On the Nonexistence of Quaternary [51, 4, 37] Codes

I LANDGEV

Institute of Mathematics, 8 Acad. G. Bonchev str., 1113 Sofia, Bulgaria

T MARIITA

Meijo University, Junior College Division, Tenpaku Nagoya, 468 Japan

AND

R. Hill

Department of Mathematics and Computer Science, University of Salford, Salford M5 4WT, United Kingdom

E-mail: R.Hill@mcs.salford.ac.uk

Communicated by Vera Pless

Received December 19, 1994; revised April 18, 1995

In this paper we prove the nonexistence of quaternary linear codes with parameters [51, 4, 37]. This result gives the exact value of $n_q(k, d)$ for q = 4, k = 4, d = 37 and 38. These were the only minimum distances for which the optimal length of a four-dimensional quaternary code was unknown. The proof is geometrical and relies heavily on results about the structure of certain sets of points in PG(2, 4). © 1996 Academic Press, Inc.

1. Introduction

One of the central problems in coding theory is to determine the minimum possible length, denoted by $n_q(k, d)$, of a q-ary linear code of dimension k and minimum distance d. For quaternary codes, $n_4(k, d)$ was found for $k \le 3$ for all d [1], and for k = 4 for all but two values of d [1], [3]. In this paper we prove the nonexistence of [51, 4, 37]₄ codes. This implies that $n_4(4, 37) = 52$ and $n_4(4, 38) = 53$, thus solving the remaining two cases of the problem for k = 4.

We shall consider only codes which do not have any coordinate position where all the codewords have a zero entry. The columns of a generator matrix of such an $[n, k, d]_q$ code $\mathscr E$ can be considered as a multiset of n points in PG(k-1,q) denoted by $\widetilde{\mathscr E}$. Every hyperplane of PG(k-1,q) meets $\widetilde{\mathscr E}$ in at most n-d points. In this paper we will consider codes entirely from this geometrical point of view. If the multiset $\widetilde{\mathscr E}$ happens to be a set, we call it a *projective code*.

Given an $[n, k, d]_q$ code \mathscr{E} we define $\widetilde{\mathscr{E}}_\Delta = \{P \in \mathscr{E} | P \in \Delta\}$ and

$$\gamma_{i}(\tilde{\mathcal{E}}) = \max_{\Lambda} |\tilde{\mathcal{E}}_{\Delta}|, \tag{1.1}$$

where Δ runs over all *i*-dimensional flats in PG(k-1, q). In particular, $\gamma_0(\tilde{e})$ is the maximum multiplicity of a point in \tilde{e} . Often the code e will be clear from the context and we shall write simply γ_i .

The number of points in an *i*-flat is $(q^{i+1}-1)/(q-1)$, which we will denote by $\phi_q(i)$. We note also that the number of (s-1)-flats in PG(k-1,q) containing a given (s-2)-flat is $\phi_q(k-s)$.

LEMMA 1.1. Let \mathscr{C} be an $[n, k, d]_q$ code, and let Π be an (s-1)-flat in $PG(k-1, q), 2 \leq s < k$, meeting \mathscr{C} in w points. Then for any (s-2)-flat Δ contained in Π , we have

$$|\tilde{\ell}_{\Delta}| \le \gamma_{s-1}(\tilde{\ell}) - \frac{n-w}{\phi_q(k-s)-1}. \tag{1.2}$$

In particular,

$$\gamma_{s-2}(\tilde{\ell}) \le \gamma_{s-1}(\tilde{\ell}) - \frac{n - \gamma_{s-1}(\tilde{\ell})}{\phi_q(k-s) - 1}.$$
(1.3)

Proof. Counting the points of $\tilde{\ell}$ lying in the (s-1)-flats containing Δ gives

$$w + (\phi_q(k-s) - 1)(\gamma_{s-1}(\tilde{\mathcal{E}}) - |\tilde{\mathcal{E}}_{\Delta}|) \ge n,$$

whence (1.2) follows. Now (1.3) follows since $\gamma_{s-1}(\tilde{e})$ is the maximum value of w.

Consider an $[n, k, d]_q$ code \mathscr{C} and denote by a_i the number of hyperplanes

in the geometry PG(k-1, q) containing exactly i points from $\tilde{\mathcal{C}}$, i=0, $1, \ldots, n-d$. Simple counting arguments yield the equalities

$$\sum_{i=0}^{n-d} a_i = \phi_q(k-1), \tag{1.4}$$

$$\sum_{i=1}^{n-d} ia_i = n\phi_q(k-2). \tag{1.5}$$

If $\tilde{\ell}$ is projective, we have in addition

$$\sum_{i=2}^{n-d} i(i-1)a_i = n(n-1)\phi_q(k-3). \tag{1.6}$$

Let $\mathscr C$ be an $[n, k, d]_q$ code, and let P be a point of multiplicity t in $\widetilde{\mathscr E}$, $t \geq 0$. Fix a hyperplane Π in PG(k-1, q) with $P \notin \Pi$ and define the projection mapping $\varphi_{P,\Pi}$ by

$$\varphi_{P,\Pi}: \begin{cases} PG(k-1,q) \backslash \{P\} \to \Pi \\ Q \to \Pi \cap \langle P, Q \rangle, \end{cases}$$

$$\tag{1.7}$$

where $\langle P, Q \rangle$ is the line through the points P and Q. (Generally, if $\mathscr X$ is a list of flats of PG(k-1,q) we shall denote by $\langle \mathscr X \rangle$ the subspace of PG(k-1,q) generated by the flats from $\mathscr X$.) We call the mapping defined by (1.7) a projection with respect to P and Π . It can be easily noted that $\varphi_{P,\Pi}$ maps i-flats containing P into (i-1)-flats in Π .

