically on the Y-section of x in G, then
∑

χ∈B aχχ vanishes identically
on the Y-section of x in G.
(3) (X ,Y)-blocks separate Y-sections of G.

Proof: We have already proved (1) and (3) in the course of the proof of Theorem
2.1. For a (sketch) proof of (2) along these lines, note that if b is any (X ,Y)-block
of CG(x) which is a subset of β = β(x,B), then the class function

∑
χ∈Irr(G) aχχ

(b)

vanishes identically on xY(x), so that, by the Second Main Theorem property,∑
χ∈B aχχ

(b) also vanishes identically on xY(x). Hence
∑

χ∈B aχχ
(β) vanishes iden-

tically on xY(x). But
∑

χ∈B aχχ
(β) agrees with

∑
χ∈B aχχ on xY(x), again by the

Second Main Theorem property.

3. On `-sections, `-blocks and Brauer’s Second Main Theorem

Throughout this section, G = Sn, ` ≥ 2 is an integer and π is the set π(`) of
primes dividing `. An `-cycle element (in a symmetric group) is an element with all
non-trivial (disjoint) cycles of length divisible by ` and an `-regular element is an
element with no cycle of length divisible by `. An `-singular element is an element
with at least one cycle of length divisible by `. An `-element is an `-cycle element
with each non-trivial cycle of length dividing a power of `. Moreover a π-regular
element is an element whose order is not divisible by any prime in π.

We say that two elements x and y of Sn are disjoint if x fixes the points moved
by y and vice versa. If x and y are disjoint we write x ∗ y for the product to signify
this. We may then also consider y as a permutation of the fixed points of x and
vice versa. In particular when x ∈ Sk and y ∈ Sm, it may be convenient to consider
x ∗ y as an element of Sk+m. Clearly any element z of Sn may be factored uniquely
into a product x ∗ y where x is an `-cycle element and y is `-regular.
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If we consider the factorization z = x ∗ y as above, we may factor the `-cycle
element x into a product x = rs0 of commuting factors where r is the π-part and
s0 is the π′-part of x. Then r is an `-element moving exactly the same points as
x and s0 is `-regular. Moreover r and s0 are both disjoint from y. Thus r, s0, y
are pairwise permutable, and s = s0 ∗ y is `-regular. Thus x ∗ y = rs and z has a
factorization of the form rs where r is an `-element, s is `-regular and rs = sr. We
call x the `-cycle part of z, and r the `-part of z.

Notice that if w ∈ Sn commutes with z, then w commutes with the `-cycle
element x, hence also with y, r, s0 and s.

We have shown:

Lemma 3.1. Each element z ∈ Sn has unique factorizations

z = x ∗ y = rs = sr,

where x is an `-cycle element, y is `-regular, r (an `-element) is the π-part of x
and s is `-regular. Any element commuting with z commutes with each of x, y, r, s
(in particular, these elements all commute with each other).

Two elements of Sn are said to belong to the same `-cycle section if their `-cycle
parts are conjugate in Sn. Two elements of Sn are said to be in the same `-section,
if their `-parts are conjugate in Sn.

We remark that each `-section of Sn is a union of `-cycle sections. However, the
set of `-regular elements of Sn is both an `-section and an `-cycle section and we
denote it by S(`−reg)

n . We now turn to the definition of suitable blocks (in the sense
of section 2) for Sn. For a given `, it turns out that there are two natural choices.

We let X be the set of `-elements of Sn. For each r ∈ X , C = CSn(r) has a
factorization in the form C = C0 × C1, where C1 is the pointwise stabilizer of the
points moved by r and C0 is the pointwise stabilizer of the points fixed by r (note
for future reference that r ∈ C0). We let Y(r) be the set of elements of the form
s0 ∗ s1, where s0 is a π′-element of C0 and s1 is an `-regular element of C1. We let
X ′ be the set of `-cycle elements in Sn. For each x ∈ X ′ we let Y ′(x) be the set
of `-regular elements which are disjoint from x. Then the Y-sections of `-elements
are exactly the `-sections of Sn and the Y ′-sections of `-cycle elements are exactly
the `-cycle sections of Sn. With this notation, Y(1) = Y ′(1) = S

(`−reg)
n . However

the non-trivial sections may differ, even when an `-element in X is considered as
an `-cycle element in X ′.

Referring to Section 2 we see that the (X ,Y)-blocks and the (X ′,Y ′)-blocks of
Sn are identical. It is only when we pass to centralizers that the distinction between
the two types of blocks becomes apparent.

Definition. We refer to an (X ,Y)-block of the centralizer of an `-element (possibly
the identity) of Sn as a linked `-block. Similarly (X ′,Y ′)-blocks of centralizers of
`-cycle elements of Sn are called cycle linked `-blocks. We refer to characters in the
same linked (or cycle linked) `-block as being (`-)linked (or (`-)cycle linked).

For each r ∈ X , let CSn
(r) = C0×C1 be the factorization described above. Now

Oπ(C0) is easily seen to contain its centralizer in C0 (we note that C0 acts faithfully
on the points moved by r, and is isomorphic to a direct product of groups of the
form Zt` o Sm, where t is an integer only divisible by primes in π). Hence C0 has
a unique π-block by Theorem 9 of [14]. Since π-blocks are characterized in [14] in
terms of linking across the set of π-regular elements, it follows that a linked `-block
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of CSn(r) is a set of irreducible characters of the form α0⊗α1, where α0 ranges over
all irreducible characters of C0 and α1 ranges through the irreducible characters in
a fixed (linked) `-block of C1.

The irreducible characters and the conjugacy classes of Sn are labelled canoni-
cally by the partitions of n. If λ is a partition of n then χλ denotes the irreducible
character of Sn, labelled by λ.

We associate to λ its (`-)core γλ and its (`-)quotient βλ. (See [6], Section 2.7.)
The `-core is obtained from λ by removing all `-hooks from λ. The number of `-
hooks to be removed from λ to go to the core is called the (`-)weight of λ and
denoted wλ. The quotient βλ is an `-tuple of partitions

(β0, β1, ..., β`−1),

whose cardinalities add up to wλ. It is known that βλ and γλ determine λ uniquely.
The quotient is also known as the “star diagram” in the work of G. de B. Robin-
son and Osima. We call an `-tuple of partitions whose cardinalities add up to w
simply an (`-)quotient of w. The set of `-quotients of w is denoted K(`,w) and the
cardinality of this set is called k(`, w). Thus

k(`, w) =
∑

w0,w1,...,w`−1

p(w0)p(w1)...p(w`−1),

where the w′is are nonnegative integers satisfying w0 +w1 + ...+w`−1 = w and p(w)
is the number of partitions of w.

By the core, `-core of an irreducible character χ we mean the `-core of λ, if
χ = χλ.

Definition. Given a (possibly trivial) `-element r of Sn, a combinatorial `-block
of CSn

(r)(= C0×C1 as usual) is a set of irreducible characters of the form α0⊗α1,
where α0 ranges over all irreducible characters of C0 and α1 ranges through the
irreducible characters of C1 with a fixed `-core.

Remark. It may be asked whether linked `-blocks and combinatorial `-blocks of
Sn coincide. This is indeed true for every ` ≥ 2. It is fairly easy to show that a
combinatorial `-block is a union of linked `-blocks (See Proposition 3.4). The proof
of the converse is based on a result in Section 5, so we postpone it. (See Theorem
5.13).

Let us return to the `-cycle elements. If the cycle type of the `-cycle element
x is (`r1, .., `rt), (parts equal to 1 omitted), then we call ρ = (r1, .., rt) the `-type
of x (and of x ∗ y, when y is `-regular). Moreover if |ρ| = v, we call v the `-
weight of x ∗ y. We include here the possibility that ρ = 0, the empty partition.
Thus the conjugacy classes of `-cycle elements of Sn are parametrized canonically
by partitions ρ satisfying `|ρ| ≤ n. We denote the `-cycle section consisting of
elements of `-type ρ by Sρ

n. In particular, S0
n = S

(`−reg)
n is the set of `-regular

elements in Sn.
Once more, let χλ denote the irreducible character of Sn, labelled by the partition

λ of n. If x is an `-cycle element of type ρ as above and y is an arbitrary element
disjoint from x, then repeated use of the Murnaghan-Nakayama formula shows that

χλ(x ∗ y) =
∑

|µ|=n−v`

mρ
λµχµ(y) (1)
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where the coefficients mρ
λµ are integers, which we call Murnaghan-Nakayama coef-

ficients or MN-coefficients for short.
The coefficient mρ

λµ is clearly nonzero only if it is possible to go from λ to µ by
first removing an `r1-hook from λ, then removing an `r2-hook from the resulting
partition and so on. Each sequence of such hook-removals defines a path P in the
lattice of partitions. More details are given later.