For each point $Q \in \Pi$ define

$$\mu(Q) = |\{R \in \tilde{\mathscr{C}} \mid \varphi(R) = Q\}|. \tag{1.8}$$

For every set of points $\mathcal{F} \subset \Pi$ we define

$$\mu(\mathscr{F}) = \sum_{Q \in \mathscr{F}} \mu(Q). \tag{1.9}$$

For each k'-dimensional flat \mathscr{F} in Π with $k' \leq k-2$, $\mu(\mathscr{F}) \leq \gamma_{k'+1}-t$. Let Π be a plane (2-flat) in PG(3,q) and let l be a line in Π having P_0 , P_1,\ldots,P_q as its points. We shall say that l is of type $(\mu(P_0),\mu(P_1),\ldots,\mu(P_q))$ with respect to a given projection.

In what follows we consider 4-dimensional quaternary codes only. As usual, we call the 0-, 1-, and 2-dimensional flats points, lines, and planes,

respectively. Given an $[n, 4, d]_4$ code \mathscr{E} , we mean by an *i*-point a point which has multiplicity i in $\widetilde{\mathscr{E}}$. Similarly, i-lines (i-planes) will be lines (planes) containing i points from $\widetilde{\mathscr{E}}$ (multiplicities counted).

Let q be a prime power. Consider the plane PG(2, q). A κ -set $\mathscr I$ of points in PG(2,q) will be called a (κ, ν) -arc, $\nu \ge 2$, if the following conditions are satisfied:

- (i) no $\nu + 1$ points from \mathscr{I} are collinear;
- (ii) there exist ν collinear points in \mathcal{I} .

A (κ, ν) -arc is *complete* if it is not contained in a $(\kappa + 1, \nu)$ -arc. Let \mathscr{I} be a (κ, ν) -arc. A line of PG(2, q) is called an *i*-secant of \mathscr{I} if it has exactly *i* points in common with \mathscr{I} . The number of *i*-secants of \mathscr{I} will be denoted by τ_i , $i = 0, 1, \ldots, \nu$.

The maximum number of points in a (κ, ν) -arc in PG(2, q) is usually denoted by $m(\nu, q)$. An arc with $m(\nu, q)$ points is obviously complete. A $(\kappa, 2)$ -arc with $\kappa = m(2, q)$ is called an *oval*. It is well-known that

$$m(2,q) = \begin{cases} q+2 & \text{for } q \text{ even,} \\ q+1 & \text{for } q \text{ odd.} \end{cases}$$
 (1.10)

Below we summarize some facts about ovals in the projective plane of order 4 (cf. [4]). As already mentioned, m(2, 4) = 6. Two different ovals share at most 3 points. Any two ovals are projectively equivalent. Every line intersects an oval in either 2 or 0 points; there are fifteen 2-secants and six 0-secants. We call them secants and external lines, respectively. Each point not on the oval lies on three secants and two external lines.

We have m(3, 4) = 9. There exist four projectively nonequivalent complete $(\kappa, 3)$ -arcs. One of them contains 7 points and is thus not maximal. A brief description of the three maximal (9, 3)-arcs is given below (cf. [4]).

- (\mathcal{A} 1) The set of all points (x_1, x_2, x_3) satisfying $x_1^3 + x_2^3 + x_3^3 = 0$.
- $(\mathcal{A}2)$ The complement of the union of a conic and two of its tangents.
- (\mathcal{A} 3) The complement of three non-concurrent lines.

The intersection numbers for these arcs are presented in the table below.

	$ au_0$	$ au_1$	$ au_2$	$ au_3$
$(\mathcal{A}1)$	0	9	0	12
$(\mathcal{A}2)$	2	3	6	10
$(\mathcal{A}1)$ $(\mathcal{A}2)$ $(\mathcal{A}3)$	3	0	9	9

Given a (9, 3)-arc \mathcal{A} and a point P off \mathcal{A} denote by ρ_i , i = 0, 1, 2, 3, the

number of lines through P intersecting \mathcal{A} in exactly i points. The different possibilities for the numbers ρ_i are given in the following table.

	$ ho_0$	$ ho_1$	$ ho_2$	$ ho_3$	Number of points of this type
(A1)	0	3	0	2	12
(A2)	2	0	0	3	1
	1	1	1	2	6
	1	0	3	1	2
	0	2	2	1	3
(A3)	2	0	0	3	3
	1	0	3	1	9

Lemma 1.2. Let A, B, C, D be four points, no three of them collinear, in PG(2, q) with q even. Then the points $E = \langle A, B \rangle \cap \langle C, D \rangle$, $F = \langle A, C \rangle \cap \langle B, D \rangle$, $G = \langle A, D \rangle \cap \langle B, C \rangle$ are collinear.

Proof. Without loss of generality take A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), D = (1, 1, 1) and the rest is a simple check.

Lemma 1.3. Let Π_0 be a plane in PG(3,4) and let $\mathcal{O} \subset \Pi_0$ be an oval. Fix an external line to the oval in Π_0 , say l, and denote by Π_i , i=1,2,3,4, the remaining planes through l. Let further $\varphi_P = \varphi_{P,\Pi_1}$ be a projection with respect to $P \in PG(3,4) \setminus (\Pi_0 \cup \Pi_1)$ and Π_1 . Then $\varphi_P(\mathcal{O}) = \varphi_Q(\mathcal{O})$ implies P = Q.

Proof. Suppose $\varphi_P(\mathscr{O}) = \varphi_Q(\mathscr{O})$ and $P \neq Q$. Denote by Δ a plane through $\langle P, Q \rangle$ having a nonempty intersection with \mathscr{O} , say $\{R, S\} = \Delta \cap \mathscr{O}$. No three of P, Q, R, S are collinear and Lemma 1.2 implies that $T = \langle P, Q \rangle \cap \langle R, S \rangle$, $U = \varphi_P(R) = \varphi_Q(S)$, $V = \varphi_P(S) = \varphi_Q(R)$ are collinear. Therefore $T \in \langle R, S \rangle \subset \Pi_0$, $T \in \langle U, V \rangle \subset \Pi_1$, and $T \in I$. Now without loss of generality we can put

$$\begin{split} &\Pi_0 = \{(x_1, x_2, x_3, x_4) | x_i \in GF(4), x_1 = 0\}, \\ &\Pi_1 = \{(x_1, x_2, x_3, x_4) | x_i \in GF(4), x_2 = 0\}, \\ &l = \{(x_1, x_2, x_3, x_4) | x_i \in GF(4), x_1 = 0, x_2 = 0\}, \\ &\mathscr{O} = \{(0, 1, 0, 0), (0, 1, \omega, 0), (0, 1, 0, \omega), (0, 1, \omega, \omega^2), \\ &(0, 1, \omega^2, \omega), (0, 1, \omega^2, \omega^2)\}, \\ &P = (1, 1, 0, 0), Q = (1, 1, a, b), a, b \in GF(4), (a, b) \neq (0, 0). \end{split}$$

We have $\varphi_P(\mathscr{O}) = \{(1, 0, 0, 0), (1, 0, \omega, 0), (1, 0, 0, \omega), (1, 0, \omega, \omega^2), (1, 0, \omega^2, \omega), (1, 0, \omega^2, \omega^2)\}, \text{ and } (a, b) \in \{(\omega, 0), (0, \omega), (\omega, \omega^2), (\omega^2, \omega), (\omega^2, \omega^2)\}.$ In no case can we get $\varphi_P(\mathscr{O}) = \varphi_O(\mathscr{O})$, which completes the proof.

2. Nonexistence of [51, 4, 37]₄ Codes

Lemma 2.1. Suppose \mathscr{C} is a [51, 4, 37]₄ code. Then

- (i) $\gamma_0 = 1$ (so the code is projective), $\gamma_1 = 4$, $\gamma_2 = 14$;
- (ii) a line in a w-plane contains at most (w + 5)/4 points of $\tilde{\ell}$;
- (iii) $a_2 = a_{10} = 0$;

Proof. (i) $\gamma_2 = 14$ is immediate from the code parameters. By Lemma 1.1, $\gamma_1 \le 4$. In fact, $\gamma_1 = 4$ for otherwise $|\tilde{\ell}| \le 1 + 2.21 < 51$. Lemma 1.1 now gives $\gamma_0 = 1$.

- (ii) This follows immediately from Lemma 1.1.
- (iii) Any 2-plane clearly contains a 2-line, giving a contradiction to (ii), and so $a_2 = 0$. Since m(3, 4) = 9 (cf. Section 1), any 10-plane contains a 4-line, again contradicting (ii), and so $a_{10} = 0$.

Lemma 2.2. Let Π be a 14-plane. Then we have either

- (i) $\tilde{\mathcal{E}}_{\Pi} = \Pi \setminus \Delta$, where Δ is a complete (7, 3)-arc, or
- (ii) $\tilde{\ell}_{\Pi} = \Pi \setminus (l \cup \{P\} \cup \{Q\})$, where l is a line in Π , and P, Q are two different points from Π not on l.

Proof. Suppose Π does not contain a 0- or 1-line. Then $\Pi \setminus \widetilde{\mathcal{E}}$ is a (7, 3)-arc. If it is incomplete, i.e., obtained from one of the (9, 3)-arcs by deleting two points, one can easily check from the tables in Section 1 that it contains external lines. In other words Π contains 5-lines of $\widetilde{\mathcal{E}}$, which is impossible. If $\Pi \setminus \widetilde{\mathcal{E}}$ is a complete (7, 3)-arc we get (i).

Suppose there is a 1-line in Π , say l', and let $P = l' \cap \tilde{e}$. Each one of the remaining four lines in Π through P must contain a point which is not in \tilde{e} ; therefore, there are at least 4+4>7 points in $\Pi\backslash\tilde{e}$, a contradiction.

If Π contains a 0-line we get easily (ii).

Remark 2.3. We will refer to a 14-plane given by Lemma 2.2(i) as a 14-plane of type (B1). Such a plane Π has fourteen 4-lines and seven 2-lines ($\tilde{\mathcal{E}}_{\Pi}$ is the complement of a Fano subplane of Π). We will refer to a 14-plane given by Lemma 2.2(ii) as a 14-plane of type (B2). Note that neither type of 14-plane contains 1-lines and that only 14-planes of type (B2) have 0- or 3-lines.

Corollary 2.4. $a_1 = 0$.

Proof. Suppose Π is a 1-plane and let l be a line in Π containing the point from $\tilde{\ell}$. Lemma 2.2 implies that a 14-plane cannot contain a 1-line, so we have $|\tilde{\ell}| \le 1 + 4.12 = 49$, which is impossible.

Lemma 2.5. For a [51, 4, 37]₄ code \mathcal{C} , $a_3 = 0$.

Proof. Assume the contrary and let Π_0 be a 3-plane. We are going to show that in such case PG(3, 4) does not contain 6-, 7-, 8-, and 9-planes.

Suppose Π_1 is a 6-plane. Then $l = \Pi_0 \cap \Pi_1$ is a 0-line. Let P_1 , P_2 be the two points on l which do not lie on a 2-line in Π_0 . The remaining three planes through l, say Π_2 , Π_3 , Π_4 , are 14-planes of type (B2). Denote by R_i , S_i , i = 2, 3, 4, the 0-points in $\Pi_i V l$.