Lemma 3.2. If mρ
λµ 6= 0, then λ and µ have the same `-core.

Proof: The lemma follows from the well-known fact that the removal of one hook
of length `r may also be accomplished by removing a sequence of r hooks of length
`. This fact is seen easily eg. using the `-abacus ([6], Section 2.7. See also Theorem
(3.3) in [11].)

When ρ is a partition of v, v` ≤ n, and λ, λ
′
are partitions of n, we define

gρ

λλ′
= (1/n!)

∑
g∈Sρ

n

χλ(g)χλ′(g),

the contribution of the `-cycle section of type ρ to the inner product of the two
irreducible characters. (If we take C = Sρ

n, this is in accordance with section 1) The
orthogonality relations show that we have the equation∑

ρ

gρ

λλ′
= δλλ′ (2)

The contributions may also be calculated as follows. Suppose that x is an `-cycle
element of type ρ, |ρ| = v. Then

gρ

λλ′
= (1/n!)

∑
y∈S

(`−reg)
n−v`

χλ(x ∗ y)χλ′ (x ∗ y) (3).

We may then invoke the MN -coefficients (1) to get the following equation:

gρ

λλ′
= ((n− v`)!/n!)

∑
µ,µ′

mρ
λµg

0
µµ′

mρ

λ′µ′
(4)

Let gλλ′ = g0
λλ′

. Note that gλλ′ 6= 0 if and only if the corresponding characters χλ

and χλ′ are directly linked in the sense of Section 1, if C = S
(`−reg)
n .

Lemma 3.3. If gρ

λλ′
6= 0 then λ and λ

′
have the same `-core.

Proof: We assume that λ 6= λ
′
and use induction on n. The result is obviously true

for n < `. Assume first that ρ 6= 0. Using Lemma 3.2, formula (4) and the induction
hypothesis we see that the statement is true in this case. If ρ = 0, then by formula
(2) there exists a ρ′ 6= 0, such that gρ′

λλ′
6= 0. Then we are done by the previous

case.

Proposition 3.4. If the irreducible characters χλ and χλ′ are `-linked or `-cycle
linked, then λ and λ

′
have the same `-core.

Proof: Follows from Lemma 3.3 and the definition of `-linking.

Remark. Our results show in fact that if two irreducible characters are linked via
any `-section or any `-cycle section, then their partitions have the same `-core.
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Remark. If we arrange the irreducible characters in such a way that characters,
whose labels have the same `-core are next to each other, then the matrices of
MN -coefficients and of contributions have block forms, according to the possible
cores, by Lemmas 3.2 and 3.3.

The above shows that `-linked characters belong to the same combinatorial `-
block. The converse statement is shown in Section 5. Until then we make a formal
distinction between linked and combinatorial blocks.

We want now to establish the Second Main Theorem property for combinatorial
`-blocks. We refer to the notation introduced in the beginning of this section.

Proposition 3.5. Let γ be a fixed `-core. Let χ = χλ be an irreducible character
labelled by a partition with `-core γ. Choose r ∈ X , and let CSn(r) = C0 × C1 as
above. Then there exist complex numbers d(r)

χ,µ0,µ1 such that for all π-regular s0 ∈ C0

and all s1 ∈ C1, we have:

χ(rs0s1) =
∑

µ0⊗µ1

d(r)
χ,µ0,µ1

µ0(s0)µ1(s1),

where µ0⊗µ1 ranges over irreducible characters of C0×C1 such that µ1 is labelled
by a partition having `-core γ.

Proof: Before starting the proof let us note that there is no restriction at all on
the irreducible characters µ0 of C0 which may appear in the formula. The complex
numbers d(r)

χ,µ0,µ1 should, of course, depend only on r and not on s0 or s1.
Let us fix a choice of (π-regular) s0 for the moment. Then x = rs0 is an `-

cycle element. Applying formula (1) above to x = rs0, y = s1 we may find integers
(Murnaghan-Nakayama coefficients), denoted here c(rs0)

µ1 , such that for each s1 ∈ C1,
we may write

χ(rs0s1) =
∑
µ1

c(rs0)
µ1

µ1(s1),

where µ1 runs through irreducible characters of C1 with `-core γ. The coefficients
depend on s0, but we will see that this is no obstacle to the desired conclusion.

Now let us allow s0 to vary. We may certainly find (as usual, looking at repre-
sentations of CSn

(r) on eigenspaces of r), complex numbers d(r)
χ,µ0,µ1 such that for

all s0, s1 as above, we have :

χ(rs0s1) =
∑

µ0⊗µ1

d(r)
χ,µ0,µ1

µ0(s0)µ1(s1),

where µ0⊗µ1 ranges over all irreducible characters of C0×C1. We emphasize that
the d(r)

χ,µ0,µ1 depend only on r. To be precise, we have

d(r)
χ,µ0,µ1

= 〈ResSn

CSn (r)(χ), µ0 ⊗ µ1〉
µ0(r)
µ0(1)

.

But now, if we fix s0 again, and define the class function θ(r,s0) of C1 by setting
θ(r,s0)(s1) = χ(rs0s1) for all s1 ∈ C1, we have

θ(r,s0) =
∑

µ0⊗µ1

d(r)
χ,µ0,µ1

µ0(s0)µ1,
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where µ0⊗µ1 ranges over all irreducible characters of C0×C1. On the other hand,
as we saw above, we may also write

θ(r,s0) =
∑
µ1

c(r,s0)
µ1

µ1,

where µ1 runs through all irreducible characters of C1 indexed by partitions with `-
core γ. By the uniqueness of the expression of a class-function as a sum of irreducible
characters, we conclude that

∑
µ0∈Irr(C0)

d
(r)
χ,µ0,µ1µ0(s0) = 0 unless that partition

labelling µ1 has `-core γ.
Hence we may indeed delete irreducible characters µ0⊗µ1 such that the partition

labelling µ1 doesn’t have `-core γ, from the expression

χ(rs0s1) =
∑

µ0⊗µ1

d(r)
χ,µ0,µ1

µ0(s0)µ1(s1),

as desired.

Theorem 3.6. Combinatorial `-blocks of Sn satisfy the Second Main Theorem
property.

Proof: To prove this result, it is necessary to show that for each `-element, r, of Sn

and each combinatorial `-block b of (the usual) C1 there is a unique combinatorial
`-block B of Sn such that for some irreducible character χ of B, `-regular element
s1 of C1 and π-regular element s0 of (the usual) C0 we have

0 6=
∑

α0∈Irr(C0)

∑
α1∈b

〈ResSn

C0×C1
(χ), α0 ⊗ α1〉α0(rs0)α1(s1).

Now let us choose a combinatorial `-block b of C1. This consists of all irreducible
characters of C1 which have a given `-core. We know from Proposition 3.4 that
irreducible characters of C1 which have different `-cores are orthogonal across the
set of `-regular elements of C1.

For χ an irreducible character of Sn, we set

χ(b) =
∑

α0∈Irr(C0)

∑
α1∈b

〈ResSn

C0×C1
(χ), α0 ⊗ α1〉α0 ⊗ α1.

Then for π-regular s0 ∈ C0 and `-regular s1 ∈ C1, we have

χ(b)(rs0s1) =
∑

α0∈Irr(C0)

∑
α1∈b

〈ResSn

C0×C1
(χ), α0 ⊗ α1〉

α0(r)
α0(1)

α0(s0)α1(s1),

and we have seen above that this is 0 unless χ has the same `-core as that defining
b. In conclusion, we see that the unique choice of combinatorial `-block B is that
labelled by the same `-core as b.

Remarks: The observant reader may notice that we have verified one formulation
of the Second Main Theorem property for combinatorial `-blocks, while the equiv-
alent formulations of the Second Main Theorem property in section 2 were proved
for blocks defined according to linking. In fact, since combinatorial `-blocks are
unions of linked `-blocks, the necessary adaptations of the proofs from section 2
could be made in order to obtain analogues of the other formulations for combina-
torial `-blocks. However, since (as we have remarked already), we will eventually
see that linked and combinatorial `-blocks coincide, we content ourselves for the
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moment with proving one formulation of the Second Main Theorem property for
combinatorial `-blocks.

It can be shown by a similar argument to that of the proof of Theorem 3.6 that
combinatorial (X ′,Y ′)-blocks of Sn (defined in the obvious fashion) also satisfy the
Second Main Theorem property.

4. On `-projective characters and basic sets

As in the previous section S
(`−reg)
n is the set of `-regular elements of Sn. For

any character (or class function) χ we write χ(`−reg) for χS(`−reg)
n , as in section 1.

Moreover we call any Z-basis of R(S(`−reg)
n ) an (`-)basic set for Sn, and we refer to

the elements of P(S(`−reg)
n ) as (`-)projective (generalized) characters of Sn.