Consider a projection φ with respect to P_1 and a plane Π , $P_1 \notin \Pi$. Set $l_i = \varphi(\Pi_i)$, $i = 0, 1, \ldots$, 4. The line l_0 is of type (0, 1, 1, 1, 0) and, since $\widetilde{\mathcal{E}}_{\Pi_1}$ is an oval, l_1 is of type (0, 2, 2, 2, 0). Let X_1, X_2, X_3 be the points of l_1 with $\mu(X_i) = 2$. Through each line $\langle P, X_i \rangle$ passes at least one 14-plane for otherwise $|\widetilde{\mathcal{E}}| \leq 6 + 4.11 = 50$. Hence there exists, for i = 1, 2, 3, a line m_i in Π through X_i such that $\mu(m_i) = 14$. Since 14-planes cannot contain 1-lines, we must have $\mu(m_i \cap l_0) = 0$. Hence m_1, m_2, m_3 are all of type (0, 4, 4, 4, 2), and this in turn implies that l_2, l_3, l_4 are all of type (0, 4, 4, 4, 4, 2). This means that $P_1 \in \langle R_i, S_i \rangle$ for i = 2, 3, 4. In the same way we can prove that $P_2 \in \langle R_i, S_i \rangle$, which is impossible.

Now let Π_1 be an 8- or 9-plane. Then $l=\Pi_0\cap\Pi_1$ is again a 0-line. Let $P_1,\,P_2,\,\Pi_2,\,\Pi_3,\,\Pi_4$ be the same as above. At least one of $P_1,\,P_2$, say P_1 , lies on a 3-secant, say m, to $\widetilde{\mathcal{E}}_{\Pi_1}$ (otherwise $(\widetilde{\mathcal{E}}_{\Pi_1}) \cup \{P_1,\,P_2\}$ would be a (10, 3)- or (11, 3)-arc). Consider a projection with respect to P_1 and Π . As before, $l_i=\varphi(\Pi_i),\,i=0,\ldots,4,\,R=\varphi(m)(\mu(R)=3)$. There exist at least two lines, say $s_1,\,s_2\in\Pi$, with $R\in s_1,\,R\in s_2,\,\mu(s_1)=\mu(s_2)=14$. At least one of them intersects l_0 (which is of type $(0,\,1,\,1,\,1,\,0)$) in a point X with $\mu(X)=1$, a contradiction to the fact that 14-planes do not contain 1-lines.

Finally, suppose Π_1 is a 7-plane. Once again, $l = \Pi_0 \cap \Pi_1$ is a 0-line and let $P \in l$ be a point lying on a 3-secant to \mathcal{E}_{Π_1} , say m. Let φ be a projection with respect to P and Π , and let $l_i = \varphi(\Pi_i)$, $i = 0, \ldots, 4$, $R = \mu(m)$. Each line $s \in \Pi$ with $R \in s$, $s \neq l_1$, has $\mu(s) = 14$. Therefore, for each $Y \in l_0$ we have $\mu(Y) \neq 1$. This contradicts the fact that l_0 is of type (0, 1, 1, 1, 0) or (0, 2, 1, 0, 0).

It is easily checked that $a_3 > 0$ implies $a_0 = a_4 = a_5 = 0$. Now 154(1.4) - 24(1.5) + (1.6) gives

$$-2a_{12}-2a_{13}=48,$$

In order to show that $a_4 = a_5 = 0$ for a [51, 4, 37]₄ code, it is necessary first to prove some results about a [52, 4, 38]₄ code. Of course, it will eventually follow from our main result that a [52, 4, 38]₄ code does not exist, but at this stage we cannot assume this.

Lemma 2.6. Suppose \mathscr{C} is a $[52, 4, 38]_4$ code. Then

- (i) $\gamma_0 = 1, \gamma_1 = 4, \gamma_2 = 14;$
- (ii) a line in a w-plane contains at most 1 + w/4 points of $\tilde{\ell}$;
- (iii) $a_2 = a_3 = a_7 = a_{10} = a_{11} = 0;$
- (iv) $a_0 = 0$;
- (v) $a_4 = a_5 = 0$;
- (vi) $a_6 = 0$.

Proof. (i) $\gamma_2 = 14$ is immediate from the code parameters. By Lemma 1.1, $\gamma_1 \le 4$. In fact, $\gamma_1 = 4$ for otherwise $|\tilde{e}| \le 1 + 2.21 < 52$. Lemma 1.1 now gives $\gamma_0 = 1$.

- (ii) This follows immediately from Lemma 1.1.
- (iii) From the values of $m(\nu, 4)$ given in Section 1, it follows that every 2- or 3-plane contains a line with at least two points of $\tilde{\ell}$, every 7-plane contains a line with at least three points of $\tilde{\ell}$, and every 10- or 11-plane contains a line with at least four points of $\tilde{\ell}$. Hence we get a contradiction to (ii) if any of the given a_i 's is nonzero.
- (iv) Note that $a_0 \ge 1$ implies $a_0 = 1$ and $a_i = 0$ for $i = 1, 2, \ldots, 11$. Now it is easily found that Eqs. (1.4)–(1.6) have the unique solution $a_0 = 1$, $a_{12} = 78$, $a_{13} = -72$, $a_{14} = 78$, which is impossible since a_{13} cannot be negative.
- (v) Suppose $a_4 \neq 0$ and Π is a 4-plane. No three of the points in $\widetilde{\ell}_\Pi$ are collinear; therefore, they define an oval \mathscr{O} . Let $Q \in \mathscr{O} \setminus \widetilde{\mathscr{O}}$. Let further l be a line through Q, not in Π . Consider the planes Δ_i , $i=0,1,\ldots,4$, containing l. Without loss of generality $\Delta_i \cap \Pi$, i=0,1,2,3, are 1-lines and, as by Lemma 2.2 14-planes do not contain 1-lines we have $|\mathscr{C}_{\Delta_i}| \leq 13$, i=0,1,2,3. This implies