A partition of n is called `-regular if no part is repeated ` or more times. It is
called `-class regular if no part is divisible by `.

In this section we construct a series of `-projective characters, labelled by the `-
regular partitions of n for each symmetric group Sn. We also show that the χ(`−reg)

µ ,
where µ runs through the set of `-regular partitions of n, form a basic set. Ideas
from the proof of Theorem 6.3.50 in [6] are used. In particular we need some
concepts from Section 6.3 of [6].

Given a partition λ of n we define its `-residue diagram by filling in the residues
of j − i modulo ` in the Young diagram of λ. For example, if λ = (6, 2, 2, 1), ` = 4
we get the diagram:

0 1 2 3 0 1
3 0
2 3
1

The `-content of λ is defined as an integral vector (c0, c1, ..., c`−1), where ci is the
number of nodes of residue i in the `-residue diagram. In the above example it is
(3, 3, 2, 3). By Theorem 2.7.41 in [6], two partitions of n have the same `-core if and
only if they have the same `-content. We also need the `-ladders. The i-th `-ladder
is the straight line joining the point (i, 1) to the point (1, (i − 1)(` − 1)−1 + 1).
These ladders may contain nodes from the Young diagram of λ and nodes on the
same ladder have the same `-residue. If a ladder contains nodes from λ, we say that
the ladder is “in λ”. In the above example the fourth ladder is in λ and contains
two nodes of residue 1 in the positions (4, 1) and (1, 2). There is an `-regularization
process associating to a partition λ its regularized partition λR obtained by moving
all nodes on all ladders in λ to the top positions on the ladder. The partitions λR

are `-regular and a partition λ is `-regular if and only if λ = λR. The longest ladder
of λ is the `-ladder with the highest number in λ.

Example. λ = (3, 2, 2, 2, 2, 1), ` = 4. Now λ is not 4-regular, since the part 2 is
repeated 4 times.

0 1 2
3 0
2 3
1 2
0 1
3
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To 4-regularize this we need just to move the node of residue 1 in position (5, 2) to
position (2, 3). Thus λR = (3, 3, 2, 2, 1, 1).

Theorem 4.1. For each n there exists an integral matrix D′
n,` = (d′λµ) with non-

negative entries satisfying the following: The rows are indexed by partitions λ of n
and its columns by `-regular partitions µ of n. Furthermore

(1) If d′λµ 6= 0 then µ dominates λR and λ and µ have the same `-core.
(2) If µ = λR then d′λµ = 1.
(3) If the longest `-ladder in µ contains k nodes of `-residue r, then d′λµ = 0

unless a total of k r-nodes may be removed from λ.
(4) For all `-regular partitions µ the character φ′µ defined by

φ′µ =
∑
|λ|=n

d′λµχλ

is `-projective.

Proof: We use induction on n. For n ≤ `−1 the result is trivial, since all characters
are `-projective. Suppose the result has been proved up to and including n−1. Let
µ be an `-regular partition of n. Assume that the longest ladder in µ contains k
nodes. These nodes are removable in µ, since otherwise a longer ladder would be
in µ, and they all have the same `-residue r, say. Let µ′ be the partition of n − k
obtained from µ by removing these k nodes. Then µ′ is again an `-regular partition.
By the induction hypothesis there is an `-projective character φ′µ′ of Sn−k, say

φ′µ′ =
∑

|λ′|=n−k

d′λ′µ′χλ′

indexed by µ′. The coefficients dλ′µ′ satisfy conditions (1)-(3) above. Then the
induced character φ∗ = IndSn

Sn−k
(φ′µ′) is also `-projective. By Proposition 3.4 the set

of irreducible characters with a given core is a union of `-linked blocks. Therefore, by
Lemma 1.1(1) the character φ∗µ obtained by removing all summands from φ∗ where
the partitions have an `-core different from the `-core of µ is again `-projective. We
write

φ∗µ =
∑
|λ|=n

d′λχλ

where the coefficients by definition are non-negative. Let us note that d′µ 6= 0
because d′µ′µ′ = 1. Thus φ∗µ 6= 0. We want to show:

(1∗) For all λ we have k!|d′λ.
(2∗) If d′λ 6= 0 then µ dominates λR

(3∗) If µ = λR then d′λ = k!
(4∗) d′λ = 0 unless a total of k r-nodes can be removed from λ.

Once this is proved we may divide φ∗µ by k! to obtain a new `-projective character
φ′µ, whose coefficients d′λµ satisfy the conditions of Theorem 4.1 and we are done.

Suppose d′λ 6= 0. Then there exists a partition λ′ of n − k such that d′λ′µ′ 6= 0
and 〈IndSn

Sn−k
(χλ′), χλ〉 6= 0. By assumption λ and µ have the same `-core, since

d′λ 6= 0 and λ′ and µ′ have the same `-core, since d′λ′µ′ 6= 0. By definition of µ′,
the `-contents of µ and µ′ differ only by k in residue r. Thus the same has to be
true for the `-contents of λ and λ′. Therefore the branching theorem shows that
〈IndSn

Sn−k
(χλ′), χλ〉 = k!, if k-nodes of residue r can be added to λ′ to get λ and is
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0 otherwise. This proves (1∗) and (4∗). Since d′λ′µ′ 6= 0 we have that λ
′R dominates

µ′, by the induction hypothesis. Since by the above λ is obtained from λ′ by adding
k nodes of residue r, the combinatorial lemma 6.3.54 in [6] shows that µ dominates
λR. This shows (2∗). Finally, suppose that µ = λR. We have

d′λ =
∑
λ′

d′λ′µ′〈Ind
Sn

Sn−k
(χλ′), χλ〉,

where the sum is on λ′ with the same `-core as µ′. By the combinatorial lemma
6.3.55 in [6] there is a unique partition λ′ such that d′λ′µ′ 6= 0 and here in fact λ

′R =
µ′. By the induction hypothesis d′λ′µ′ = 1 and by the above 〈IndSn

Sn−k
(χλ′), χλ〉 = k!.

Thus (3∗) is shown and Theorem 4.1 follows.

As in [6], Theorem 3.6.60, we now have that the matrix D′
n,` is lower unitriangu-

lar, when the partitions labelling the rows are arranged starting with the `-regular
partitions in lexicographic order followed by the `-singular partitions. This ar-
rangement can also be made using only the partitions with the same `-core and
it shows that the rows and columns in D′

n,` may also be arranged unitriangularily
block-by-block. The following argument may then be applied both to D(n, `)′ and
to the submatrix for an `-block B :

The top rows corresponding to the `-regular partitions form a triangular matrix
T with 1’s in the diagonal and 0’s below the diagonal. Let T ′ be its inverse. If
we multiply D′

n,` on the right by T ′ we get a matrix Dn,` with the unit matrix as
the rows corresponding to `-regular partitions. This means simply that we have
replaced the `-projective characters φ′µ by other `-projective characters φµ. The en-
tries dλµ of Dn,` still satisfy the properties (1),(2) and (4) of Theorem 4.1, because
Dn,` may be obtained from D′

n,` by systematic column operations subtracting only
multiples of the j−th column from the i−th when i < j.

Proposition 4.2. The χ(`−reg)
µ , where µ ranges over the `-regular partitions of n,

form a basic set. Indeed, for any irreducible character χλ of Sn we have in the
above notation

χ
(`−reg)
λ =

∑
µ `−regular

dλµχ
(`−reg)
µ .

The integers dλµ satisfy analogues of the properties (1), (3) and (4) of Theorem 4.1.

Proof: We first show that the characters φµ described above form a Z-basis for the
space P(S(`−reg)

n ) of (`-)projective characters. The φµ’s certainly form a Q-basis for
P(S(`−reg)

n ), as they are linearly independent over Q. Let ψ ∈ P(S(`−reg)
n ). Choose

t ∈ N minimal such that tψ =
∑

µ regular aµφµ, aµ ∈ Z.We get tψ =
∑

µ,λ aµdλµχλ.

The coefficent
∑

µ aµdλµ to each χλ is divisible by t. When λ is regular, say λ = µ′,
this sum has only one summand aµ′ . Thus all aµ are divisible by t. The minimality
of t then forces t = 1, as desired.

Now for each irreducible character χλ consider the generalized character χ̂λ =
χλ −

∑
µ dλµχµ. Then for µ′ regular

〈χ̂λ, φµ′〉 = 〈χλ, φµ′〉 −
∑

µ

dλµ〈χµ, φµ′〉 = 0,
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since 〈χµ, φµ′〉 = dµµ′ = δµ,µ′ . Thus χ̂λ is orthogonal to each character in P(S(`−reg)
n )

and therefore it is 0 on the set S(`−reg)
n of `-regular elements, proving the proposi-

tion.

The above remarks show that there is also a block version of Proposition 4.2:

Corollary 4.3. Let the partition λ have `-core γ. Then we have in the above
notation

χ
(`−reg)
λ =

∑
µ `−regular with core γ

dλµχ
(`−reg)
µ .

5. Equivalence of `-blocks

In this section we consider primarily combinatorial `-blocks of Sn. Such a block
B = Bγ consists of all characters χλ of Sn with a given `-core γ. (See section 3.)
We refer to γ as the core γ(B) of B and define the weight w = w(B) of B as the
common `-weight of the partitions labelling the characters in B. Thus if χλ ∈ B
then

|λ| = w(B)`+ |γ(B)|.
A main result is that the Cartan matrices of `-blocks of the same weight w have the
same invariant factors. In fact it is a consequence of Theorem 5.9, that they are
perfectly isometric (in the sense of Section 1) to the set of all irreducible characters
of Z` o Sw, with respect to Osima’s set of “regular conjugacy classes” as described
below. This also allows us to prove that linked and combinatorial blocks as defined
in Section 3 are the same.

To enumerate the number k(B) of characters in an `-block B of weight w, we
need only to quote Theorem 2.7.30 in [6]. The partitions labelling characters in B
are distinguished by their `-quotients. The number of `-quotients of w is k(`, w) as
described in Section 3. Thus

Proposition 5.1. Let B be an `-block. Then k(B) = k(`, w(B)).

In Proposition 4.2, a basic set was exhibited using the irreducible characters of
Sn labelled by the `-regular partitions µ of n. We have unique integers dλµ for each
partition λ and each `-regular partition µ such that the following holds

χλ(y) =
∑

µ `−regular

dλµχµ(y) (1)

for all `-regular elements y in Sn. It was also shown that if dλµ 6= 0 then λ and
µ have the same `-core. Moreover dµµ = 1 for each `-regular partition µ. The
”decomposition matrix” (dλµ) splits into blocks and when arranged properly the
decomposition matrix of an `-block B (which we will in the following refer to as
D(B)), is lower unitriangular with rows (columns) indexed by the set of partitions
(`-regular partitions) of n with core γ(B). The number of such `-regular partitions
of n with core γ(B) is then the Z-rank of the block and is denoted l(B).

Proposition 5.2. Let B be an `-block. Then l(B) = k(`− 1, w(B)).

Proof: We have to enumerate the `-regular partitions with given weight and core.
Consider a partition λ written ”exponentially” as (1m1 , 2m2 , · · · ). Decompose each
multiplicity mi = ni` + ri, where 0 ≤ ri ≤ ` − 1. Then λ determines and is
obviously uniquely determined by the pair λs, λr of partitions defined by λs =
(1n1 , 2n2 , · · · ), λr = (1r1 , 2r2 , · · · ). It is easily seen that λ and λr have the same
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`-core and that |λ| = |λs|` + |λr|. Thus the number k(`, w) of partitions of weight
w with a given core γ may be decomposed as

k(`, w) =
∑
v≥0

p(v)l(w − v`, γ),

where l(w−v`, γ) is the number of `-regular partitions of weight w−v` with core γ.
Since the left hand side of the above equation is independent of γ, it follows easily
by induction on w, that l(w, γ) = k(`− 1, w).

The above gives us the sizes of the decomposition matrix D(B) and the Cartan
matrix C(B) = D(B)tD(B) of B in terms of w(B).

The `-class regular partitions (as defined above) label the `-regular conjugacy
classes. The number of partitions of n is as before denoted p(n) and the number
of `-regular partitions of n is denoted p∗(n). This also equals the number of `-
class regular partitions of n. The proof of this, which goes back to Glaisher in the
nineteenth century, involves generating functions and thus does not depend on `
being a prime. (See also Lemma 6.1.2 in [6]). Clearly the number of conjugacy
classes of Sn contained in the `-cycle section Sρ

n equals the number of `-regular
classes of Sn−v`, ie. p∗(n− v`) and this depends only on |ρ| = v and not on ρ itself.
Therefore we get the following important formula connecting the numbers p(n) and
p∗(n) :

p(n) =
∑
v≥0

p(v)p∗(n− v`). (2)

In continuation of section 3 we study further the MN -coefficients mρ
λµ for a fixed

ρ. Recall that

χλ(x ∗ y) =
∑

|ν|=n−v`

mρ
λνχν(y) (3),

if x is an `-cycle element of type ρ.
Let Xn denote the character table of Sn. If ρ is a partition of v, then Xρ

n is the
submatrix of Xn including only the columns corresponding to conjugacy classes
containing elements of the form x ∗ y, where x is an `-cycle element of type ρ. This
is a p(n)× p(n− v`)-matrix, where again p(n) denotes the number of partitions of
n. Then

Xρ
n = Mρ

nXn−v`,

where Mρ
n is the p(n) × p(n − v`)-matrix of MN - coefficients mρ

λν . The column
orthogonality relations for the irreducible characters of Sn show that

(Xρ
n)tXρ

n = ∆n,ρ,

where ∆n,ρ is a diagonal matrix. The diagonal entry corresponding to the partition
κ of n − v` is the integer zρκ, defined as the centralizer order of an element x ∗ y,
where x is an `-cycle element of type ρ and y is an element of type κ. When ρ is 0,
we put ∆n = ∆n,ρ. Column orthogonality also shows that Xt

n−v`Xn−v` = ∆n−v`.
Thus we get by an easy calculation the following

Lemma 5.3.
(Mρ

n)tMρ
n = Xn−v`(∆n,ρ/∆n−v`)X−1

n−v`.
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¿From Lemma 5.3 we may compute easily the determinant of

Nρ
n := (Mρ

n)tMρ
n

combinatorially as the quotient of the determinants of two diagonal matrices.

Corollary 5.4. Let κ be a partition of n − v`. Then the column of Xn−v` corre-
sponding to the conjugacy class of type κ is an eigenvector for Nρ

n with eigenvalue
zρκ/zκ, (where zκ as usual is the centralizer order of an element of conjugacy type
κ.)

Corollary 5.5. Suppose that V is any column of Xn not occuring in the submatrix
Xρ

n. Then (Mρ
n)tV = 0.

Proof: Column orthogonality shows that V tXρ
n = 0. Since Xn−v` is invertible, the

result follows.

We now proceed to define u-numbers as follows. Let H = Sn−v`. By (1) we have
for all partitions ν of n− v` and all `-regular elements y ∈ H that

χν(y) =
∑

υ `−regular

dνυχυ(y).

Then with ρ as before and υ `-regular we define the u-numbers by

uρ
λυ =

∑
ν

mρ
λνdνυ. (4)

If uρ
λυ 6= 0 then λ and υ have the same `-core. (As in [7] it is possible to give an

explicit formula for the u-numbers.)
The u-numbers uρ

λυ may for a fixed ρ and υ be arranged as a column of length
p(n). Putting all such columns together we get a matrix Un called the u-matrix.
Let us note that Un is a square p(n)-matrix. Indeed the columns Un are indexed
by pairs of partitions ρ, υ satisfying |ρ|` + |υ| = n where ρ is arbitrary and υ is
`-regular. By (2) above we see that the number of columns in U is p(n).

The matrix Un may be decomposed in two ways. The first decomposition is
according to the `-cycle sections (collect the columns with a fixed ρ). The second
decomposition is according to the `-blocks of Sn. Suppose that B is an `-block of
weight w with core γ. Then we collect all those rows and columns where the λ’s
and υ’s have `-core equal to γ to get the u-matrix U(B) of B. This makes sense
since uρ

λυ is nonzero only if λ and υ have the same core. We see that within a single
block we may also arrange the u-numbers according to the `-cycle sections. The
`-cycle section of ρ occurs in U(B) if and only if v ≤ w. We have that U(B) is a
square k(B)-matrix. The number of columns in U(B) associated with the `-cycle
section of ρ is p∗(n − v`) when v ≤ w. The proof of Proposition 5.2 confirms that
U(B) is indeed a square matrix.

We proceed to prove orthogonality relations for the u-numbers. In the case where
` is a prime number, they were proved by Osima in [12], but his ideas generalize
easily to our case. We prefer again to use matrices.