$$|\tilde{e}| = \sum_{i=0}^{4} |\tilde{e}_{\Delta_i}| - 4|\tilde{e}_l| \le 4.13 + 14 - 4|\tilde{e}_l|,$$

whence $|\tilde{e}_l| \le 14/4$. So, every line through Q has at most three points from \tilde{e} . In fact, an easy counting shows that each line through Q off Π is a 3-

line. Therefore, each plane containing Q has at most thirteen points from $\tilde{\mathscr{E}}$. But now $\tilde{\mathscr{E}} \cup \{Q\}$ gives a [53, 4, 39]₄ code, which is a contradiction, as a code with such parameters does not exist [1].

By exactly the same arguments, if Π is a 5-plane, then we may adjoin the sixth point of the oval containing $\tilde{\ell}_{\Pi}$ to $\tilde{\ell}$ to get a [53, 4, 39]₄ code, which is a contradiction.

(vi) Suppose $a_6 \neq 0$. Equalities (1.4)–(1.6) combined with $a_0 = a_1 = \cdots = a_5 = 0$ and $a_7 = a_{10} = a_{11} = 0$ imply

$$a_{12} + 10a_9 + 15a_8 + 28a_6 = 169.$$
 (2.1)

Fix a 6-plane Π . For a line l in Π consider the quadruples of nonnegative integers

$$(|\tilde{\ell}_{\Pi_1}|, |\tilde{\ell}_{\Pi_2}|, |\tilde{\ell}_{\Pi_3}|, |\tilde{\ell}_{\Pi_4}|), \tag{2.2}$$

where Π_i , i = 1, 2, 3, 4, are the planes through l different from Π . If l is a 2-line we have two possibilities for (2.2):

If l is a 0-line then (2.2) is one of the following:

(C) (14, 14, 12, 6)

(D) (14, 14, 9, 9)

(E) (14, 13, 13, 6)

(F) (14, 12, 12, 8)

(G) (13, 13, 12, 8)

(H) (13, 12, 12, 9).

As $\tilde{\ell}_{\Pi}$ is an oval there are fifteen 2-lines and six 0-lines in Π . If we assume $a_6=1$ the sum (2.1) is maximal if we take the planes through a 2-line to be all of type (A) and the planes through a 0-line to be all of type (D). Hence

$$a_{12} + 10a_9 + 15a_8 + 28a_6 \le 28 + 15.1 + 6.20 < 169,$$

a contradiction. So, $a_6 \neq 0$ forces $a_6 \geq 2$.

Now let Π_0 and Π_1 be 6-planes. Let $l = \Pi_0 \cap \Pi_1$ (l is obviously a 0-line), and denote by Π_2 , Π_3 , Π_4 the remaining planes through l. Further write $\widetilde{\mathcal{E}}_{\Pi_0} = \{P_i | i = 1, 2, \ldots, 6\}$, $\widetilde{\mathcal{E}}_{\Pi_1} = \{Q_j | j = 1, 2, \ldots, 6\}$. Each one of the lines $\langle P_i, Q_j \rangle$, $i, j = 1, 2, \ldots, 6$, must contain a 0-point. On the other hand, a point from $PG(3, 4) \setminus (\Pi_0 \cup \Pi_1)$ lies on at most six such lines.

Suppose there is a point $R \in PG(3,4) \setminus (\Pi_0 \cup \Pi_1)$ lying on at least four lines from $\{\langle P_i, Q_j \rangle \mid i, j = 1, 2, \dots, 6\}$, say $R \in \langle P_i, Q_i \rangle$, i = 1, 2, 3, 4. Let $\langle R, P_5 \rangle \cap \Pi_1 = Q_5'$, and $\langle R, P_6 \rangle \cap \Pi_1 = Q_6'$. Then $\{Q_1, Q_2, \dots, Q_6\}$ and $\{Q_1, Q_2, Q_3, Q_4, Q_5', Q_6'\}$ are ovals and we arrive at a contradiction unless $Q_5 = Q_5'$, $Q_6 = Q_6'$. Furthermore, Lemma 1.3 implies that there cannot exist two points in $PG(3, 4) \setminus (\Pi_0 \cup \Pi_1)$ lying on more than 3 lines from $\{\langle P_i, Q_j \rangle | i, j = 1, 2, \dots, 6\}$. So, if we denote by z the number of 0-points not on Π_0 or Π_1 , we get $6 + 3(z - 1) \geq 36$. This implies $z \geq 11$, a contradiction since z = 8.

LEMMA 2.7. For a [51, 4, 37]₄ code \mathscr{C} we have $a_4 = a_5 = 0$.

Proof. Let Π_0 be a 4-plane, and let P,Q be the points on Π_0 for which $(\widetilde{\mathcal{E}}_{\Pi_0}) \cup \{P,Q\}$ is an oval. Let l be a 1-line through P and let Π_i , $i=1,\ldots,4$, be the other four planes through l. Consider a projection $\varphi=\varphi_{P,\Pi},P\not\in\Pi$. Set $l_i=\varphi(\Pi_i), i=0,\ldots,4$. The line l_0 is of type $(1,1,1,1,0), \mu(l_i)\leq 13, i=1,\ldots,4$.