If ρ is a partition of v, we let X∗ρ
n be the submatrix of Xρ

n above containing the
columns of the conjugacy classes x ∗ y where x is an `-cycle element of `-type ρ
and y is `-regular in Sn−v`. This is a p(n) × p∗(n − v`)-matrix. We let Yn denote
the `-regular character table of Sn. This is defined as the square p∗(n)-submatrix
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of Xn containing the character values of the irreducible characters indexed by `-
regular partitions on `-regular conjugacy classes. Moreover Dn = (dλµ) is the
decomposition matrix, defined by (1). By (1) and (3) we have

X∗ρ
n = Mρ

nX
∗0
n−v` (5)

X∗0
n−v` = Dn−v`Yn−v`. (6)

Combining these we see that

Uρ
n = Mρ

nDn−v` (7)

is the part of Un belonging to the `-cycle section of ρ and that

X∗ρ
n = Uρ

nYn−v`. (8)

By column orthogonality we have that

(X∗ρ
n )tX∗ρ

n = ∆∗
n,ρ,

where ∆∗
n,ρ is the submatrix of ∆n,ρ corresponding to the `-class regular partitions

of n− v`. It follows that

(Yn−v`)t(Uρ
n)tUρ

nYn−v` = ∆∗
n,ρ. (9)

Thus the `-regular character tables are nonsingular. Moreover, when κ is `-class
regular then the partitions `ρ and κ have no parts in common. Therefore we get
the equation

zρ,κ = `tzρzκ = z∗ρ(v`)zκ

where t is the length (number of parts) of ρ and z∗ρ is the order of a suitable
centralizer. ¿From Corollary 5.4 we conclude that

Nρ
nX

∗0
n−v` = z∗ρ(v`)X∗0

n−v`

Thus by (7) and (6)

(Uρ
n)tUρ

nYn−v` = Dt
n−v`N

ρ
nX

∗0
n−v` = z∗ρ(v`)Dt

n−v`X
∗0
n−v`.

We use (7) again and then multiply the equation from the right by the inverse of
Yn−v` to get

(Uρ
n)tUρ

n = z∗ρ(v`)Cn−v`,

where Cn−v` is the Cartan matrix. If ρ 6= ρ
′

then (X∗ρ
n )tX∗ρ′

n = 0. Since the `-
regular character tables are nonsingular we get from (8) that (Uρ

n)tUρ′

n = 0. Thus
we have the desired orthogonality relations for the u-numbers:

Proposition 5.6. Let ρ and ρ′ be different partitions with `|ρ| ≤ n and `|ρ′| ≤ n.
Then

(Uρ
n)tUρ

n = z∗ρ(v`)Cn−v`

(Uρ
n)tUρ′

n = 0.

In the remainder of this section we fix an `-block B of Sn of weight w = w(B)
with core γ(B) = γ and we assume that ρ is a partition of v ≤ w. We have seen
that MN -coefficients, decomposition numbers and u-numbers respect `-blocks in
the sense that if one of these numbers is non-zero, then the partitions have the
same core. Thus each non-zero number is associated to a unique core and thus to a
unique block of Sn. We therefore get obvious block versions of earlier formulae like

Uρ(B) = Mρ(B)D(b) (7)B
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where b is the block of Sn−v` of weight w − v with core γ. Moreover, the block
version of Proposition 5.6 looks like this:

Proposition 5.7. Let B be as above. Let ρ and ρ′ be different partitions with
|ρ| ≤ w and |ρ′| ≤ w. Then

Uρ(B)tUρ(B) = z∗ρ(v`)C(b)

Uρ(B)tUρ′(B) = 0,

where b is the `-block of Sn−|ρ|` with core γ.

Consider the ”extreme” cases v = 0 and v = w. When v = 0, then the u-
numbers are exactly the decomposition numbers for B, eg. by (7)B . We want to
show that when v = w then uρ

λγ = mρ
λγ is closely related to the character value

of an irreducible character of the wreath product S(`, w) = Z` o Sw. (Lemma 5.8.)
Thus, in a way, the u-numbers give a link between the decomposition matrix for B
and the irreducible characters of S(`, w).

We have to specify more precisely theMN -coefficientsmρ
λν . Let ρ = (r1, r2, ..., rt)

and let Pρ
λν be the set of paths P in the lattice of partitions, obtained by removing

a series of hooks of length `r1, ..., `rt to go from λ to ν. Each path P has a sign σP ,
defined as (−1)t(P ), t(P ) being the sum of the leg lengths of the hooks in P. Then
obviously

mρ
λν =

∑
P∈Pρ

λν

σP (10)

A special case of this is important. If ν = γλ, the `-core of λ and ρ = (1w(λ)) then
σP is independent of the choice of P in Pρ

λγ . (See eg. [10], p. 62-63, for details.)
This common value of σP is then called the `-sign of λ and denoted by σλ.

As has been mentioned above the partitions λ with `-core γ are distinguished
by their `-quotients. Thus there is a canonical bijection QuotB between the set
Irr(B) of irreducible characters in B and the set K(`, w(B)), mapping χλ onto the
quotient βλ.

Since the removal of an `r-hook in λ is reflected by the removal of an r-hook in
one of the partitions occurring in γλ there is an obvious canonical bijection P → P̃
between Pρ

λν and the set Pρ
β(λ)β(ν) of r1, r2, .., rt-hook paths between the quotients

of λ and ν. The sign σP̃ is then (−1)t(P̃ ), t(P̃ ) being the sum of the leg lengths of
the hooks in P̃ . We have the following fundamental sign relation for corresponding
paths (G. de B. Robinson, Osima):

σλσP = σνσP̃ (11)

Let S(`, w) denote the wreath product Z` o Sw. It is shown by Osima that there
exist bijections between K(`,w) and the sets Irr(S(`, w)) and CCl(S(`, w)) of ir-
reducible characters and conjugacy classes of S(`, w) respectively. In the case of
characters this bijection is quite well-known. (See eg. [6], Chapter 4.) Since it is
going to play an important rôle later, we look closer at the conjugacy classes. The
group S(`, w) is a semi-direct product of a base subgroup Zw

` = Z` × · · · × Z` of
order `w and a group S̃w isomorphic to Sw operating on the base subgroup by place
permutations. Two elements of S(`, w) are called disjoint, if their S̃w-factors are
disjoint. Thus we get a disjoint factorization of any element of S(`, w) into “cycle
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factors”, according to the cycles of its S̃w-factor. Such a cycle factor is character-
ized (up to conjugacy) by a pair (r, s), where r is the cycle length in S̃w and s is
a residue mod `. It is conjugate to an element of S̃w if and only if s = 0. That
s = 0 is equivalent to the fact that the product of the nonzero entries from the
base subgroup occurring in the cycle factor is 1. The partitions in the label of a
conjugacy class are obtained by collecting cycle factors with the same residue. In
particular the parts of 0-th partition α0 of a conjugacy class label α describe the
lengths r of those cycle factors which are conjugate to cycles inside S̃w.

In this context Osima proved a generalization of the Murnaghan-Nakayama for-
mula (MN-formula). For details we refer to [13], Section 3. The formula should be
clear once we explain what “hooks” and “cycles” are in quotients. A hook in a quo-
tient β is simply defined as a hook in one of the partitions in β and hook-removal
is defined correspondingly. A cycle in a quotient is a part in the 0-th partition in
the quotient.

When ` = 1, the result reduces to the usual MN-formula for Sw. But in contrast
to the Sw-case the MN-formula can only be applied to those conjugacy classes of
S(`, w), where the 0-th partition of the label is non-trivial. Let us call such a class
singular of type ρ if the 0-th partition in its label is ρ. Otherwise the class is called
regular. To avoid confusion it may be pointed out that for S(`, w) the terms regular
and singular do not relate to the `-structure of the elements, not even when S(`, w)
is embedded canonically in the symmetric group S`w.

The number of regular classes in S(`, w) is then k(`−1, w) = l(B) and the number
of singular classes is k(B)− l(B) by Propositions 5.1 and 5.2. For character values
on a singular class of type ρ = (r1, .., rt), |ρ| = v, we apply the generalized MN-
formula repeatedly t times. Suppose that ψβ is the irreducible character of S(`, w)
labelled by the quotient β ∈ K(`,w). We get then for a singular element x̃ ∗ ỹ of
type ρ (ỹ regular), that

ψβ(x̃ ∗ ỹ) =
∑

δ∈K(`,w−v)

m̃ρ
βδψδ(ỹ) (12)

analogous to (3) and

m̃ρ
βδ =

∑
P̃∈Pρ

β,δ

σP̃ (13),

analogous to (10).
We now connect the characters of B and S(`, w). From (10), (11) and (12) we

get for χλ ∈ B and |ρ| = v ≤ w

σλm
ρ
λν = m̃ρ

βλβν
σν (14).

In the extreme case v = w we now have that up to signs the u-numbers for B are
character values in S(`, w) :

Lemma 5.8. Assume χλ ∈ B, |ρ| = w and that γ is the core of B. Let x be an
`-cycle element of type ρ. Then

σλχλ(x) = ψβλ
(x̃)χγ(1),

where x̃ is in the S(`, w)-conjugacy class labelled by (ρ, 0, · · · , 0), (singular of type
ρ). In particular

σλu
ρ
λγ = ψβλ

(x̃).
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Proof: Due to the assumptions there is only one non-zero summand when we apply
(1) to χλ(x), namely for ν = γ. Since σγ = 1 we get, using (14) and (12)

σλχλ(x) = σλm
ρ
λγχγ(1) = m̃ρ

βλ,0χγ(1) = ψβλ
(x̃)χγ(1)

Since mρ
λγ = uρ

λγ by (7)B we are done.

Theorem 5.9. Let D(B) be the decomposition matrix of B and Z0
w the submatrix of

the character table of S(`, w) consisting of the columns of regular conjugacy classes
in the sense defined above. These are both k(B)× l(B)-matrices. Arrange the rows
in these matrices such that the row in D(B) corresponding to χλ ∈ B and the
row corresponding to ψβλ

in Z0
w have the same number. Let σ(B) be the diagonal

matrix with entries σλ, χλ ∈ B. Then there exists a non-singular complex matrix
S(B) such that

σ(B)D(B) = Z0
wS(B).

Proof: We use induction on w = w(B). For w = 0, D(B) and Z0
w are both the

1× 1 unit matrix. Let w = 1. Let x be an `-cycle. By Lemma 5.8 we see that the
column (σλu

1
λγ), χλ ∈ B equals the column Z1

w = (ψβλ
(x̃)). By orthogonality of

u-numbers (Proposition 5.7) we see that the columns of σ(B)D(B) are orthogonal
to the column Z1

w. On the other hand the column orthogonality for Irr(S(`, w))
shows that the columns of Z0

w form a basis for the space of columns orthogonal to
Z1

w. Thus our result is true in this case, too.
In the general case we note that the matrix form of (14) may be written as

σ(B)Mρ(B) = M̃ρ
wσ(b),

where b is the block of weight w−v with core γ. Applying the induction hypothesis
to b we see that when ρ 6= 0, then by (7)B there exists an invertible complex
l(b)× l(b)-matrix S(b) such that

σ(B)Uρ(B) = σ(B)Mρ(B)D(b) = M̃ρ
wσ(b)D(b) = M̃ρ

wZ
0
w−vS(b) = Zρ

wS(b),

where Zρ
w is the submatrix of the character table of S(`, w) consisting of columns

belonging to singular classes of type ρ. The last equality follows from (12). By
orthogonality of u-numbers (Proposition 5.6) we see that the columns of σ(B)D(B)
are orthogonal to all columns in Zρ

w for all ρ 6= 0. On the other hand the column
orthogonality for Irr(S(`, w)) shows that the columns of Z0

w form a basis for the
space of columns orthogonal to all columns of the Zρ

w’s. Thus the columns of
σ(B)D(B) are complex linear combinations of the columns in Z0

w, as desired.

Theorem 5.10. Let B and B′ be `-blocks of weight w. There exists an integral
invertible matrix S, such that

σ(B)D(B) = σ(B′)D(B′)S

and
C(B) = StC(B′)S,

where D(B), D(B′) are the respective decomposition matrices and C(B), C(B′) are
the respective Cartan matrices for B and B′. In particular C(B) and C(B′) have
the same invariant factors and the same determinant.

Proof: Let us arrange the rows in D(B′) such that the characters labelled by `-
regular partitions (ordered lexicographically) are the first. Thus by (5) the top l(B′)
rows of D(B′) form a unit matrix! We apply Theorem 5.9 to B and B′ to see that
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there exists an invertible complex matrix S, such that σ(B)D(B) = σ(B′)D(B′)S.
However by the choice of the ordering of the rows in D(B′) we see that S coincides
with the first l(B) = l(B′) rows of D(B). Thus S is indeed integral.

It should be remarked that a choice of the ordering of the rows in one of the
decomposition matrices in Theorem 5.10 also forces an ordering of the rows in the
other. The orderings must be such that the partitions labelling the i-th row in
D(B) and D(B′) should have the same `-quotient. Examples show that whether a
partition is `-regular or not does not only depend on the `-quotient but also on the
core.

It turns out that theorem 5.9 allows us to prove that characters with the same
core are linked. Using the notation of this theorem we get by an easy calculation
that

σ(B)D(B)C(B)−1D(B)tσ(B) = Z0
w[Z0

w

t
Z0

w]−1Z0
w

t
.

This yields a perfect isometry in the sense of Section 1. Indeed Γ(C, B) =
D(B)C(B)−1D(B)t is the matrix of contributions for the set of irreducible char-
acters in B with respect to C = S

(`−reg)
n , the union of the conjugacy classes of

`-regular elements in Sn. Let us recall that the C-blocks in the sense of Section 1
are just the linked `-blocks of Sn, and that by Proposition 3.4 the combinatorial
`-block B is a union of linked `-blocks.

Also Γ(D, B′) = Z0
w[Z0

w

t
Z0

w]−1Z0
w

t
is the matrix of contributions for the set B′ =

Irr(S(`, w)) of all irreducible characters of S(`, w) with respect to D = S(`, w)reg,
the union of the regular conjugacy classes (in the above sense) in S(`, w) (in what
follows, we will sometimes abbreviate this just to reg for ease of notation).

Let us mention that C and D are both closed in the sense of section 1. For C
this is trivially true. For D it follows from the fact that no cycle factor of a regular
element in S(`, w) is conjugate to an element of S̃w. If two elements of S(`, w)
generate the same cyclic subgroup, then each of their cycle factors have to generate
the same cyclic subgroup (considered inside S`w). Also the cycles in the S̃w-parts of
the elements generate the same cyclic subgroups of S̃w. We then use the fact that
a cycle element of type (r, s) as above is a product of cycles of length r · `/(`, s),
when considered as an element of S`w.

Proposition 5.11. In the above notation B and B′ are perfectly isometric.

This implies also that if the latter matrix Γ(D, B′) is indecomposable in the
Frobenius-Perron sense (ie, there is no relabelling of rows and columns so that
the matrix has a proper decomposition into block form), then so is the former
matrix Γ(C, B). In other words, if all characters of S(`, w) are linked across regular
elements, then all irreducible characters of B are linked across `-regular elements of
Sn. Thus, in that case, all irreducible characters in B would be in the same linked
block.

Theorem 5.12. Every irreducible character of S(`, w) is directly linked (across
regular elements) to the trivial character.

Proof: For characters α and β of S(`, w), we let (as usual) 〈α, β〉reg denote the
truncation to regular elements of the usual inner product of α and β.

We want to calculate 〈χ, 1〉reg for χ an irreducible character of S(`, w). We first
consider the case that χ lies over an Sw-stable linear character λ′ of the base group
Zw

` . (In what follows Z` is considered as a multiplicative group.) Notice that in
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that case, χ may be considered a character of Zd × Sw for some divisor d of `, and
that, as such, χ restricts irreducibly to the Sw factor.

We note also in this case that λ′ has the form λ ⊗ . . . ⊗ λ (w factors), where λ
is a linear character (of the order d mentioned above) of the group Z`.

Let us now observe that for σ in the complement S̃w to the base group, and any
w-tuple (a1, . . . , aw) in T , we have χ((a1, . . . , aw)σ) = λ(a1a2 . . . aw)χ(σ).

Let’s calculate the contribution to `ww!〈χ, 1〉reg from the regular elements in the
coset Tσ. We have seen above that if σ has disjoint cycle pattern (r1, . . . rs), an
element (a1, a2, . . . , aw)σ will be regular as long as, for each i, the a’s appearing in
positions labelled by the ri cycle have product different from 1. We refer to such a
w-tuple as permissible. It is routine to verify that∑

λ(a1a2 . . . aw) = (−1)c(σ)`w−c(σ)

if λ is non-trivial, and is (` − 1)c(σ)`w−c(σ) if λ is trivial, where the sum is taken
over permissible w-tuples, and c(σ) denotes the number of cycles of σ. To see this,
note that there are (`− 1)c(σ)`w−c(σ) permissible w-tuples. Thinking one cycle at a
time, note that for a given t-cycle of σ there are `t−1(`− 1) permissible t-tuples of
elements of Z` associated to this cycle (the product of the t-tuple must be a non-
identity element of Z`). In this special case, each non-identity element of Z` occurs
`t−1 times as the product of a permissible t-tuple. Evaluating λ on the product
of each permissible t-tuple and adding the results gives −`t−1 if λ is non-trivial,
(`− 1)`t−1 if λ is trivial.

Hence we see that

`ww!〈χ, 1〉reg =
∑

σ∈Sw

χ(σ)(δλ,1`− 1)c(σ)`w−c(σ).

In particular,
`ww!〈χ, 1〉reg ≡ (−1)wχ(1)(mod `).

More precisely, since [Sw : CSw
(σ)]χ(σ)/χ(1) is an algebraic integer for each

σ ∈ Sw, we deduce that
`ww!〈χ, 1〉reg

χ(1)
is an integer congruent to (−1)w (mod `). In particular, it is not zero, and χ is
linked across regular elements to the trivial character.