Assume that for some $X \in \Pi \setminus l_0$, $\mu(X) = 4$. Then there exist at least two lines on Π , says s_1 , s_2 , through X with $\mu(s_i) = 14$, i = 1, 2. For at least one of them, say s_1 , we have $\mu(s_1 \cap l_0) = 1$, a contradiction. Therefore, for every $X \in \Pi \setminus l_0$, $\mu(X) \le 3$. Hence for every line m on Π , $\mu(m) \le 13$. This means that P does not lie on a 14-plane and $\tilde{e} \cup \{P\}$ gives a $[52, 4, 38]_4$ code with a 5-plane, a contradiction to Lemma 2.6(v).

Now let Π_0 be a 5-plane and let P be the point of Π_0 such that $\widetilde{\mathcal{E}}_{\Pi_0} \cup \{P\}$ is an oval. Any plane, other than Π_0 , through P must meet Π_0 in a 1-line and so cannot be a 14-plane. Thus $\widetilde{\mathcal{E}} \cup \{P\}$ gives a [52, 4, 38]₄ code with a 6-plane, contradicting Lemma 2.6(vi).

For future reference let us note that from (1.4)-(1.6) we now have

$$a_{12} + 3a_{11} + 10a_9 + 15a_8 + 21a_7 + 28a_6 + 91a_0 = 187.$$
 (2.3)

Lemma 2.8. for a [51, 4, 37]₄ code \mathcal{C} , $a_0 = 0$.

Proof. Suppose $a_0 > 0$. Then $a_0 = 1$ and $a_i = 0$ for $1 \le i \le 8$. From (2.3) we have

$$a_{12} + 3a_{11} + 10a_9 = 96 (2.4)$$

Let Π_0 be the 0-plane. For a line l in Π_0 consider the quadruples

$$(|\tilde{\mathcal{E}}_{\Pi_1}|,|\tilde{\mathcal{E}}_{\Pi_2}|,|\tilde{\mathcal{E}}_{\Pi_3}|,|\tilde{\mathcal{E}}_{\Pi_4}|),$$

where Π_1, \ldots, Π_4 are the planes through l different from Π_0 . The possible quadruples are

Suppose $a_9 = 0$. Then the maximum contribution that the planes through l can make to the left-hand side of (2.4) is 4 (when the quadruple is (14, 14, 12, 11)). Thus the left-hand side of (2.4) is at most 4.21 = 84, a contradiction. Hence $a_9 > 0$.

Let Π_1 be a 9-plane. The line $l = \Pi_0 \cap \Pi_1$ is a 0-line, and $\widetilde{\mathcal{E}}_{\Pi_1}$ is a (9, 3)-arc of type ($\mathcal{A}2$) or ($\mathcal{A}3$). The other three planes through l (we denote them by Π_2 , Π_3 , Π_4) are 14-planes of type (B2).

Denote by R_i , S_i , i=2,3,4, the 0-points on $\Pi_i l$. Now we consider projections $\varphi_P = \varphi_{P,\Pi}$, $P \notin \Pi$, for different choices of the point $P \in l$. Once again, we set $l_i = \varphi_P(\Pi_i)$.

Firstly, let P lie on three 3-secants and two external lines to $\tilde{\ell}_{\Pi_1}$; in other words, let P be a point with $(\rho_0, \rho_1, \rho_2, \rho_3) = (2, 0, 0, 3)$ (see Section 1). Then l_1 is of type (0, 3, 3, 3, 0) and l_2, l_3, l_4 are of type (0, 4, 4, 4, 2) or (0, 4, 4, 3, 3). The set

$$\mathcal{I} = \{X \mid X \in l_2 \cup l_3 \cup l_4, \mu(X) = 4\} \cup \{Y \mid Y \in l_1, \mu(Y) = 3\}$$

is an $(|\mathcal{S}|, 3)$ -arc; therefore, $|\mathcal{S}| \leq 9$. This implies that l_2 , l_3 , l_4 are all of type (0, 4, 4, 3, 3) or, in other words, none of the lines $\langle R_2, S_2 \rangle$, $\langle R_3, S_3 \rangle$, $\langle R_4, S_4 \rangle$ meets P.

Now suppose P lies on one 3-secant, three 2-secants, and one external line to $\tilde{\ell}_{\Pi_1}$, i.e., $(\rho_0, \rho_1, \rho_2, \rho_3) = (1, 0, 3, 1)$. Using the same argument about \mathcal{L} we get that not all of l_2 , l_3 , l_4 are of type (0, 4, 4, 4, 2). Suppose exactly one of l_2 , l_3 , l_4 is of type (0, 4, 4, 4, 2). Then \mathcal{L} is an (8, 3)-arc which can be extended to a (9, 3)-arc \mathcal{L} * of type $(\mathcal{L}2)$ or $(\mathcal{L}3)$. Therefore, there exists an external line, say $m \neq l_0$, to \mathcal{L} . Then

$$\mu(m) = \sum_{i=0}^{4} \mu(m \cap l_i) = 0 + 2 + 2 + 3 + 3 = 10,$$

a contradiction (Lemma 2.1(iii)). We can conclude that if P has $(\rho_0, \rho_1, \rho_2, \rho_3) = (1, 0, 3, 1)$ then it lies on an even number of lines from $\{\langle R_i, S_i \rangle, i = 1\}$

2, 3, 4}. This proves that $\tilde{\ell}_{\Pi_1}$ cannot be of type (\mathcal{A} 3), as in this case all the points on l have $(\rho_0, \rho_1, \rho_2, \rho_3) = (2, 0, 0, 3)$, or (1, 0, 3, 1).