If χ does not lie over a stable linear character of the base group T, then χ is
induced from a “Young subgroup” of the form Zw

` S̃λ. Notice that regular elements
of S(`, w) remain regular in this Young subgroup (which is a direct product of
smaller wreath products each with a base group which is a direct product of copies
of Z`).

The character µ which induces to χ decomposes according to the direct factors of
the above Young subgroup. We may suppose by induction that each of the factors
of µ is directly linked across regular elements of the relevant factor of the Young
subgroup. Hence µ is directly linked to the trivial character across regular elements
of the whole Young subgroup. Frobenius reciprocity then tells us that χ is directly
linked to the trivial character across regular elements. More precisely, an inductive
argument tells us that

`ww!〈χ, 1〉reg

χ(1)
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is an integer congruent to (−1)w (mod `) in this case too.
By the above remarks we have also shown

Theorem 5.13. The concepts of linked and combinatorial `−blocks of Sn are iden-
tical.

Let us remark that Theorem 5.13 is really the `-analogue of the Nakayama con-
jecture for symmetric groups, ([6], 6.2.21). In the case where ` is a prime, the
theorem appears to provide yet another new proof of the Nakayama conjecture.
Theorem 5.13, together with Corollary 2.2 and Proposition 3.6, also completes the
proof that linked `-blocks of Sn satisfy all the equivalent formulations of the Second
Main Theorem property.

In the next section, we will study the invariant factors and determinants of
Cartan matrices more closely.

6. Invariant factors

The starting point here is that if we combine Proposition 1.4 and Proposition
5.11 we get:

Theorem 6.1. The invariant factors of the Cartan matrix C(B) of an `-block B
of Sn of weight w are equal to the invariant factors of the Cartan matrix of S(`, w)
with respect to regular classes.

Note that, in particular, this provides an alternative proof of Theorem 5.10, since
the latter Cartan matrix is uniquely specified by ` and w. The above equality of
invariants arises from the fact that in the notation of Section 1 the Abelian groups
Cart(S(`−reg)

n , B) and Cart(S(`, w)reg) = Cart(`, w) are isomorphic. In particular,
these groups certainly have the same exponent. The results of Donkin [4] show that
this exponent is a π-number, where π = π(`) is the set of primes dividing `. Every
positive integer m factors uniquely as m = mπmπ′ where every prime factor of mπ

belongs to π and no prime factor of mπ′ is contained in π.

Theorem 6.2. The exponent of Cart(`, w) is `ww!π.

Proof: From the proof of Theorem 5.12, we see that 〈`ww!1, χ〉reg is integral for
every irreducible character χ of S(`, w), so that `ww!π1reg is a generalized character
(using the fact that Cart(`, w) is a π-group). On the other hand, the proof of
Theorem 5.12 also shows that

〈`ww!1, 1〉reg ≡ (−1)w(mod `),

so it easily follows that there is no prime p ∈ π such that `ww!
p 1reg is a generalized

character, giving the result.

Corollary 6.3. The exponent of Cart(S(`−reg)
n ) is `b

n
` cbn

` c!π. This is the also the
largest invariant factor of an `-Cartan matrix Cn of Sn.

Remark. The two above results reflect the potential usefulness of Theorem 6.1. It
may be easier to do calculations within S(`, w) and to work with contributions (with
respect to the set of regular elements) there. This was also illustrated in the proof
of Theorem 5.12. The authors have been able to compute a generating function for
the the entries of the matrix of “contributions” with respect to a Z-basis for the
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character ring of S(`, w) consisting of certain monomial characters. These entries
are polynomials in `. The change of basis yields a new matrix of “contributions”
which has exactly the same invariant factors as the original matrix of contributions.
We intend to return to this at a later time.

Clearly the group Cart(S(`−reg)
n ) has an order equal to the determinant of the

Cartan matrix Cn. Below we give an explicit formula for this determinant, based
on [3] and [1]. In addition we want here to present a conjecture about the structure
of Cart(S(`−reg)

n ), which we abbreviate Cartn. This will of course give the right
determinant, and it is also supported by numerous explicit examples. When ` is
a prime number, this conjecture is known to be true. Our inspiration has in fact
been the prime case and Theorem 6.2.

In the prime case ` = p it is known that the invariant factors of the Cartan matrix
are exactly the orders of the p-defect groups of p-regular conjugacy classes. This
defect group is a direct product of the p-Sylow subgoups of wreath products Zm oSa.
Thus if a class regular partition is written exponentially (1a1 , · · · ,mam , · · · ), then
each “block”mam satisfying am ≥ p gives a contribution to the Cartan determinant,
which is just the order of the p-Sylow subgroup of Sam

.
In the general case there are obviously no defect groups of conjugacy classes

or blocks. (In the case where ` is a power of the prime p, the group Z` o P , P a
p-Sylow subgroup of Sw, may in some sense be viewed as an “defect group” of an
`-block of weight w.). In any case Corollary 6.3 suggests what the “`-defect” of
(1n) should be. Numerous examples seem to indicate that in the composite case
the contribution to the Cartan determinant of (ma), where ` - m, should not only
depend on the multiplicity a, but also on the part m.

We use the notation λ ` n (λ `` n) to signify that λ is a (`-class regular) partition
of n. If m is a positive integer, we define `m = `/(`,m) and πm as the set of primes
dividing `m. If a is also a positive integer we set

r`(m,a) = `ba/`c
m · ba/`c!πm

.

Let the λ `` n be written exponentially λ = (1a1(λ), 2a2(λ), · · · ). We define

r`(λ) =
∏
m

r`(m,am(λ)). (1)

Conjecture 6.4. The abelian group Cartn is a direct product of cyclic groups
of order r`(λ), where λ runs through the set of `-class regular partitions of n. In
particular, the determinant of an `-Cartan matrix of Sn is

det(Cn) =
∏

λ``n

r`(λ).

The invariant factors of the `-Cartan matrices of Sn need not be powers of `.
When n < 2` it is quite easy to see that only 1 and ` occur as invariant factors, in
accordance with our conjecture. But when n ≥ 2`, invariant factors occur which
are not powers of `. We present three example. Exponents denote multiplicities of
invariant factors.

Example 6.5. n = 8, ` = 4: The (principal) `-block B of weight 2 has k(B) = 14
and l(B) = 9. The Cartan matrix C(B) is a 9 × 9 matrix with invariant factors:
32, 42, 2, 15.
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Example 6.6. n = 18, ` = 6: The invariant factors of Cn are:
1296, 729, 18, 655, 38, 1223.

The r`(λ)’s for 6-regular partitions are:
1296, 729, 18, 654, 39, 2, 1222.

The determinant of Cn and the product of the r`(λ)’s equal 287 · 387. The number
87 may be calculated by Proposition 6.11 below.

Example 6.7. n = 24, ` = 6: The invariant factors of Cn are:
31104, 12969, 216, 7254, 36, 189, 6231, 347, 1760.

The r`(λ)’s for 6-regular partitions are:
31104, 12969, 216, 7254, 189, 12, 9, 6222, 355, 29, 1751

The determinant of Cn and the product of the r`(λ)’s equal 2450 · 3450. Again the
number 450 may be calculated by Proposition 6.11 below.

It should be stressed that although in the examples there is a deviation between
the lists of invariant factors and the r`’s, the examples are still in accordance with
our conjecture.

It may seem slightly surprising that the divisors `m of ` should occur, especially
since, as we shall soon see, the overall product of the r`(λ)’s should be a power of
`. Indeed in support of our conjecture it is possible to show that

det(Cn) =
∏

λ``n

r`(λ)

and that det(Cn) is a specifically given power of ` which may be described by a
simple combinatorial formula. (See Proposition 6.11.). Our proof is based on [4],
[3] and [1]. A conjecture of A. Mathas states that the determinant of the Cartan
matrix of an Iwahori-Hecke algebra of Sn at an `-th root of unity is a power of `.
Donkin [4] showed that this Cartan matrix has the same determinant (and the same
invariant factors) as the Cartan matrix Cn described above. Mathas’ conjecture
was verified for `-blocks of the Iwahori-Hecke algebras in [3]. As we shall see this
implies that det(C(B)) is a specific power of ` (depending on the weight w(B)) for
each combinatorial `-block B of Sn. This power may be described in two ways, see
Propositions 6.10 and 6.9. We first show that the determinant det(C(B)) calculated
in [3] is the same as the one conjectured in [1]. (A proof of this is indicated at the
end of [3].) Therefore the conjecture of [1] for det(Cn) also holds for arbitrary `
and based on this we may prove that the r`(λ)’s give the right determinant.

Let us write a partition λ exponentially as λ = (1a1(λ), 2a2(λ), · · · ). The length
l(λ) is then

∑
i≥1 ai(λ), ie. the number of parts of λ. When λ and µ are partitions,

let λ+ µ = (iai(λ)+ai(µ)).
Let us define the total length function l by l(n) =

∑
λ`n l(λ). We refer to Section

3 for the definition of the set of e-quotients of w, K(e, w) and its cardinality k(e, w).