Let now $P \in l$ be a point with $(\rho_0, \rho_1, \rho_2, \rho_3) = (1, 1, 1, 2)$. The argument about \mathcal{I} gives us that at most one of l_2 , l_3 , l_4 is of type (0, 4, 4, 4, 2). If exactly one of these lines is of type (0, 4, 4, 4, 2) there exists $m \in \Pi$, $m \neq l_0$, which is external to \mathcal{I} , with $\mu(m) = 9$. In other words, there exists a 9-plane through P, different from Π_1 . Note that we can always choose a point P on l with $(\rho_0, \rho_1, \rho_2, \rho_3) = (1, 1, 1, 2)$ lying on exactly one of $\langle R_2, S_2 \rangle$, $\langle R_3, S_3 \rangle$, $\langle R_4, S_4 \rangle$.

Now let $P' \in l$ be the point with $(\rho_0, \rho_1, \rho_2, \rho_3) = (2, 0, 0, 3)$ and $P'' \in l$ be a point with $(\rho_0, \rho_1, \rho_2, \rho_3) = (1, 1, 1, 2)$ lying on exactly one of the lines $\langle R_i, S_i \rangle$, i = 2, 3, 4. There exists a 9-plane $\Delta_1 \neq \Pi_1$ through P''. Note that $\widetilde{\mathcal{E}}_{\Pi_1}$ and $\widetilde{\mathcal{E}}_{\Delta_1}$ are (9, 3)-arcs of type $(\mathscr{A}2)$. Denote by s (resp. t) the 0-line in Π_1 (resp. Δ_1), which is not in Π_0 . Obviously, $P' \in s$, $P' \notin t$. Write $R = t \cap \Pi_0$.

Suppose there exists a plane Γ containing both s and t. Then Γ contains three non-concurrent 0-lines $(s, t \text{ and } \langle P', R \rangle)$ and must be a 9-plane. \mathcal{E}_{Γ} is a (9, 3)-arc of type $(\mathcal{A}3)$, which was shown to be impossible. Therefore, s and t have to be skew lines.

To complete the proof we are going to show that there cannot exist two skew 0-lines off Π_0 . Denote by \mathcal{K} the set of all 0-points in PG(3, 4). Let further $\mathcal{K}_0 = \mathcal{K} \setminus (\Pi_0 \cup s \cup t)$. We have $|\mathcal{K}_0| = 5$. For a plane Γ with $\Gamma \supset s$, $R \notin \Gamma$, $\mathcal{K}_0 \cap \Gamma \neq \emptyset$, we have $|\widetilde{\mathcal{E}}_{\Gamma}| \leq 10$. Therefore, Γ is a 9-plane, i.e., $|\Gamma \cap \mathcal{K}_0| = 2$. Hence $\langle s, P', R \rangle$ contains only one point from \mathcal{K}_0 and is thus an 11-plane. Similarly, $\langle t, P', R \rangle$ is an 11-plane. Counting the number of points on the planes through $\langle P', R \rangle$ we get

$$|\tilde{\mathscr{E}}| = \sum_{\langle P', R \rangle \subset \Gamma} |\tilde{\mathscr{E}}_{\Gamma}| \le 0 + 2.11 + 2.14 = 50,$$

a contradiction.

Lemma 2.9. Let $\varphi_{P,\Pi}$ be a projection and suppose A_0 , A_1 , A_2 are points in Π with $\mu(A_i) = 0$. Then A_0 , A_1 , A_2 are not collinear.

Proof. Suppose A_0 , A_1 , A_2 lie on a line l and let $X \in l$, $X \neq A_i$, i = 0, 1, 2. Now $\mu(X) \neq 4$ because a plane with fewer than 11 points cannot contain a 4-line (Lemma 2.1(ii)). Furthermore, $\mu(X) \neq 3$ because a plane with fewer than 7 points cannot contain a 3-line. Hence $\mu(l) \leq 4$, which is impossible since we have shown that $a_i = 0$ for $i \leq 4$.

Lemma 2.10. Suppose \mathscr{C} is a $[51, 4, 37]_4$ code. Then $a_7 = a_8 = 0$.

Proof. Let Π_0 be a 7- or 8-plane and let $l \in \Pi_0$ be a 3-line. Denote by

 Π_i , i=1,2,3,4, the remaining planes through l. Without loss of generality, Π_1 , Π_2 , Π_3 are 14-planes of types (B2). Consider a projection $\varphi = \varphi_{P,\Pi}$, $P \notin \Pi$, where P is a 0-point of l. Let $l_i = \varphi(\Pi_i)$, i=0,...,4. The point P can be so chosen that at least two of the lines l_1 , l_2 , l_3 , say l_1 and l_2 , are of type (3, 4, 4, 3, 0) (consider where the 0-lines of Π_1 , Π_2 , Π_3 meet l).

Denote by A_i , i = 1, 2, the points with $A_i \in l_i$, $\mu(A_i) = 0$. Let further $m_0 = \langle A_1, A_2 \rangle$ and $A_0 = m_0 \cap l_0$. Denote by m_i , i = 1, 2, 3, the lines in Π through A_0 , different from m_0 and l_0 .

We have $\mu(A_0) = 1$, 2, or 3 ($\mu(A_0) = 0$ is impossible by Lemma 2.9, $\mu(A_0) = 4$ is impossible by Lemma 2.1(ii)). It is easily seen that

$$|\tilde{\mathscr{E}}| = 51 = \sum_{i=0}^{3} \mu(m_i) + \mu(l_0) - 4\mu(A_0).$$
 (2.5)

Suppose $\mu(A_0) = 1$. Then $\mu(m_i) \le 13$, i = 1, 2, 3, $\mu(m_0) \le 7$ and (2.5) becomes $51 \le 3.13 + 7 + 8 - 4.1 = 50$, a contradiction. Now let $\mu(A_0) = 2$. We have $\mu(m_i) \le 14$, i = 1, 2, 3, $\mu(m_0) \le 8$ and from (2.5), $51 \le 3.14 + 8 + 8 - 4.2 = 50$, a contradiction. At last let $\mu(A_0) = 3$. This time $\mu(m_0) \le 11$ and (2.5) gives again a contradiction $51 \le 3.14 + 11 + 8 - 4.3 = 49$.