Lemma 6.8. Let e ∈ N, w ≥ 0. Then

∑
λ`w

l(λ)
∏
i≥1

(
ai(λ) + e

ai(λ)

)
= (e+ 1)

w∑
j=0

l(j)k(e, w − j).

Proof: If µ = (µ1, · · · µe+1) ∈ K(e+ 1, w) and 1 ≤ i ≤ e+ 1, we define li(µ) = l(µi)
and l(µ) =

∑
i l(µi). If we divide the quotients µ into classes according to the
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cardinality j of µi, we get∑
µ∈K(e+1,w)

li(µ) =
w∑

j=0

l(j)k(e, w − j),

where the right hand side is independent of i. Adding the equations for all i we get∑
µ∈K(e+1,w)

l(µ) = (e+ 1)
w∑

j=0

l(j)k(e, w − j). (2)

We need the trivial combinatorial fact that the number of (e + 1)-tuples of non-
negative integers (t1, · · · , te+1) satisfying t1+· · ·+te+1 = t is the binomial coefficient(
t+e

t

)
. ¿From this we get that if λ ` w then

k(e+ 1, λ) :=
∏
i≥1

(
ai(λ) + e

ai(λ)

)
is also the number of (e+1)-quotients µ = (µ1, · · · , µe+1) with

∑
i µi = λ. Clearly, if∑

i µi = λ, then l(µ) = l(λ). If we divide the summands of (1) into classes according
to λ =

∑
i µi we get then ∑

µ∈K(e+1,w)

l(µ) =
∑
λ`w

l(λ)k(e+ 1, λ),

which in view of (2) proves the lemma.

If w ≥ 0 we define d`(w) = 1
`−1

∑
λ`w l(λ)

∏
i≥1

(
ai(λ)+`−2

ai(λ)

)
and

c`(w) =
∑w

j=0 l(j)k(`− 2, w − j). ¿From Lemma 6.8 with e = `− 2 we get:

Proposition 6.9. For all w ≥ 0 we have c`(w) = d`(w).

We now prove

Proposition 6.10. Let B be an `-block of Sn of weight w. Then det(C(B)) =
`d`(w).

Proof: By [3], Corollary 1, the determinant of the Cartan matrix of a block of
weight w of the Iwahori-Hecke algebra Hn of Sn at an `-th root of unity is `d`(w).
By [9], Corollary 5.38, and our definition of combinatorial `-blocks of Sn we see
that Hn and Sn have the same number of (`-)blocks of any given weight w ≥ 0.
By Theorem 5.10 above, the Cartan matrices of any two (combinatorial) `-blocks
of symmetric groups of the same weight also have the same determinant. From [4]
it follows that the (`-)Cartan matrices of Hn and Sn have the same determinant.
From this the proposition follows easily, by induction on w.

In [1] it was conjectured that if w(B) = w then det(C(B)) = `c`(w). Indeed the
formula for c`(w) given by Theorem 3.4 in [1] is equivalent to the above in view of
Proposition 2.1 of [1]. Thus Propositions 6.9 and 6.10 prove the conjecture of [1]
for arbitrary `. Since `-blocks of a fixed weight have the same Cartan determinant
we see that the conjecture for det(Cn) of [1] is also true. Define

c∗` (n) =
∑
j≥1

t(j)p∗(n− j`),
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where t(j) is the number of positive integer divisors in j and as usual p∗(n) is the
number of `-(class)regular partitions of n. In view of the above and Theorem 3.3 of
[1] we then have

Proposition 6.11. det(Cn) = `c
∗
` (n).

In support the above conjecture the following can be shown:

Proposition 6.12.

r`(n) :=
∏

λ``n

r`(λ) = `c
∗
` (n).

Corollary 6.13. We have det(Cn) =
∏

λ``n r`(λ)

The proof of proposition 6.12 uses generating functions for convenience. We let

P (q) =
∑
n≥0

p(n)qn, P ∗(q) =
∑
n≥0

p∗(n)qn,

T (q) =
∑
n≥1

t(n)qn, C∗
` (q) =

∑
n≥0

c∗` (n)qn.

Then
P ∗(q) = P (q)/P (q`) (3)

and
C∗

` (q) = T (q`)P ∗(q) (4).

We are going to need the following trivial identities:

Lemma 6.14. Let s be a positive integer.

(1)
∑

n≥1 nq
n = q

(1−q)2

(2)
∑

n≥1bn/scqn = qs

(1−qs)(1−q)

Let
T`(q) =

∑
`-m

qm/(1− qm),

the generating function for the number of divisors of n, which are not divisible by
`. Then T`(q`j

) is the generating function for the number of divisors of n, which
are divisible by `j , but not by `j+1. Thus we get the identity

T (q) =
∑
j≥0

T`(q`j

) (5),

see also [1].
The following numbers will be important in the proof of Proposition 6.12. Fix

some integers m, t. We assume ` - m, such that by definition `m 6= 1. Let p`(m, t, n)
be the number of λ `` n satisfying bam(λ)/`c = t, i.e. `t ≤ am(λ) < `(t+ 1).

Lemma 6.15. We have

Pm,t
` (q) :=

∑
n≥1

p`(m, t, n)qn = P ∗(q)q`mt(1− q`m).
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Proof: The generating function for the number of λ `` n, with am(λ) = a is
P ∗(q)(1−qm)qma, as is easily seen ([1]). Thus the generating function for p`(m, t, n)
is P ∗(q)(1 − qm)

∑`t+(`−1)
j=`t qmj = P ∗(q)(1 − qm)q`mt(1 + qm + ... + q(`−1)m) =

P ∗(q)q`mt(1− q`m), as desired.

Let us factor r`(n) =
∏

m rm
` (n), where rm

` (n) =
∏

λ``n r`(m,am(λ)). We note
that by definition r`(n) is only divisible by primes p ∈ π, which is the set of primes
dividing `.

Let p ∈ π and assume pα>`. For 0 < β ≤ α we define Iβ = {m|pβ>lm}. Then
whenever m ∈ Iβ we have that p ∈ πm, pα−β>(`,m) and in fact pα−β>m.

For m ∈ Iβ we calculate the power of p dividing rm
` (n), using (1) with t = ba/`c.

It is pem(n), where em(n) = βem
1 (n) + em

2 (n) and

em
1 (n) =

∑
t≥1

tp`(m, t, n), em
2 (n) =

∑
t≥1

p`(m, t, n)(
∑
j≥1

bt/pjc).

We have used here that the exponent to which p divides t! is
∑

j≥1bt/pjc.

Lemma 6.16. The generating functions Em
1 (q) and Em

2 (q) for em
1 (n) and em

2 (n)
are

Em
1 (q) = P ∗(q)

q`m

1− q`m

Em
2 (q) = P ∗(q)

∑
j≥1

q`mpj

1− q`mpj

Proof: By Lemma 6.15 and Lemma 6.14(1) we have

Em
1 (q) = P ∗(q)(1− q`m)

∑
t≥1

tq(`m)t = P ∗(q)(1− q`m)(q`m/(1− q`m)2),

proving the first identity. By Lemma 6.15 and Lemma 6.14(2) we have

Em
2 (q) = P ∗(q)(1− q`m)(

∑
t,j≥1

p`(m, t, n)bt/pjcq`mt)

= P ∗(q)(1− q`m)(
∑
j≥1

q`mpj

/(1− q`mpj

)(1− q`m)),

proving the second identity.

We have shown that for m ∈ Iβ we have

Em(n) = P ∗(n)(β
q`m

1− q`m
+

∑
j≥1

q`mpj

1− q`mpj )

Let us for m ∈ Iβ define

Tm(q) = β
qm

1− qm
+

∑
j≥1

qmpj

1− qmpj .

so that Em(q) = P ∗(q)Tm(q`). In order to prove Proposition 6.12 we need in view
of (4) just to show

α∑
β=1

∑
m∈Iβ

Tm(q) = αT (q) (6).
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We write each m ∈ Iβ as pα−βm′, where p - m′, and get∑
m∈Iβ

Tm(q) = βTp(qpα−β

) +
∑

j>α−β

Tp(qpj

) (7).

This shows that for all β, 0 < β ≤ α, the summands on the right hand side of (7)
all have the form Tp(qpj

) for some j ≥ 0. It is not difficult to see that each Tp(qpj

)
occurs exactly α times in the sums of (7), when β ranges from 1 to α. Thus, using
(5) above (with ` = p) we get

α∑
β=1

∑
m∈Iβ

Tm(q) = α
∑
j≥0

Tp(qpj

) = αT (q).

Thus (6) is proved, finishing the proof of Proposition 6.12.
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