Lemma 2.11. For a [51, 4, 37]₄ code \mathcal{C} , $a_6 = 0$.

Proof. First of all, let us note that if $a_6 \ge 2$ we obtain a contradiction as in Lemma 2.6(vi). Now suppose that $a_6 = 1$ and let Π_0 be the 6-plane. From (1.4)–(1.6) we get that in such case $a_9 > 0$ for otherwise 154(1.4) – 24(1.5) + (1.6) gives $2a_{12} + 2a_{13} = -96$. Let Π_1 be a 9-plane. The line $l = \Pi_0 \cap \Pi_1$ is a 0-line and $\tilde{\ell}_{\Pi_1}$ is a (9, 3)-arc of type (\mathscr{A} 2) or (\mathscr{A} 3). Let $P \in l$ be a point lying on three 3-secants and two external lines to $\tilde{\ell}_{\Pi_1}$. Consider the projection $\varphi = \varphi_{P,\Pi}$, $P \notin \Pi$. Set $l_i = \varphi(\Pi_i)$, i = 0, 1. The line l_0 is of type (0, 2, 2, 2, 2, 0) and l_1 is of type (0, 3, 3, 3, 0).

Fix $A \in l_0$ with $\mu(A) = 2$. Let l' be the line in Π_0 with $\varphi(l') = A$. Let Δ be a 14-plane containing l' (such a plane must exist, for otherwise $|\widetilde{\mathscr{E}}| \leq 6 + 4.11 = 50$). Since Δ meets Π_1 in a 0- or 3-line, Δ is of type (B2). Let m be the 0-line of Δ and let Δ_i , i = 1, 2, 3, 4, be the other planes through m. Then $\sum_{i=1}^4 |\widetilde{\mathscr{E}}_{\Delta_i}| = 37$, where each of the numbers $|\widetilde{\mathscr{E}}_{\Delta_i}|$ is 9, 11, 12, 13 or 14 (note that Π_0 is the only i-plane with i < 9). Clearly, we cannot find four such numbers which sum to 37.

Theorem 2.12. There is no $[51, 4, 37]_4$ code.

Proof. Suppose \mathscr{C} is a $[51, 4, 37]_4$ code and Π_0 is a 14-plane of type (B2). Denote by l the 0-line in Π_0 , and by Π_i , i = 1, 2, 3, 4, the remaining

planes through l. Then $51 = \sum_{i=0}^4 |\widetilde{\mathcal{E}}_{\Pi_i}|$, i.e., $\sum_{i=1}^4 |\widetilde{\mathcal{E}}_{\Pi_i}| = 37$, where each of the numbers $|\widetilde{\mathcal{E}}_{\Pi_i}|$ is 9, 11, 12, 13, or 14. Again, we cannot find four such numbers which sum to 37.

Now let Π_0 be a 14-plane of type (B1). For different choices of the line $l \in \Pi_0$ consider the quadruples of nonnegative integers

$$(|\tilde{\mathcal{E}}_{\Pi_1}|,|\tilde{\mathcal{E}}_{\Pi_2}|,|\tilde{\mathcal{E}}_{\Pi_3}|,|\tilde{\mathcal{E}}_{\Pi_4}|),$$

where Π_i , i = 1, 2, 3, 4, are the other four planes through l. If l is a 4-line then the quadruple is one of

- (A) (14, 14, 14, 11)
- (B) (14, 14, 13, 12)
- (C) (14, 13, 13, 13).

If *l* is a 2-line then the quadruple is one of

- (D) (14, 13, 9, 9)
- (E) (14, 11, 11, 9)
- (F) (13, 12, 11, 9)
- (G) (12, 12, 12, 9)
- (H) (12, 11, 11, 11).

From (2.3) we have

$$a_{12} + 3a_{11} + 10a_9 = 187.$$
 (2.6)

There are fourteen 4-lines and seven 2-lines in Π_0 , so the left-hand side of (2.6) is maximal if we take the planes through the 4-lines to be all of type (A) and the planes through the 2-lines to be all of type (D). Hence,

$$187 = a_{12} + 3a_{11} + 10a_9 \le 14.3 + 7.20 = 182,$$

a contradiction.

Remark 2.13. The results of this paper also make a contribution to the theory of so-called minihypers. An $\{f, m; r, q\}$ minihyper is defined to be a set of f points in PG(r, q) which meets every hyperplane in at least m points. Minihypers have been studied extensively in connection with the

problem of finding and classifying codes meeting the Griesmer bound; see [2] for a recent survey. If a [51, 4, 37]₄ code is viewed as a 51-set in PG(3,4) which meets every plane in at most 14 points, then its complement in PG(3,4) is a {34, 7; 3, 4} minihyper. It is thus proved in Theorem 2.12 that {34, 7; 3, 4} minihypers do not exist.

REFERENCES

- P. Greenough and R. Hill, Optimal linear codes over GF (4), Discrete Math. 125 (1994), 187–199.
- 2. N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. System Sci 18 (1993), 161–191.
- R. Hill and I. Landgev, On the nonexistence of some quaternary codes, submitted for publication.
- J. W. P. Hirschfeld, "Projective Geometries over Finite Fields," Clarendon Press, Oxford, UK, 1979.